Accurate Timed RTOS Model for Transaction Level
Modeling

Gunar Schirner !

Dept. of ECE
Northeastern University
Boston, MA, 02115
Email: schirner@ece.neu.edu

Yonghyun Hwang
CECS
University of California
Irvine, CA, 92617
Email: yonghyuh@uci.edu

Abstract—In this paper, we present an accurate timed RTOS
model within transaction level models (TLMs). Our RTOS model,
implemented on top of system level design language (SLDL),
incorporates two key features: RTOS behavior model and RTOS
overhead model. The RTOS behavior model provides dynamic
scheduling, inter-process communication (IPC), and external
communication for timing annotated user applications. While
the RTOS behavior model is running, all RTOS events, such as
context switch and interrupt handling, are passed to RTOS over-
head model to adopt the overhead during system execution. Our
RTOS overhead model has processor- and RTOS-specific pre-
characterized overhead information to provide cycle approximate
estimation. We demonstrate the applicability of our model using
a multi-core platform executing a JPEG encoder. Experimental
results show that the proposed RTOS model provides the high
accuracy, 7% off compared to on-board measurements while
simulating at speeds close to the reference C code.

I. INTRODUCTION

Recent design paradigm is rapidly shifting to platform based
design with intensive use of software. In such a platform based
design, choosing an optimal platform and a best mapping of
application to platform is crucial to meet performance and
real-time constraints of an embedded system. Aforementioned
system level decisions can be guided by the accurate analysis
of system performance for a given design choice. For practical
performance analysis, fast and accurate estimation of software
performance with timing accurate RTOS modeling is one key
solution for rapid design space exploration and early proto-
typing. To accurately estimate performance of software, three
delay contributors have to be modeled: (a) D..., for execution
of application code; (b) Dgscneq, due to dynamic scheduling
(e.g. delay due to task preemption); and (c) D,.s, the RTOS
overhead to provide RTOS services, such as task management,
task scheduling, task synchronization, and interrupt handling.

Significant research efforts have been made to estimate
D¢yec. [8] and [1] can take into account the datapath structure
which adopt a bus functional model and integrate ISS. They
provide accurate results at the expense of speed. To obtain
more speed while providing accurate estimation, [3] and [11]
provide fast system simulation models. However, they are not
retargetable which, in turn, limits scalability. Abstract RTOS

The work presented in this paper was done while authors were affiliated
with CECS at UCI

978-3-9810801-6-2/DATE10 © 2010 EDAA

Samar Abdi !

Dept. of ECE
Concordia University
Montreal, Canada H3G 1MS8
Email: samar@ece.concordia.ca

Daniel G. Gajski
CECS
University of California
Irvine, 92617
Email: gajski@uci.edu

models have been developed on top of System Level Design
Languages (SLDLs) (e.g. SystemC [6], SpecC [4]) to expose
the effect of dynamic scheduling, Dg.p.q. Examples include
[5], modeling typical RTOS primitives on top of SpecC, and
[10], implementing an POSIX API on top of SystemC. The
later offers an interesting combination of online estimation
and RTOS-modeling, which enables an optimized modeling
of periodic interrupts. However, the solutions do not include
accurate modeling of RTOS overheads that are addressed in
the paper.

In this paper, accurate timed RTOS model for transaction
level modeling (TLM) is presented which focuses on the
estimation ‘accuracy’ along with the estimation ‘fidelity’. For
the estimation accuracy, the presented RTOS model reflects
two major delays, Dgcheq and Dy tos. Dgcheq 1S €xposed by
supporting all the RTOS primitive operations, such as task
scheduling, interrupt handling and so on. D,,s is revealed
by RTOS overhead model which has processor- and RTOS-
specific pre-characterized overhead information. For Dy,
application estimation technique proposed in [7] is used.
Estimation technique [7] analyzes the application codes and
annotates the timing information back to the codes. These
annotated application codes are integrated into our timed
RTOS model to simulate D.,...

This paper is organized as follows. Sec. II outlines the
timed RTOS model consisting of RTOS behavior model and
RTOS overhead model. In Sec. III, experimental results show
accuracy, speed, and scalability using industrial scale design
like JPEG application. Finally, we conclude the paper and
touch on future works.

II. TIMED RTOS MODEL

The timed RTOS model is divided into two separate models:
RTOS behavior model and RTOS overhead model. RTOS
behavior model captures fundamental RTOS services, such
as task management, event handling for synchronization, OS
management, time modeling, and interrupt handling. In ad-
dition to fundamental RTOS services, it supports abstract
channels and core OS system calls to provide communica-
tion among tasks, which allows easy integration with legacy
application codes. The RTOS overhead model has processor-
and RTOS-specific pre-characterized overhead information

to provide cycle approximate estimation. While the RTOS
behavior model is running, all RTOS events are passed to
RTOS overhead model to analyze the timing overhead in
system execution. In following sub-sections, RTOS behavior
and overhead model will be presented.

A. RTOS Behavior Model

PEO

BB1 Timed_P1 BB1 Timed_P2

execDelay(t4)
chRecy(data1)|

execDelay(t1)
chSend(datal

)
Y N
Y N
BB2 i BB3 BB2 BB3

execDelay(t5) execDelay(t6)

chSend(data2),
Y ;If: N

Int. Comm Synch .

RTOS Behavior Model

execDelay(t2)
chRecv(data2)

F]
“~
‘ — Task

execDelay(t3)

RTOS

Ext. Comm

Fig. 1.

Fig. 1 shows our RTOS behavior model that emulates
fundamental RTOS services. The RTOS behavior model is
implemented as a SC_INTERFACE inside the SC_MODULE
of the PE. Each of virtual processes (i.e., a time annotated
process) is implemented as a SC_THREAD for multiple
flows of execution. The execution of each SC_THREAD is
controlled by the model through SystemC event to emulate
the selected scheduling policy.

To emulate scheduling, the RTOS behavior model is very
similar to an actual RTOS. It maintains a Task Control Block
(TCB) for each virtual processes and the appropriate queue for
task scheduling. Each virtual process is scheduled based on a
task state machine where a transition is made by the scheduling
policy. At any given point in time only one SC_THREAD (one
virtual process) is released through the SystemC event based
on scheduling policy.

At the beginning of timed RTOS model execution, the
proposed model parses RTOS configuration script describing
scheduling policy and processes’ priorities. After parsing step
is complete, it initializes internal data structures for scheduling
and puts all the virtual processes in READY state. Then, it
calls scheduler to pick up the first runnable virtual process,
changing its READY state to a RUNNING state, and executes
it. While the virtual process is running, it calls an wrapper API
of the RTOS model at the end of every basic blocks to simulate
progress of time due to code execution. Our virtual processes,
having time annotated code, calls this interface (execDelay(),
Fig. 1), and subsequently a sc_core::wait() is executed under
RTOS control. During this time, the virtual process remains
in the RUNNING state and no other process is scheduled.

During the time progress, an incoming interrupt may release
a higher priority process in WAITING state which is pending
on a resource. This calls scheduler. The scheduler makes the
state of the higher priority process as a RUNNING state

and makes the current running process READY. Please note
that the above description is for priority based scheduling. If
scheduling policy is round robin, progress of time is checked
against allocated time slot that sits in RTOS configuration
script. If the allocated time slot for the virtual process is
expired, scheduler makes the state of the current process as
READY and starts execution of the available process from the
queue.

The RTOS behavior model furthermore provides an abstract
channels to enable internal communication and external com-
munication to the outside of the processor. To realize external
communication in the model, an abstract bus model [12] is
adopted, which is implemented on top of interrupt handling
service of our model to synchronize external communication
among hardware. As for internal communication, SystemC
event is used instead of interrupt handling service to achieve
synchronized communication among virtual processes.

Abstract channels, supported by our RTOS model, can
trigger scheduling. To give an example, when a virtual process
executes an inter-process transaction (e.g. Fig. 1, call chRecv()
in process Timed_P2), this transaction is executed under
RTOS control. Assuming it contains acquiring a non-available
semaphore, the virtual process state is set to PENDING, the
next process is selected from the ready queue according to
the scheduling policy, set to RUNNING, and released through
its SystemC event. Finally, the old virtual process suspends
by waiting its own SystemC event. Note that the actual
context switch is performed by SystemC kernel and the RTOS
behavior model only controls their release.

B. RTOS Overhead Model

Modeling RTOS overhead is challenging because it depends
on type of RTOS, CPU, and platform. It gets more compli-
cated if RTOS, CPU, and platform are configurable which is
common in a modern embedded system. One option for the
modeling is to do static source code analysis. However, the
analysis is complicated by a limited source code availability
especially for a commercial RTOS, as well as API and
structural/organizational differences between implementations.
These factors inhibit a static source code analysis or make it
prohibitively expensive. Another option is to use data hand
book provided by RTOS vendor. Even though it is convenient
to use, it provides the fidelity instead of the accuracy in RTOS
overhead estimation.

In order to model RTOS overhead accurately without RTOS
source code, we have developed a time stamping approach
on RTOS API level. From observed time stamps, we derive
a set of overheads for RTOS primitive operations such as
scheduling overhead and task synchronization overhead. Be-
cause the RTOS overhead is sensitive to RTOS and CPU, we
characterize a RTOS on the actual processor in supported con-
figuration(s). The following paragraphs describe our analysis
approach.

Several special test applications are developed to capture
time stamps. They invoke RTOS primitives in a controlled
environment in which we know a priority of the scheduling

Sys (a) User calls system call
2Rl QICICIONG) (b) Exec. System call
Thign —23— (c) Scheduler
T (d) Save old Context
i (e) Restore new Context
tws-1 towien tee 'Me (f) Sys. call end, user call returns
Fig. 2. sem_take() with context switch
Sys o1 [0)(C) (f) (a) User calls system call
Thigh (b) Exec. System call
@) (c) Scheduler
TLow
H—t
tws.o twe time (f) Sys. call end, user call returns

Fig. 3. sem_take() without context switch

outcome. The time stamp codes and its data are exclusively
placed in a non-cached fast local memory to minimize impact
on execution time. Timer interrupts are also disabled while
analyzing timing unrelated RTOS primitives to eliminate the
impact of unexpected interrupts.

In this paper, we show one example on how the scheduling
overhead can be obtained. In Fig. 2 and Fig. 3, the example of
our test application is shown based on acquiring a semaphore
without and with a context switch. As system calls basically
follow the same steps, the example is representative.

Fig. 2 shows the case with context switch. Before system
call, sem_take, the time stamp, tyrs—1 is recorded in user
mode. After time stamping, task T'f;q, calls sem_take() to
acquire non-available semaphore (a), which results in a con-
text switch to Ty . In side of system call, sem_take(), the
processor mode is switched to kernel mode, and the actual
semaphore code is executed (b) after looking up a system
call table. As semaphore is not available, the scheduler (c)
determines the next task to execute, the current task’s context
is saved (d), the new task’s context is restored (e). Finally,
system call return (f) in the new task’s context. For system
call return, the processor mode is switched back to user mode
and RTOS executes 170w

In the application, T, had earlier relinquished the CPU
by posting a semaphore to Tf;4,. Therefore, the system
call return point in T, is in a sem_post(). After exiting
sem_post(), we put another time stamp ¢pg. Please note, that
the code for returning a system call is independent of the call
type (e.g. the code is identical for sem_post() and sem_take()
starting at the point for restoring new context (c)). We can
therefore use ¢ pg to analyze the duration of a sem_take() with
the scheduling overhead.

Fig. 3 illustrates the case of an available semaphore where
no context switch necessary. We put the time stamp, tyys_o,
before the system call, sem_take(). The sequence during the
system call is short cut. Because the task, T'r;gn, can get
semaphore, scheduling is not necessary (c). Therefore, there is
no context switch and the system call returns (f) to the same
task where we record ¢y 5. At this point, we can calculate the
duration of a sem_take() without the scheduling overhead.

Based on these analysis, we can determine the duration for
sem_take() and the scheduling. Our analysis with these time

stamps, after eliminating the overhead of time stamping itself,
is as follows:

Dur(sem_take) = twg —tws—2

Dur(sched) = tpg—tws—1 — Dur(sem_take)

The duration analysis of sem_take is the difference between
start and end time stamp. We compute the scheduling duration
based on the duration of the sem_take with a context switch
(tpg — tws—_1) and subtract the time for sem_take() without
context switch. We chose sem_take(), since we expect portion
(b), execution of the system call itself, to be minimally
dependent on the scheduling outcome as sem_take() only
manipulates the own task state. Conversely, sem_post() shows
a variance beyond the estimated context switch duration as it
manipulates other task’s states.

We analyze the delays for other RTOS primitives, such
as communication and synchronization primitives, in a sim-
ilar way. For each primitives, we measure the time without
and with the scheduling overhead. After normalizing for
the already determined scheduling duration, we calculate the
average between the two cases to determine the primitive’s
duration.

In addition to the fundamental RTOS primitives, we also
characterized core OS system calls as explained earlier. In
particular, we have characterized memcpy() as it is frequently
used and its code is often heavily optimized. We measure the
delay for memcpy() by putting two time stamps before and
after memcpy() with varying data size. We keep the delay
results in a table, and use a linear extension to estimate values
beyond the table boundaries.

We store the analyzed RTOS characteristics in our database,
with a separate delay for each used RTOS primitives. The
code for instantiating an RTOS is created automatically during
TTLM generation. The selected RTOS’ characteristics are
retrieved from the database based on the system specification.
With the characteristics, small SystemC script is automatically
generated to initialize the selected RTOS model. During the
execution of an our RTOS model, the characterized delay
— without scheduling — (e.g. Dur(sem_take())) is executed
for the specific RTOS primitive. To give an example, our
abstract task dispatcher, switching between SC_THREADs,
is annotated with Dur(switch). We use this basically state
less delay model to simplify abstract RTOS implementation
while maintaining a high simulation performance. Even though
our analysis and modeling approach abstracts away many
influences on RTOS overhead (e.g. number of total, waiting
tasks, manipulated tasks), it already yields valuable feedback
for estimating system performance.

III. EXPERIMENTAL RESULTS

To evaluate the benefits of our approach, we modified
ESE tool [2] and have applied it to industry size design, a
JPEG encoder. Our JPEG encoder has 6 tasks. Two tasks
are used for input and output for JPEG encoding algorithm.
JPEG encoding algorithm likely consists of 4 tasks, DCT,
quantization, zigzag and huffman encoding. JPEG encoding

Granul- Board RTOS Timed RTOS
arity Measure Est. Error Est. Error
64 33.3M 18.7M | -43.84% | 30.4M | -8.87%
32 34.9M 19.0M | -45.43% | 31.4M | -9.93%
16 35.9M 19.4M | -45.89% | 33,3M | -7.34%
8 38.3M 20.0M | -47.55% | 36.8M | -3.83%
Average N/A N/A -46 % N/A -7%
TABLE I
ESTIMATION ACCURACY OF MODELS
Model Sim. Time
Granularity 64 32 16 8
RTOS 068s | 0.70s | 0.70s | 0.73 s
Timed RTOS | 0.69s | 0.74s | 0.76 s | 0.79 s
TABLE II

SIMULATION TIME OF MODELS

algorithm, all the 4 tasks, is mapped to the same processor, a
Microblaze with 100Mhz, and scheduled by Xilinx’s RTOS,
Xilkernel. Input provider and output consumer, are assigned
to custom hardware components. To realize communication
between Microblaze and custom hardware, we introduced
Transducer through which all the data transfers are relayed.
The following paragraphs discuss our results on accuracy,
speed, and scalability of our estimation engine using the above
experimental setup.

Table I shows the average accuracy of our abstract models
for each of our designs in comparison to cycle-accurate exe-
cution on the Xilinx FF896 board. To illustrate the impact of
adding overhead information to RTOS model, we analyze two
abstraction levels, TTLM with RTOS and TTLM with timed
RTOS. TTLM with RTOS adds a behavior RTOS model to
TTLM (Sec. II). In contrast to TTLM with RTOS, TTLM with
timed RTOS additionally models system overheads (Sec. II-B),
reflecting Dcyecs Dscheds and Dyios. Our results show that
modeling Degec and Dgcpeq 1S not sufficient for parallel
applications. The TTLM with RTOS shows 46% average error,
up to 48% depending on data transfer granularity. With the
fine grained IPC, the designs exhibit a significant system
overhead and thus the TTLM with RTOS underestimates by
46% on average. Adding RTOS overhead modeling reduces the
error to less than 10%, yielding already sufficiently accurate
timing information. The remaining error is due to our abstract
analysis and modeling of RTOS overheads, which we chose
in favoring automate ability and simulation speed. Comparing
solutions, our TTLM with Timed RTOS yields the most
accurate timing estimation. With increasing system overhead,
an even smaller error is shown. For the smallest granularity,
size 8, our generated TLM exhibited only 3.83% error.

Table II summarizes the simulation time of our model in
number of seconds. The results show that TTLM with RTOS
model simulates in fractions of a second. Our TTLM with
timed RTOS also simulates in fractions of a second. No
significant increase in speed is measurable to reflect RTOS
overheads. These results clearly demonstrate the advantages
of our solution, simulating fast enough to do early design
exploration, while exhibiting the accuracy close to the board
measurement.

Generation time is an additional usability aspect on scalabil-

ity. Generation time for TTLM with timed RTOS is dominated
by the application timing annotation engine [7], as it executes
the Low Level Virtual Machine (LLVM [9]) compiler. The
additional effort for instantiating the timed RTOS is negligible
because our RTOS model is implemented as a library and
small scripts are the only needs for RTOS configuration. The
measured total generation time is around 1.2 seconds for JPEG
encoder algorithm, which shows our timed RTOS model is
scalable.

IV. CONCLUSIONS

This paper presents accurate timed RTOS model for TLMs.
The proposed RTOS model fulfills three important require-
ments, accuracy, speed, and scalability by providing three
key aspects: (a) dynamic scheduling through RTOS behavior
emulation, (b) modeling of RTOS overheads, and (c) interrupt
modeling for external communications. Our model enables
fast performance evaluation with high accuracy and exposes
performance bottlenecks earlier in the system design, which
results in best possible design in fewer design cycles. Our
model offers competitive advantages in guiding developers
while designing multi-tasking applications in platform based
design flow. Experimental results with JPEG encoder design
shows that our RTOS model is scalable to complex platforms
and very accurate while simulating fast. The results are within
7% of actual board measurements even for industry size
applications, while simulating faster than real-time. The ex-
perimental results demonstrate that the proposed RTOS model
can be used reliably and efficiently for fast, early, and accurate
estimation in platform based design approach. In the future,
we plan to extend our RTOS overhead model to finer grained
detail using non-intrusive time stamping methods.

REFERENCES

[1] M.-K. Chung, S. Na, and C.-M. Kyung. System-Level Performance
Analysis of Embedded System using Behavioral C/C++ model. In VLSI-
TSA-DAT, Hsinchu, Taiwan, 2005.

[2] ESE: Embedded Systems Environment. http://www.cecs.uci.edu/~ese.

[3] FastVeri (SystemC-based High-Speed Simulator) Product. http://www.
interdesigntech.co.jp/english/fastveri/.

[4] D. D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and S. Zhao. SpecC:
Specification Language and Design Methodology. Kluwer Academic
Publishers, 2000.

[5]1 A. Gerstlauer, H. Yu, and D. D. Gajski. Rtos modeling for system level
design. In Proceedings of the Design, Automation and Test in Europe
(DATE) Conference, Munich, Germany, March 2003.

[6] T. Grotker, S. Liao, G. Martin, and S. Swan. System Design with
SystemC. Kluwer Academic Publishers, 2002.

[71 Y. Hwang, S. Abdi, and D. Gajski. Cycle-approximate Retargetable
Performance Estimation at the Transaction Level. In DATE, Munich,
Germany, April 2008.

[8] J.-Y. Lee and L.-C. Park. Time Compiled-code Simulation of Embedded
Software for Performance Analysis of SOC design. In DAC, New
Orleans, USA, June 2002.

[91 LLVM(Low Level Virtual Machine) Compiler Infrastructure Project.

http://www.llvm.org.

H. Posadas et al. RTOS modeling in SystemC for real-time embedded

SW simulation: A POSIX model. 10(4):209-227, Dec. 2005.

CoMet: Virtual System Prototype Technologies. http://www.vastsystems.

com/solutions-architecture-systems.html.

[12] L. Yu, S. Abdi, and D. Gajski. Transaction level platform modeling in

systemc for multi-processor designs. Technical Report CECS-TR-07-01,
January 2007.

[10]

(11]

