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Abstract. In this paper a condition is presented on parameters
(n1, n2,Λk), for arbitrary partition n = {n1, n2} (n1 ≤ n2) and k =

1, ..., n−1, which guarantees that two different interpretations of characters
of fundamental modules L(Λk) for the affine Kac-Moody Lie algebra ŝln
generate extended classical Gauss series-product identities.

1. Introduction

The classical Gauss series-product identity (see [1]) is given by

(1.1)
∑
n∈Z

q2n2+n =
ϕ(q2)

2

ϕ(q)
,

where ϕ(q) =
∏
j≥1(1 − qj) is the Euler product function. The classical

Gauss identity (1.1) appears in representation theory of infinite dimensional
Lie algebras from the time of the first concrete computations of characters
as in [3] to more recent results as in [2] and [9]. The main result of the
paper [9] are two infinite families of series-product identities which are based
on a classical Gauss identity and two different interpretations of characters
of fundamental modules for the affine Kac-Moody Lie algebra ŝln i.e. for the
affine Lie algebras of type A(1)

` for ` = n− 1.
The first interpretation is based on the character formula

(1.2) chL(Λ) = e
1
2 |Λ|

2δ

∑
γ∈Q+Λ e

Λ0+γ− 1
2 |γ|

2δ∏
j≥1(1− e−jδ)mult jδ
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for level 1 dominant integral weights Λ of affine Lie algebras of type A(1)
` ,

D
(1)
` , E(1)

` (see [5] and [6] or [4] Sect.12.13).
Another interpretation is based on a bosonic and fermionic construction of
fundamental representations L(Λk) of affine Lie algebra ĝln (see [8]) which is
special case of the more general construction [7]. The realization [8] is parame-
terized by partitions n = {n1, · · · , nr} (n1 ≤ · · · ≤ nr) and the corresponding
“q-dimension” trace formula of L(Λk) k = 0, 1, . . . , ` for the affine Lie algebra
ŝln is

(1.3) TraceL(Λk)(q) = qconst
ϕ(q)∏r

i=1 ϕ(q1/ni)

∑
k1+···+kr=k

q
1
2 (

k2
1

n1
+···+ k2

r
nr

) .

The above trace formula (1.3) is an expression for a particular specialization
Fs of the character chL(Λk). Therefore for every fundamental module we ob-
tain a nontrivial identity by equating (1.3) with the properly specialized char-
acter given by (1.2). Following the mentioned bosonic and fermionic construc-
tion for ĝln we have explicit equation for arbitrary partition n = {n1, · · · , nr}
(see Propositon 4.1 in [9])

(1.4) Fs(chL(Λk)) = qconst
∏
j≥1

(1− qjN )

∑
k1+···+kr=k q

N
2 (

k2
1

n1
+···+ k2

r
nr

)∏r
i=1

∏
j≥1(1− q

jN
ni )

where

s = N(
n1 + nr
2n1nr

,
1

n1
, . . . ,

1

n1
,
n1 + n2

2n1n2
− 1,

1

n2
, . . . ,

1

n2
,

(1.5)
n2 + n3

2n2n3
− 1, . . . ,

1

nr−1
, . . . ,

1

nr−1
,
nr−1 + nr
2nr−1nr

− 1,
1

nr
, . . . ,

1

nr
) .

and

(1.6) N =

{
N ′ if N ′( 1

ni
+ 1

nj
) ∈ 2Z ∀ i, j ∈ {1, . . . , r}

2N ′ if N ′( 1
ni

+ 1
nj

) /∈ 2Z for a pair (i, j)

(N ′ is least common multiple of n1, · · · , nr).
By using the Gauss identity (1.1) for two special choices of partitions

n = {n1, n2} (n1 ≤ n2)

and the corresponding fundamental weights Λk we can transform the right-
hand side of equation (1.4) into infinite products and obtain two infinite fam-
ilies of series-product identities (see again [9]).

In this paper a condition is presented on parameters (n1, n2,Λk) which
guarantees that equation (1.4) generate new series-product identities based
on the classical Gauss identity (1.1) following the methodology as in the pa-
per [9].
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It is very important to accentuate that this generating condition discover in-
finitely many new examples of extended classical Gauss identities which are
not presented in the paper [9].
Certainly, the parameters (n1, n2,Λk) for two mentioned infinite families of
series-product identities from paper [9] definitely satisfies this generating con-
dition. For instance, for affine Lie algebra ŝl16 the triples (n1, n2,Λk) =
(1, 15,Λ12) and (4, 12,Λ15) are corresponded to mentioned two families from
paper [9]. But, from condition which will be explain later in this paper, we
can discover triple (n1, n2,Λk) = (2, 14,Λ14) which create a new example of
extended classical Gauss identity. This first sporadic new example was pre-
sented on 4thCMC, [10]. As one may expect, Example 3.5 confirms that the
number of new examples of extended classical Gauss identity for affine Lie
algebra ŝln will increases with n.

2. The basic notation

Let g be the Lie algebra sln, the simple Lie algebra of type A` for n = `+1.
Let h be a Cartan subalgebra of g and R the corresponding root system. We
may identify h ∼= h∗ via a normalized Killing form ( . | . ) of the Lie algebra
sln such that (θ | θ ) = 2 where θ = α1 + α2 + α3 + · · ·+ α` is maximal root
for a fixed set of simple roots ∆ = {α1, . . . , α`}.
For a root α, by α∨ we denote the dual root. Let

sln = h⊕
⊕
α∈R

gα

be a root space decomposition. Let

ŝln = sln ⊗ C[t, t−1]⊕ Cc⊕ Cd .

Then ŝln is the affine Lie algebra with

[x(i), y(j)] = [x, y](i+ j) + iδi+j,0(x | y)c ,

c being a central element and d a scaling element with [d, x(i)] = ix(i). The
affine Lie algebra ŝln is a Kac-Moody Lie algebra of type A(1)

` (see [4]), and

ĥ = h⊕ (Cc+ Cd)

is its Cartan subalgebra. We identify h∗ ⊂ ĥ∗ using h∗|(Cc+Cd) = 0 and define
δ by δ|h⊕Cc = 0, δ(d) = 1. The root system R̂ of the affine Lie algebra ŝln is
composed of the real and imaginary roots

R̂ = R̂Re ∪ R̂Im = {α+ nδ|α ∈ R, n ∈ Z} ∪ {nδ|n ∈ Z \ {0}} .

If we denote by α0 the root α0 = −θ + δ, then ∆̂ = {α0, α1, . . . , α`} forms a
base of the root system R̂. The corresponding root lattice is Q =

∑`
i=0 Zαi,
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and

(2.1) δ =
∑̀
i=0

αi .

If we denote α∨0 = −θ∨ + c, then {αi| i = 0, 1, . . . , `} is a set of simple roots
and {α∨i | i = 0, 1, . . . , `} is a set of simple coroots of Kac-Moody Lie algebra
ŝln (cf. [4]). The fundamental weights Λk, for k = 0, 1, . . . , `, are defined by

Λk(α∨j ) = δjk , j = 0, 1, . . . , ` and Λk(d) = 0 .

For a subset S ⊆ ĥ∗ by S is denoted the orthogonal projection of S on h∗. In
the case of the affine Lie algebra ŝln (i.e. A(1)

` ) (see [4]) we have

∆̂ = ∆ ,

Q =
∑̀
i=1

Zαi .(2.2)

3. The generating condition

As it was already said in the introduction, in this paper a condition will
be presented on parameters (n1, n2,Λk), where n = {n1, n2} (n1 ≤ n2) is an
arbitrary partition and Λk, for k = 1, ..., n − 1, a fundamental weight, which
guarantees that equation (1.4) generates series-product identities based on the
classical Gauss identity (1.1) as in the paper [9]. Since the following equation
holds

(3.1)
∑
n∈Z

q2n2+n =
∑
n∈Z

q2n2−n ,

we have the following definition of the similarity to the classical Gauss identity.

Definition 3.1. Let

(3.2)
∑
n∈Z

qa2n
2+a1n+a0

is a formal series, where a2, a1, a0 ∈ R. The formal series (3.2) is similar to
the classical Gauss identity if there exists a pair (λ, c) from R? × Z such that∑

n∈Z
qa2n

2+a1n+a0 = qconst
∑
n∈Z

qλ(2(n−c)2±(n−c)) .

Remark 3.2. Let g = ŝln and let n = {n1, n2} be an arbitrary partition
of the positive integer n. For the fundamental weight Λ = Λk the sum

(3.3)
∑

k1+k2=k

q
N
2 (

k2
1

n1
+

k2
2

n2
)
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from the right-hand side of the equation (1.4), after substitution k2 = k− k1,
could be transformed to formal series∑

k1∈Z
qa2k

2
1+a1k1+a0

for a triple

(3.4) (a2, a1, a0) = (
N

2n1 · n2
· n,−N

n2
· k, k

2 ·N
2n2

) .

Since the condition n1 ≤ n2 holds it is not necessary to consider the dual
substitution k1 = k − k2 for the polynomial k

2
1

n1
+

k22
n2

.

As a result of remark above we can reformulate Definition 3.1 in the
special case of the formal series (3.3).

Definition 3.3. Let n = {n1, n2} be an arbitrary partition of the positive
integer n. For k = 0, 1, ..., n−1 and N defined in (1.6), the triple (n1, n2,Λk)
satisfies the generating condition for the classical Gauss identity if there exists
a pair (λ, c) from R? × Z such that

(3.5)
∑

k1+k2=k

q
N
2 (

k2
1

n1
+

k2
2

n2
) = [k2=k−k1 ] = qconst

∑
k1∈Z

qλ(2(k1−c)2±(k1−c)) .

It is interesting to notice that the triple (n1, n2,Λ0) does not satisfy the
generating condition (3.5) at all. Now, the following lemma holds.

Lemma 3.4. Let n = {n1, n2} be an arbitrary partition of the positive
integer n and k = 1, · · · , n− 1. The triple (n1, n2,Λk) satisfies the generating
conditions for the classical Gauss identity (3.5) if and only if the following
equation holds

(3.6) 4k · n1 = (4c± 1)n

for some nonnegative integer c.

Proof. First of all, as in (3.4), the substitution k2 = k − k1 implies an
equation

(3.7)
N

2
(
k2

1

n1
+
k2

2

n2
) =

N

2n1 · n2
(nk2

1 − 2n1k · k1) + const .

Suppose that the generating condition (3.5) holds for the triple (n1, n2,Λk).
From the comparison between polynomial in the variable k1

λ(2(k1 − c)2 ± (k1 − c)) = 2λk2
1 − λ(4c∓ 1)k1 + λ(2c2 ∓ c)
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and polynomial (3.7) we have the following system equations

N

2n1n2
· n = 2λ

(3.8)

−N
n2
· k = −(4c± 1)λ .

Since λ and N
2n1n2

are nonzero real numbers the system equations (3.8) is
equivalent with the following one

n

2
= λ

2n1n2

N

2n1k = (4c± 1) · λ 2n1n2

N
,

which implies the existence of integer c in the equation (3.6). Moreover, from
(3.6) it is obvious that c is a nonnegative integer.
Suppose that the equation (3.6) holds for some nonnegative integer c. Since
the integer 4c± 1 is an odd number (i.e. relatively prime with 2) it is obvious
to notice that n is divisible by 4 and 4n1k

n is positive odd number. Then from
(3.7) the following calculation

N

2
(
k2

1

n1
+
k2

2

n2
) =

N

2n1 · n2
(nk2

1 − 2n1k · k1) + const(3.9)

=
N

2n1 · n2
· n

2
(2k2

1 −
4n1k

n
· k1) + const

(3.6) =
N

2n1 · n2
· n

2
(2k2

1 − (4c± 1) · k1) + const

=
N

2n1 · n2
· n

2
(2(k1 − c)2 ∓ (k1 − c)) + const

implies the generating condition (3.5) for the pair (λ, c) = ( N ·n
4n1·n2

, c).

Due to Lemma 3.4 we can interpret the condition (3.5) as the condition
(3.6). Therefore in the rest of the paper we always use the following notation
"the generating condition for the classical Gauss identity (3.6)" instead of the
condition (3.5).

Example 3.5. Let g = sl24. In paper [9] only two triples are presented
in the case of n = 24:

(1, 23,Λ18)

(6, 18,Λ23) .



THE GENERATING CONDITION 7

Using the generating condition for the classical Gauss identity (3.6) we can
list all triples as follows

(n1, n2,Λk) c (n1, n2,Λk) c (n1, n2,Λk) c (n1, n2,Λk) c

(6, 18,Λ1) 0 (7, 17,Λ6) 2 (6, 18,Λ13) 3 (7, 17, V Λ18) 5
(3, 21,Λ2) 0 (9, 15,Λ6) 2 (3, 21,Λ14) 2 (9, 15,Λ18) 7
(9, 15,Λ2) 1 (11, 13,Λ6) 3 (9, 15,Λ14) 5 (11, 13,Λ18) 8
(2, 22,Λ3) 0 (6, 18,Λ7) 2 (2, 22,Λ15) 1 (6, 18,Λ19) 5
(6, 18,Λ3) 1 (2, 22,Λ9) 1 (6, 18,Λ15) 4 (2, 22,Λ21) 2
(10, 14,Λ3) 1 (6, 18,Λ9) 2 (10, 14,Λ15) 6 (6, 18,Λ21) 5
(6, 18,Λ5) 1 (10, 14,Λ9) 4 (6, 18,Λ17) 4 (10, 14,Λ21) 9
(1, 23,Λ6) 0 (3, 21,Λ10) 1 (1, 23,Λ18) 1 (3, 21,Λ22) 3
(3, 21,Λ6) 1 (9, 15,Λ10) 4 (3, 21,Λ18) 2 (9, 15,Λ22) 8
(5, 19,Λ6) 1 (6, 18,Λ11) 3 (5, 19,Λ18) 4 (6, 18,Λ23) 6

Remark 3.6. It is interesting to notice that when the triple (n1, n2,Λk)
satisfies the generating condition for the classical Gauss identity (3.6) for
integer c, then the triple (n1, n2,Λn−k) also satisfies the generating condition
for c′ = n1 − c. This conclusion is based on the following simple calculation

4n1(n− k) = (3.6) = 4n1n− (4c± 1)n = (4(n1 − c)∓ 1)n .

Denote by C the Cartan matrix of sln. Now we have the following result.

Theorem 3.7. Let n = {n1, n2}, (n1 ≤ n2) be a partition of a positive
integer n and the corresponding N is defined in (1.6). Let k = 1, . . . , n−1. If
the triple (n1, n2,Λk) satisfies the generating condition for the classical Gauss
identity (3.6) then the equation (1.4) generates a series-product identity in
the following form

(3.10)
∑

ξ∈Zn−1

q
N
2 ξCξ

t+lin(ξ) = qconstϕ(qN )n
ϕ(q

nN
2n1n2 )2

ϕ(q
N
n1 )ϕ(q

N
n2 )ϕ(q

nN
4n1n2 )

for

(3.11) lin(ξ) = Nξk −
n−1∑
i=1

siξi

where

s = (s0, s1, ..., sn−1)

= N(
n1 + n2

2n1n2
,

1

n1
, . . . ,

1

n1︸ ︷︷ ︸
(n1−1)×

,
n1 + n2

2n1n2
− 1,

1

n2
, . . . ,

1

n2︸ ︷︷ ︸
(n2−1)×

) .(3.12)
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Proof. Since n − 1 is equal to ` and Λk = Λ0 + Λk from (2.2) we can
write

Λk = λk,1α1 + λk,2α2 + · · · , λk,lαl
for a fundamental weight of the simple Lie algebra sln (i.e. type A`). Fur-
thermore, the n-tuple s (3.12) is special case of the n-tuple (1.5) for partition
n = {n1, n2} (i.e. r = 2). So for affine Lie algebra ŝln (i.e. type A(1)

` ) the
numerator of the formula (1.2) has the form

eΛ0+ 1
2 |Λk|2δ

∑
γ∈Q+Λk

eγ−
1
2 |γ|

2δ

for

(3.13) γ = ξ1α1 + ξ2α2 + · · ·+ ξ`α` + Λk .

Since the Cartan matrix of type A` is given by

C = [(αi|αj)]i,j∈{1,...,`} =



2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0

0 −1 2 −1 · · · 0
...

. . .
...

0 · · · 0 −1 2 −1
0 · · · 0 0 −1 2


we have the following formula

(3.14) |γ|2 = (γ | γ) = ξCξt + 2ξk + (Λk|Λk) .

Now (2.1) implies

(3.15) Fs(e
−δ) = qN

for the specialization defined by

(3.16) Fs(e
−αi) = qsi , i = 0, 1, · · · , l .

Using (3.13) – (3.16) and from the fact that mult jδ = dimh = ` we have the
following calculation

Fs(e
1
2 |Λk|2δ

∑
γ∈Q+Λk

eΛ0+γ− 1
2 |γ|

2δ∏
j≥1(1− e−jδ)mult jδ

) = qconst
1

ϕ(qN )`
· Fs(

∑
γ∈Q+Λk

eγ−
1
2 |γ|

2δ)

=
qconst

ϕ(qN )`

∑
γ∈Q+Λk

Fs(e
γ) · [Fs(e

−δ)]
1
2 |γ|

2

=
qconst

ϕ(qN )`

∑
ξ∈Z`

q−(ξ1+λk,1)s1−···−(ξ`+λk,l)s` · qN
2 (ξCξt+2ξk+(Λk|Λk)) .
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Finally the left-hand side of the formula (1.4) has the form

(3.17) Fs(e
1
2 |Λk|2δ

∑
γ∈Q+Λk

eΛ0+γ− 1
2 |γ|

2δ∏
j≥1(1− e−jδ)mult jδ

) =

=
qconst

[ϕ(qN )]`

∑
ξ∈Z`

q
N
2 ξCξ

t+Nξk−ξ1s1−···−ξ`s`

for particular specialization (3.12).

The right-hand side of the formula (1.4) for the triple (n1, n2,Λk) is

qconst
∏
j≥1

(1− qNj)
∑
k1+k2=k q

N
2 (

k2
1

n1
+

k2
2

n2
)∏

j≥1(1− q
Nj
n1 )

∏
j≥1(1− q

Nj
n2 )

=

= qconst
ϕ(qN )

ϕ(q
N
n1 )ϕ(q

N
n2 )

∑
k1+k2=k

q
N

2n1n2
(n2k

2
1+n1k

2
2) .

After the substitution k2 = k − k1 and using the calculation (3.9) from
Lemma 3.4 we have

(3.18)
∑

k1+k2=k

q
N

2n1n2
[n2k

2
1+n1k

2
2] = qconst

∑
k1∈Z

q
N

2n1n2
[n·k21−2n1k·k1] = (3.6) =

= qconst · q−
nN

4n1n2
(2c2±c) ∑

k1∈Z
q

N
2n1n2

·n2 [2(k1−c)2∓(k1−c)] .

Since n
4 and N

n1n2
are positive integers, the calculation (3.18), equation (3.1)

and the Gauss identity (1.1) imply that the right-hand side of the formula
(1.4) has the form

(3.19)

∏
j≥1(1− qNj)

∑
k1+k2=k q

N
2 (

k2
1

n1
+

k2
2

n2
)∏

j≥1(1− q
Nj
n1 )

∏
j≥1(1− q

Nj
n2 )

=

qconst
ϕ(qN )

ϕ(q
N
n1 )ϕ(q

N
n2 )
· ϕ(q

nN
2n1n2 )2

ϕ(q
nN

4n1n2 )
.

Now, from (3.17) and (3.19) it is obvious that the series-product identity
(3.10) holds when lin(ξ) has the form (3.11) for the n-tuple (3.12).

Finally, the simple calculation for following triples

(n1, n2,Λk) = (1, 4m− 1,Λ3m), m ∈ Z+

(n1, n2,Λk) = (m, 3m,Λ4m−1), m ∈ Z+

and corresponding `-tuples (` = 4m− 1)

(s1, · · · , s`) = (1− 2m, 1, · · · , 1)
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(s1, · · · , sm, · · · , s`) = (3, · · · , 3, 2− 3m, 1, · · · , 1)

confirms that two infinite families of series-product identities from paper [9]
are just two special cases of more general formula (3.10).
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