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ABsTrRACT. In this paper a condition is presented on parameters
(n1,n2,Ag), for arbitrary partition n = {ni,n2} (n1 < n2) and k =
1,...,n—1, which guarantees that two different interpretations of characters
of fundamental modules L(Ay) for the affine Kac-Moody Lie algebra slp,
generate extended classical Gauss series-product identities.

1. INTRODUCTION

The classical Gauss series-product identity (see [1]) is given by

m > gt _ 28)

= (a)

where ¢(q) = [[;5,(1 - ¢’) is the Euler product function. The classical
Gauss identity (1.13 appears in representation theory of infinite dimensional
Lie algebras from the time of the first concrete computations of characters
as in [3] to more recent results as in [2] and [9]. The main result of the
paper [9] are two infinite families of series-product identities which are based
on a classical Gauss identity and two different interpretations of characters
of fundamental modules for the affine Kac-Moody Lie algebra sl, i.e. for the
affine Lie algebras of type Al(gl) for { =n—1.

The first interpretation is based on the character formula
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for level 1 dominant integral weights A of affine Lie algebras of type Aél),

Dél), Eél) (see [5] and [6] or [4] Sect.12.13).
Another interpretation is based on a bosonic and fermionic construction of
fundamental representations L(Ay) of affine Lie algebra gl,, (see [8]) which is
special case of the more general construction [7]. The realization [8] is parame-
terized by partitions n = {ny, -+ ,n,.} (n; <--- <n,) and the corresponding
“g-dimension” trace formula of L(Ax) k= 0,1,...,¢ for the affine Lie algebra
;[n is

__ const QD(Q) l(TJF"'JFTTZ“-)
(1.3) Tracera,(q) = ¢q m Z g2'm )
The above trace formula (1.3) is an expression for a particular specialization
Fs of the character chpy,). Therefore for every fundamental module we ob-
tain a nontrivial identity by equating (1.3) with the properly specialized char-
acter given by (1.2). Following the mentioned bosonic and fermionic construc-

kit ko =k

tion for gl,, we have explicit equation for arbitrary partitionn = {ny,--- ,n,.}
(see Propositon 4.1 in [9])
(1L4)  Falehpay) = ¢ [L(1 - gy Shomshekl

j>1 I HjZl(l —qm)

where
1 1 1 1
s = yatm 2 tmdm 11
2nin,  nq ni 2nins o N9
(1.5)
no + ng 1 1 n._1+n, 1 1
—-1,..., ey , -1, —,...,—).
2nang Np_1 Np_1 2N._1N; Ny ny
and

6 N N if N'(G-+5-) €22 YVijefl,...r}
(1.6) T 2N’ if N'(L+L)¢2Z for apair (i, )

(N’ is least common multiple of ny,--- ,n;).

By using the Gauss identity (1.1) for two special choices of partitions

n={ny,na} (n1 < no)

and the corresponding fundamental weights Ay we can transform the right-
hand side of equation (1.4) into infinite products and obtain two infinite fam-
ilies of series-product identities (see again [9]).

In this paper a condition is presented on parameters (n1,n2, Ax) which
guarantees that equation (1.4) generate new series-product identities based
on the classical Gauss identity (1.1) following the methodology as in the pa-
per [9].
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It is very important to accentuate that this generating condition discover in-
finitely many new examples of extended classical Gauss identities which are
not presented in the paper [9].

Certainly, the parameters (nq,ng, Ag) for two mentioned infinite families of
series-product identities from paper [9] definitely satisfies this generating con-
dition. For instance, for affine Lie algebra slig the triples (n1,n9,Ag) =
(1,15, A12) and (4,12, Ay5) are corresponded to mentioned two families from
paper [9]. But, from condition which will be explain later in this paper, we
can discover triple (n1,n2, Ag) = (2,14, A14) which create a new example of
extended classical Gauss identity. This first sporadic new example was pre-
sented on 4*"C'MC, [10]. As one may expect, Example 3.5 confirms that the
number of new examples of extended classical Gauss identity for affine Lie
algebra ;[n will increases with n.

2. THE BASIC NOTATION

Let g be the Lie algebra sl,,, the simple Lie algebra of type Ay for n = £+1.
Let b be a Cartan subalgebra of g and R the corresponding root system. We
may identify h = h* via a normalized Killing form ( . | . ) of the Lie algebra
s, such that (6 | 8 ) = 2 where § = a1 + a2 + a3 + - - - + ay is maximal root
for a fixed set of simple roots A = {ay,...,ap}.
For a root «, by a¥ we denote the dual root. Let

5[n:b@®ga

a€ER

be a root space decomposition. Let
sl, =sl, ®C[t,t | @& Ccd Cd .
Then ;[7, is the affine Lie algebra with
[2(0), y()] = [z, 9)(i + 5) + iy j0(x [ Y)e,

¢ being a central element and d a scaling element with [d, 2(¢)] = iz(i). The
affine Lie algebra sl,, is a Kac-Moody Lie algebra of type Aﬁl) (see [4]), and

h=ho (Cc+ Cd)

is its Cartan subalgebra. We identify h* C 6* using h*|(cetcq) = 0 and define
d by 6lyece =0, 6(d) = 1. The root system R of the affine Lie algebra sl,, is
composed of the real and imaginary roots

R=REEURI™ = {a+ndlacR,necZ}U{ndnecZ\{0}}.

If we denote by aq the root ag = —6 + 0, then A = {ag, a1, .., .} forms a
base of the root system R. The corresponding root lattice is QQ = Zf:o Zay,
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and
¢
i=0
If we denote oy = —60Y + ¢, then {a;]i = 0,1,...,£} is a set of simple roots

and {a)|i=0,1,...,£} is a set of simple coroots of Kac-Moody Lie algebra
sl, (cf. [4]). The fundamental weights Ay, for £ =0,1,...,¢, are defined by

Ak(a;/): ik jZO,l,...,g and Ak<d):0

For a subset S C 6* by S is denoted the orthogonal projection of S on h*. In
the case of the affine Lie algebra sl,, (i.e. Agl)) (see [4]) we have

A = A

)
Y4
E ZO&Z‘.
i=1

3. THE GENERATING CONDITION

(2.2)

Q|
I

As it was already said in the introduction, in this paper a condition will
be presented on parameters (n1,ng, Ag), where n = {n1,n2} (n; < ns) is an
arbitrary partition and Ay, for k = 1,...,n — 1, a fundamental weight, which
guarantees that equation (1.4) generates series-product identities based on the
classical Gauss identity (1.1) as in the paper [9]. Since the following equation
holds

2 2
(3.1) Zqzn +n _ Zqzn -
nez neL

we have the following definition of the similarity to the classical Gauss identity.

DEFINITION 3.1. Let

(32) Z qa2n2+a1n+ao

nez

is a formal series, where ag,a1,a0 € R. The formal series (3.2) is similar to
the classical Gauss identity if there exists a pair (A, c) from R* X Z such that

2 —c)? —
angn +aintao _ qconst Z q)\(Q(n c)“+(n—c)) )
neZ ne”Z

REMARK 3.2. Let g = ;[n and let n = {nq,na} be an arbitrary partition
of the positive integer n. For the fundamental weight A = Ay the sum

Nk K3
(3.3) St
ki1+ko=k
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from the right-hand side of the equation (1.4), after substitution ko = k — k1,
could be transformed to formal series

§ qagkf+a1k1+a0
ki1€Z

for a triple

N N k*- N
k

(3.4) (az,a1,a0) = ( ) -

b

n
2’/11 *No ’ no 27’L2

Since the condition nq < ns holds it is not necessary to consider the dual
K2

2
substitution k& = k — ko for the polynomial % + 22

As a result of remark above we can reformulate Definition 3.1 in the
special case of the formal series (3.3).

DEFINITION 3.3. Let n = {ny,nq} be an arbitrary partition of the positive
integer n. Fork=0,1,...n—1 and N defined in (1.6), the triple (n1,na, Ag)
satisfies the generating condition for the classical Gauss identity if there exists
a pair (A, c) from R* x Z such that

ﬂ(ﬁ+ﬁ) _ ___const )\(Q(kl—c)zi(kl—c))
(3.5) dooar TR = k] = ¢ Y g :
k1 +ko=k k1 €Z

It is interesting to notice that the triple (n1,n2,Ag) does not satisfy the
generating condition (3.5) at all. Now, the following lemma holds.

LEMMA 3.4. Let n = {ni,n2} be an arbitrary partition of the positive
integer n and k =1,--- ,n—1. The triple (n1,na, Ag) satisfies the generating
conditions for the classical Gauss identity (3.5) if and only if the following
equation holds

(3.6) 4k -ny = (det )n
for some nonnegative integer c.

PRrOOF. First of all, as in (3.4), the substitution ks = k — k; implies an
equation

N BN

3.7 =
( ) 2 ny Up) 2’/11 L)

(nk? — 2n1k - k1) + const .

Suppose that the generating condition (3.5) holds for the triple (ny,na, Ag).
From the comparison between polynomial in the variable kq

M2k —¢)? £ (k1 —¢)) = 2Xk? — X(de F 1)k + M(2¢2 F ¢)
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and polynomial (3.7) we have the following system equations

N

noo= 2\
2711?’2,2 "
(3.8)
N
—— -k = —(detl)X.
12
Since A and 27;:[”2 are nonzero real numbers the system equations (3.8) is

equivalent with the following one

n 2n1ng
I it ]
2 N
2nn
2mk = (dc+1)-A ]1[2 ,

which implies the existence of integer ¢ in the equation (3.6). Moreover, from
(3.6) it is obvious that ¢ is a nonnegative integer.

Suppose that the equation (3.6) holds for some nonnegative integer c. Since
the integer 4c £ 1 is an odd number (i.e. relatively prime with 2) it is obvious
to notice that n is divisible by 4 and % is positive odd number. Then from
(3.7) the following calculation

N k? k32 N
(3.9) 5(71—1 + TTZ) = S (nk? — 2n1k - ky) + const
N dni k
- 2711 N9 ' 2(2147% B 77’1"L1 . kl) +const
N n,. . o
(3.6) = ST 5(2/{1 —(4c£1) - k1) + const
1012
N n
= T 5(2(k;1 —¢)? F (k1 — ¢)) + const
implies the generating condition (3.5) for the pair (A, ¢) = ( 47]:1 =, 0). 0

Due to Lemma 3.4 we can interpret the condition (3.5) as the condition
(3.6). Therefore in the rest of the paper we always use the following notation
"the generating condition for the classical Gauss identity (3.6)" instead of the
condition (3.5).

EXAMPLE 3.5. Let g = sla4. In paper [9] only two triples are presented
in the case of n = 24:

(1,23, A15)
(6,18, Aa3z)
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Using the generating condition for the classical Gauss identity (3.6) we can
list all triples as follows

[ (n1,no, Ap) [ ¢ ][ (n1,n2,Ax) [ e[| (n1,n2,Ax) [ e (n1,no,Ap) [ c]
(6,18,A1) [0 (7,17,A¢) [2] (6,18, A13) [ 3 (7,17, VAR) [ 5
(3,21,A2) [0 (9,15,A¢) |2 (3,21,A1s) |2 (9,15,A18) |7
(9,15,A5) [ 1] (11,13,A¢) | 3] (9,15,A1a) |5 || (11,13,A5) |8
(2,22,A3) [0 (6,18,A7) |2 (2,22,A15) [ 1] (6,18, A1) |5
(6,18,A3) [ 1] (2,22,A9) |1 (6,18, A15) [4] (2,22,A51) |2
(10,14,A3) [ 1| (6,18,A9) |2 ]| (10,14,A15) [ 6| (6,18, As1) |5
(6,18,A5) | 1| (10,14,Aq) [ 4] (6,18, A17) | 4 || (10,14,A51) |9
(1,23,A¢) |0 (3,21,Aw0) | 1| (1,23,A15) | 1| (3,21,A%) |3
(3,21,A6) | 1| (9,15,A10) |4 (3,21,A18) |2 (9,15,A2) |8
(5,19, A¢) [ 1] (6,18,A11) |3 (5,19,A1s) [4] (6,18, As3) |6

REMARK 3.6. It is interesting to notice that when the triple (n,no, Ag)
satisfies the generating condition for the classical Gauss identity (3.6) for
integer ¢, then the triple (ny,n92, A,_j) also satisfies the generating condition
for ¢/ = n; — c. This conclusion is based on the following simple calculation

dni(n — k) = (3.6) =4nin — (det D)n=(4(n1 —¢c) F1)n .
Denote by C' the Cartan matrix of sl,. Now we have the following result.

THEOREM 3.7. Let n = {ni1,na}, (n1 < na) be a partition of a positive
integer n and the corresponding N is defined in (1.6). Letk=1,...,n—1. If
the triple (nq1,na, Ag) satisfies the generating condition for the classical Gauss
identity (3.6) then the equation (1.4) generates a series-product identity in
the following form

nN
Zning )2
N t4lin cons n plgmne
(3.10) S gFEOE i) _ geonstp( Nyn__ ( - ) -
ez plgm )elgm)plgi)
for
n—1
(3.11) lin(¢) = N — Y si&
i=1
where
S - (80781)'-'187171)
(3.12) - oyt Lo L mdmy 1L
. - 2n1n25n1;-.-,n1’ 2n1n2 7n27"'?n2
(n1—1)x (n2—1)x
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PROOF. Since n — 1 is equal to £ and Ay = Ag + Ay from (2.2) we can
write

Ap = dprag + Agoao + -, Mgy
for a fundamental weight of the simple Lie algebra sl,, (i.e. type Ay). Fur-
thermore, the n-tuple s (3.12) is special case of the n-tuple (1.5) for partition
n = {ny,n2} (i.e. r =2). So for affine Lie algebra sl (i.e. type Aél)) the
numerator of the formula (1.2) has the form

ehot3IAk[*6 E 13 1%8

TEQ+AL
for
(3.13) v =&ar + &g+ o + Ay
Since the Cartan matrix of type A, is given by
2 -1 0 0 -- 0]
-1 2 -1 o .- 0
0 -1 2 -1 .- 0
C= [(ai|aj)]i,j6{1,.4.,€} = .
0 0 -1 2 -1
| 0 0o 0 -1 2|
we have the following formula
(3.14) V= (v | 7) = €CE" + 26 + (Ay[Ay,) -
Now (2.1) implies
(3.15) Fo(e ) =gV

for the specialization defined by

(3.16) Fole™®) =¢%, i=0,1,--- 1.

Using (3.13) — (3.16) and from the fact that mult jo = dimb = £ we have the
following calculation

Ao+y—3171%6 1
) — const

Fo(e2lAsl’s 2R, ©
S Hj>1(1 _ e—jé)mult 36

AL D DI
v YEQ+AL

const

— I Y RE) RET
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Finally the left-hand side of the formula (1.4) has the form

_ _ ehotr—3%s
(3.17) F (e%IAkPé Z’YEQJFAIC eorTTEl ) =
. s Hj>1(1 _ e—sz)mult jo

qconst NeoetoN
= o 2 a e
gezt

for particular specialization (3.12).

The right-hand side of the formula (1.4) for the triple (n1,n2, Ag) is

k2 k2
N 71+72)

geonst H(l — V) ZlierNZk q? e -
Jj>1 Hj21(1*qn1)Hj21(1*qﬂ’2)

const #N)N Z qﬁ(anernlkg) .
0(a™)P(a@72) k) i ko=

After the substitution ks = k — k; and using the calculation (3.9) from
Lemma 3.4 we have

(3.18) Z qwa [noki+nik3] _ et Z qrfnz [n-ki—2n1k-k1] _ (3.6) =

q

k1+ko=k k1€Z
= geonst _q74;71’12 (2¢°+c) Z qﬁ-g[z(kﬁc)"‘;(hﬂ)} .
k1€Z
Since % and nf\fw are positive integers, the calculation (3.18), equation (3.1)

and the Gauss identity (1.1) imply that the right-hand side of the formula
(1.4) has the form

YL E)

HJZ:[(I _ qN])Zk1+k2:kq ny ' ng

(3.19) = S
Hj21(1 _qnl)Hj21(1 —qm)
nN
qconst <p(qN) . Sﬁ(q m1ne )2

N p AN
elgm)plqmz)  elg™imz)

Now, from (3.17) and (3.19) it is obvious that the series-product identity
(3.10) holds when lin(§) has the form (3.11) for the n-tuple (3.12). 0
Finally, the simple calculation for following triples

(n1,m2,Ag) = (1,4m — 1, A3z,,), m € Z+

(n1,n2, Ag) = (m,3m, Aym 1), m € Z7*
and corresponding /-tuples (¢ =4m — 1)

(513"' 755): (1*2777,,1, ’1)
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(817"'387717"' 7S£):(37"' 7372_3m717"' 7]~>

confirms that two infinite families of series-product identities from paper [9]
are just two special cases of more general formula (3.10).
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