

Strategy Pattern as a Variability Enabling

Mechanism in Product Line Architecture

Zdravko Roško

Faculty of Organization and Informatics

University of Zagreb

Pavlinska 2, 42000 Varaždin, Croatia

zdravko@rosko.hr

Author(s) Name(s)

Author Affiliation(s)

Department/Institute

Full Address(es)

E-mail(s)

Abstract. Business applications that share a common

architecture and a set of reusable components,

implemented by the Software Product Line (SPL)

approach to software reuse, can benefit from

handling the variability with extensive use of

architectural design patterns. Use of the patterns

within the Product Line Architecture (PLA)

frameworks, yields a number of benefits toward the

improvement of maintainability of the applications

which are part of a SPL family. This paper presents

use of the Strategy pattern within PLA as a

preplanned variability enabling mechanism for SPL.

Keywords. Strategy, Pattern, Software Product

Lines, Variability, Framework, Reuse, Architecture

1 Introduction

Software reuse is the process of creating software

applications from existing artifacts rather than

building them from the scratch. Effective reuse

requires a strategic vision that reflects the unique

power and requirements of this technique [1]. There

are many software engineering technologies that

involve some form of software reuse. For example,

software components, design patterns, application

frameworks, application generators, etc. In the field of

software reuse, many organizations employ these

technologies, and many are ready to take the next step

towards more effective reuse of software. Software

product lines (SPL), in which; requirements,

architecture, modeling and analysis, components , test

cases, test data, test plans, documentation templates,

and other software engineering artifacts can be reused

over a number of applications, is at the moment the

most promising form of the software reuse. SPL is

defined as a set of software-intensive systems, sharing

a common, managed set of features that satisfy the

specific needs of a particular market segment or

mission and that are developed from a common set of

core assets in a prescribed way [2]. SPL development

process consists of domain engineering, (core assets

development for reuse) and application engineering

(product development with reuse) that builds the final

products, where construction of the reusable assets

and their variability is separated from production of

the product-line applications. Successful product lines

have enabled organizations to capitalize on systematic

reuse to achieve business goals and desired software

benefits such as productivity gains, decreased

development costs, improved time to market, higher

reliability, and competitive advantage [3].

A key asset of a product-line is the Product Line

Architecture (PLA) – the shared architecture of the

product family [4]. The central role of a common

architecture is a major ingredient of the success of

product line engineering compared to other reuse

approaches [5].

Although the SPL approach has been widely adopted,

the architectural design for a SPL has proved to be

hard. Variety of existing techniques such as:

architectural styles, frameworks, design patterns,

existing components, make it difficult for software

architect to design a well-structured solution for

product line architecture.

A software asset may depend on architectural aspects

at different levels of abstraction and generality, from

external components at the low level through product

line Platform Framework and domain components to

a particular product, shown in Figure 1.

The SPL Platform Framework and domain specific

components are the base on top of which products are

created by using variability techniques. The external

components layer (Figure 1), provides an Application

Programming Interface (API) for accessing the basic

resources and services such as operating system, data

base, graphical user interface, network, and etc.

Prod A1 Prod A2 Prod B1 Prod B2

Domain A Components Domain B Components

SPL Platform Framework

External Components

Figure 1. SPL layers

These external components are part of inter-

organizational reuse, which has been highly

successful in the organizations. Layers above the

External Components are part of so called intra-

organizational reuse which has been much less

successful within the software development

organizations [7].

A variability mechanism is a way of implementing

varying characteristics of a component in software

product lines. Goals of variability mechanisms are to

minimize code duplication, reuse effort, maintenance

cost, and to improve intra-organizational reuse.

In this paper we propose the use of Strategy design

pattern as a variability enabling mechanism at the

SPL Platform Framework level of abstraction. In

this approach the application developers are required

to implement the variation points of the SPL through

the class inheritance based on the structure of Strategy

design pattern.

2 Software Reuse and Abstraction

All approaches to software reuse use some form of

abstraction for artifacts. Abstraction is the essential

feature in any reuse technique. Without abstractions,

software developers would be forced to shift through

a collection of reusable artifacts trying to figure out

what each artifact did, when it could be reused, and

how to reuse it [8].

An abstraction for a software artifact is a description

that suppresses the details that are unimportant to a

software developer and emphasizes the information

that is important. Since raising abstraction levels for

software engineering technologies has proven to be

quite difficult, the relation between abstraction and

reuse provides us with the first clue to why there are

so few successful reuse systems [8]. Many have noted

the relationship between software reuse and

abstraction. According to [9], for example, abstraction

and re usability are “two sides of the same coin.”

Software application typically consists of several

layers of abstraction built on top of raw hardware.

Looking from the abstraction levels perspective, the

lowest-level software abstraction is the object code.

Assembly language is a layer of abstraction above

object code. A programming language (e.g., Java) is

a layer of abstraction above the assembly language. In

object-oriented languages such as Java, the class

specification can serve as a layer of abstraction above

the implementation details in the class body. These

examples show that all software abstractions have two

levels. The higher is referred to as the abstraction

specification. The lower, more detailed level is called

the abstraction realization. When abstractions are

layered, the abstraction specification at one layer is

the abstraction realization at the next higher layer.

The abstraction specification typically describes

“what” the abstraction does, whereas the abstraction

realization describes “how” it is done [8].

Figure 2 shows an abstraction having a hidden part, a

variable part, and a fixed part [8]. The hidden part

contains the details in the abstraction realization that

are not visible in the abstraction specification, while

the variable and fixed parts are visible in the

specification. Fixed part represents invariant

characteristics in the abstraction realization and the

variable part represents the variant characteristics in

the abstraction realization.

Variable Part Fixed Part

Hidden Part

Figure 2. Abstraction parts

For example, in an abstraction for Data Access Object

(DAO) to access relational database, the fixed part of

the abstraction expresses the invariant characteristics

for all types of realizations, such as the transaction

control or execution of the SQL commands. The

invariant behavior does not depend on the type of

SQL commands (e.g. Oracle PL/SQL) executed, so

the SQL type can be in the variable part of the

abstraction. Each different SQL type corresponds to a

different realization. The partitioning of an abstraction

into hidden, variable, and fixed parts is not a natural

property of the abstraction but rather an arbitrary

decision made by the creator of the abstraction.

The abstraction creator decides what information will

be presented to users and puts it in the abstraction

specification. The same apply to which properties of

the abstraction a user might want to vary and put them

in the variable part of the specification. Having the

DAO as an example, the value for the “maximum

rows returned” from relational database can be placed

in either the variable, fixed, or hidden part of the

abstraction. In case it is placed in the variable part, the

user has an option to choose the “maximum rows to be

returned” (e.g., 10, 1000, unbounded). If the

“maximum rows returned” is placed in the fixed part,

the user knows the predefined value of maximum

rows to be returned but does not have an option to

change it. In case it is placed in the hidden part, the

rows to be returned are completely removed from the

concerns of the user.

3 Software Product Line

The basic idea of software product line engineering is

to develop a reusable set of assets that support the

development of a family of software products. Each

product in the product line may have a slightly

different architecture; these architectures are instances

of the product line architecture [10]. The design of the

core assets for the product line is heavily influenced

by the product line's scope, which defines what all of

the product in the product lines will have in common

and the specifics that they will not share with other

products.

The goal of a software product line is to minimize the

cost of developing and evolving software products

that are part of a product family. A software product

line captures commonalities between software

products for the product family. By using a software

product line, product developers are able to focus on

product specific issues rather than issues that are

common to all products.

3.1 Variability in Software Product Lines

Variability is the ability to change or customize a

system. Re usability and flexibility have been the

driving forces behind the development of such

techniques as; object orientation, object oriented

frameworks and software product lines.

Consequently these techniques allow us to delay

certain design decisions to a later point in the

development. With software product lines, the

architecture of a system is fixed early but the details

of an actual product implementation are delayed until

product implementation. We refer to these delayed

design decisions as variation points [11].

Variation points are places in the architecture where

specific instances of flexibility have been built in. The

flexibility is achieved by intentionally leaving specific

architectural decisions open, but in a way so that they

can be easily bound later, almost always by someone

other than the architect [11]. Besides documenting

variation points in the places where they occur:

diagrams, design document, interface descriptions,

example usage, and so forth, a single place where all

the variability and its effects can be fully described is

called a Variability guide. From the productivity point

of view, documenting variation points at the places

where they occur has the advantage that, the

description is available where it is needed. But having

a catalog of variation points in the form of Variability

guide in one place serves as a complete overview of

which variation points exists in the system. Figure 3

shows the different transformations a system goes

through during the development. Variability can be

applied on the representation subject during each of

these transformations. A common goal in software

engineering is to prepare software for change,

especially when architecture for a family of products

is designed [12].

Transformation

process
Representation

Requirement Collection Requirement Specification

Architecture Design Architecture Description

Detailed Design Design Documentation

Implementation Source Code

Compilation Compiled Code

Linking Linked Code

Execution Running Code

Figure 3. Representation & transformation processes

Variability points can be introduced at various levels

of abstraction:

 Architecture description. A system is

documented by using a high level design and

architecture description documents.

 Detailed documentation. A system can be

described by using notations and design

documents.

 Source code. This level assumes creation of

easy readable source code with comments to

document the program behaviour and usage.

 Compiled code. Used by programming

languages which support pre-processor

directives.

 Linked code. Results of compilation are

combined to form a specific product based

on selected variation points.

 Running code. At the time of product

execution, the linked system is started and

dynamically configured.

Points where the architecture can vary from product

(family member) to product are explicitly defined as

part of SPL Platform Framework. The Platform

Frameworks differ in how they express the

commonalities and the points of variation in a

population or product line. Reference architecture

implemented in the form of the Platform Framework

is significantly different then a single-product

architecture, since it must serve as the basis for many

different products simultaneously. Some of the

architectural design decisions will be common among

all the products, some will be unique to individual

products, and some will be common among a subset

of the products. Ordinary software architecture

extending into product line architecture can be

accomplished through the addition of variation points

to create variant architectures. A member of the

product family, a different product, is then

represented by a variant of the architecture.

3.2 Product Line Architecture

Product Line Architecture (PLA) defines the overall

software structure of the entire product line. It is the

first point where the products' variation is represented

in design. The specific mechanisms by which the PLA

addresses the variation is somewhat dependent on the

architectural style and approach used [13].

The architecture of a system is “the structure or

structures of the system, which comprise software

elements, the externally visible properties of those

elements, and the relationships among them” [14].

Unlike a traditional system’s architecture, it relates to

the entire product line.

In contrast to the PLA that spans the entire product

line, a Product Architecture (PA) describes the

architecture of an individual product in the product

line. A product’s architecture differs from its PLA by

making variant-specific decisions based on variation

points specified by the PLA [13]. In other words, the

PLA must address how the variability in the software

requirements (functional and non-functional) is used

to derive the various product architectures.

Figure 4 illustrates the relationship between the PLA

and the individual PA [13].

D
o

m
ai

n
 E

n
g

in
ee

ri
n

g Product Line Architecture

A
p

p
li

ca
ti

o
n

E

n
g

in
ee

ri
n

g Product Architecture A

Product Architecture B

Product Architecture C

Figure 4. Product Architecture Derivation

The SPL technical architecture describes the structure

of the products and provides the development

infrastructure to support the product development.

The infrastructure is focused on making the product

developer more productive by providing the tools to

support product development, including the following

[22]:

 Frameworks, which are customizable

generic solutions to specific product

problems

 Services, which provide an infrastructure

that allows products to use common

functions

 Patterns, which are solution templates for

commonly encountered problems

3.2.1 Frameworks

Software Product Lines are collections of frameworks

and other reusable assets that can be tailored to create

concrete software products relatively fast compared to

developing from scratch [15].

A framework is a reusable design expressed as a set

of software artifacts such as: classes, properties,

resources, persistence objects, documents, reference

application, and the way their instances collaborate. A

framework can be defined as “a partial design and

implementation for an application in a given

domain“[24]. A developer customizes a framework to

a particular software product by sub classing and

using instances of framework artifacts. Framework

dictates the architecture of your application. The

framework captures the design decisions that are

common to its application domain [16]. Framework

doesn't have to be implemented in an object-oriented

language, even though it usually is. Design patterns

may be used in the design of a framework. A single

framework may be using several design patterns. The

[16] book describes the major differences between

design patterns and frameworks as follows:

 Design patterns are more abstract than

frameworks.

 Design patterns are smaller architectural

elements than frameworks.

 Design patterns are less specialized than

frameworks.

SPL embodies the processes, tools, and software

assets that can be used to derive applications sharing

similar structure and functionality [8]. All software

assets related to a family of products are consolidated

within a reusable framework, instead of being

organized and reused in an ad hoc manner. The

framework is used to construct a product of a family

and to provide specific product-variants as needed.
The central artifact in a SPL is the framework capable

of being applied to multiple applications.

3.2.2 Services

Platform Framework for product line has build in

many infrastructure services. Services are designed to

be shared by multiple products. Some typical product

services for business applications are: Transaction,

Security, Logging, Rules, Workflow, Data cache, Data

access, Data validation, Resource externalization,

Exception handling, Session management.

3.2.3 Patterns

In recent years, patterns have been used extensively in

software design efforts as a way to decrease design

and development time and increase robustness and

quality [22]. A pattern describes a specific design

problem and an abstract solution to that problem. The

authors of Patterns of Software Architecture [23]

define these three types of patterns as follows:

 Architectural Patterns: an architectural

pattern expresses a fundamental structural

organization or schema for software systems.

It provides a set of predefined subsystems,

specifies their responsibilities, and includes

rules and guidelines for organizing the

relationships between them.

 Design Patterns: a design pattern provides a

scheme for refining the subsystems or

components of a software system, or the

relationships between them. It describes

commonly recurring structure of

communicating components that solves a

general design problem within a particular

context.

 Idioms: an idiom is a low-level pattern

specific to a programming language. An

idiom describes how to implement particular

aspects of components or the relationships

between them using the features of the given

language.

The difference between these three groups of patterns

are in their levels of abstraction. Architectural
patterns are high-level strategies that have wide

implications on the overall structure and organization

of a software system. Design patterns are medium-

level tactics that define some of the structure and

behavior of entities and their relationships.

Idioms are paradigm-specific and language-specific

programming techniques that fill in low-level internal

or external details of a component's structure or

behavior [23].

4 Use of Strategy Pattern

This section gives an overview of our approach to

variability management based on Strategy design

pattern. Subsections 4.1, 4.2 and 4.3 introduce the

model for implementation of architectural variation

points based on Strategy design pattern.

The intent of the Strategy pattern is to „define a

family of algorithms, encapsulate each one, and make

them interchangeable“[16]. Strategy lets the algorithm

vary independently from clients that use it. It is useful

when many related classes differ only in behavior,

because it makes it possible to configure a class with

one of many behaviors. An algorithm uses data that

clients shouldn't know about. The classes

implementing each strategy inherit a common abstract

class or interface and implement specific methods to

handle each strategy. The structure of the Strategy

Design Pattern is shown in Figure 5. Context and

Strategy interact to implement chosen algorithm. A

context forwards requests from its clients to its

strategy.

In this paper we present the three locations within a

PLA where the strategy design pattern can be applied

to handle the variability. These locations are places in

the typical business application architecture where

specific instances of flexibility could be built in to

support the variability of needed algorithms.

Strategy

«implementation class»

ConcreateStragetyA

«implementation class»

ConcreateStrategyB

Context

1 *

Figure 5. Strategy Pattern Structure

We propose the locations at the Execution or Linking

level (Figure 3) of abstraction where the strategy

pattern can be applied:

 the location where the client communicate

with the server

 the location where the business objects uses

data access object

 the location where the transaction or

connection pool uses a connection to the data

source

4.1 Client/Server transport

The client/server model is a computing model that

acts as distributed application which partitions tasks

or workloads between the providers of a resource or

service, called servers, and service requesters, called

clients [17]. Clients and servers communicate over a

computer network on a separate hardware, but both

client and server may reside in the same system and

also within the same system process.

Client/server model where the applications are split

into layered such as: presentation logic, business

logic and data access logic layer, represents rather

logical then physical client/server model, since an

application is not necessary ditributed on client and

server but it could reside within one or more system

processes. The choice of communication mechanism

to use between the client and server, depends on the

context the application is being used.

Suppose we started to develop a business application

from reusable assets of the software product line. At

the development time we often need to execute or

access the application logic developed or residing

within all of the application layers. Communication

mechanisms between client and server, such as HTTP,

RMI, DCOM, typically, are not available or not

convenient to use while we are within an development

environment. But, having available the variation point

to bridge the missing communication infrastructure

needed to simulate the application environment, helps

us to program our application and to execute unit and

integration test within our development environment.

On the other side, applications used by the end users,

often require the support for different communication

mechanism. Existing design patterns in this field, such

as „Protocol Plug-In“ [18] and “Business Delegate”

[19], abstract application developers from

communication protocol details and allow for flexible

support of several communication protocols but do

not address the „Local“ communication transport.

Most of the applications today do not support more

then one communication mechanism between client

and server. The lack of support causes low integration

quality of an application and inconvenient application

development within an IDE. Also, there is the

limitation by existing patterns in case when the

„Local“ communication needs to be implemented at

the run time of an application in the form of so called

„fat client“ where all application layers reside within

one system process rather then in the form of

distributed systems. These limitations lead us to seek

an alternative solution for flexible communication

mechanism composition.

4.1.1 Variation for Client/Server Transport

Figure 6 show the variation point and some of the

variations for the client/server communication. Beside

the benefits from the use of Strategy pattern, we

propose the use of „Local“transport variation to

support the „protocol free“application development

while working within an IDE. This is needed to

enable application developers not to worry about

complex environment setup (Web server, EJB

Container, JMS Server, etc.) needed to support

diverse protocols, but rather free them to concentrate

on development of application business logic. Latter

on, in case the application is deployed as a “Fact

Client” application, where both, client and server

parts reside together as one deliverable component,

the “Local” protocol enables an application to

function free from any dependent technology related

to the communication protocols such as HTTP, JMS,

etc. The “Local” communication between client and

server means that the client side components

communicate with the servers side business logic

components directly, free from TCP/IP

communication. No communication protocol is used

to deliver a message from client to server, but rather

the message is delivered to the server through a

“Proxy” client over a variability mechanism based on

Strategy design pattern.

Client Layer

Variation

point

R
M

I

H
T

T
P

LO
C
A
L

TRANSPORT LAYER

Figure 6. Communication Variation Point

Figure 7 shows the client/server communication

variation Strategy pattern implementation where it

represents the relationship between classes

ClientProxy and TransportClient, using a

class diagram. TransportClient is an abstract

class to define a common behavior for the transport

algorithms, while strategy classes inherit the transport

client and implement an algorithm specific for the

transport type such as HTTP, RMI, etc.

With this approach, it all comes down to choosing the

right class for the right communication mechanism.

We believe that Strategy and inheritance is

appropriate tool to achieve this: by passing

appropriate arguments to the protocol layer.

Inheritance by it self, without using the Strategy, is

not appropriate when it comes to choosing among

several protocol algorithms at run time. Strategy

TransportClientRMI builds message and then

issues „send“communication operation to deliver

message over to server layer. The fail over,

asynchronous communication, timeout, exception

handling, load balancing are implemented by generic

transport classes independent of any particular

communication mechanism.

+send()

TransportClient

+send()

«implementation class»

TransportClientRMI

+send()

«implementation class»

TransportClientHTTP

+send()

«implementation class»

TransportClientLOCAL

ClientProxy

1 *

Figure 7. Structure of the transport strategy

Figure 8 sketches the way client layer objects and

transport algorithm objects interact. Whenever an

operation related to the transport is invoked on client

layer, the execution of transport is delegated to

strategy TransportClient. Each instance of the

TransportClient class represents one execution

of transport implemented by that class.

Client
Layer

Server
Layer

HTTP

JMS

RMI

LOCAL

Transport

HTTP
Listener

JMS
Listener

RMI
Listener

Transport

CLIJENT SERVER

Figure 8. Components of the transport variation

4.2 Data Access Objects

Business logic application layer accessing data from

any data source (databases, web services, legacy

systems, flat files, and so forth) may use the Data

Access Object pattern which implements the Strategy

[20] design pattern and hides most of the complexity

away from an application programmer by

encapsulating its dynamic behavior in the base data

access class. Existing patterns and technologies such

as Object/Relational mapping, EJB, etc., do not

address a diversity of potential data sources and its

commonality such as: connection management,

transaction control, data caching, etc., for each of the

specific data source types on a unique and

manageable way.

4.2.1 Variation for Data Access Objects

Figure 9 show the variation point and some of the

variations for the access of diverse data sources.

Beside the benefits from the use of Strategy pattern,

we propose the use of common base class for diverse

type of data sources, relational or not relational. For

example, the base class to implement strategy is

shared between relational and non relational data

sources. Having the same base class for CICS, SAP

and JDBC data sources for example, makes it possible

to replace the data access algorithm without making

changes to the application itself. Our experience

proves that the implementation of Strategy design

pattern for the data sources access pays off, especially

in the enterprise size application environment.

Business Object

Variation

point

JD
B
C

J
M

S

C
IC

S

DATA ACCESS LAYER

Figure 9. Data Access Object Variation Point

Figure 10 shows the Data Access Object variation

strategy pattern implementation where it represents

the relationship between classes BusinessObject

and DataAccessObject, using a class diagram.

DataAccessObject is an abstract class to define a

common behavior for the data access algorithms,

while strategy classes inherit it and implement an

algorithm specific for the data source type such as

JDBC, JMS, CICS, etc.

With this approach, it all comes down to choosing the

right class for the right data access mechanism. We

believe that strategy and inheritance is appropriate

tool to achieve this: by setting the appropriate

configuration parameters for specific data source at

the business logic layer. Inheritance by it self, without

using the strategy, is not appropriate when it comes to

choosing among several data access algorithms for

diverse data sources. Specific strategy algorithm

builds a message and then issues the data source

specific operation to deliver a message over the data

source. The connection handling, transaction control,

result set handling, timeout, exception handling, etc.,

are implemented by generic data access object classes

independent of any particular data source access

mechanism.

DataAccessObject

«implementation class»

DataAccessObjectCICS

«implementation class»

DataAccessObjectJMS

«implementation class»

DataAccessObjectJDBC

BusinessObject

1 *

Figure 10. Structure of the Data Access Object

strategy

4.3 Data Source Connections

Information of an enterprise may be in the form or

relational database records, business objects in an

ERP, transaction program CICS transaction

processing system and etc. In order to integrate these

diverse systems most vendors supported a variety of

custom adapters for the integration of these systems.

Basically these adapters provided complex and

limited native interfaces. Because of these,

application developers had to deal with too many

different adapters which lacked support for

connection management, handling security and

transaction support.

In order to address the above problems Sun

Microsystems released the J2EE Connector

Architecture, JCA that provides a standard

architecture for integration of J2EE Servers with

heterogeneous EIS resources. It provides a common

API and a common set of services within a consistent

J2EE Environment [21].

JCA provides a solution for applications executing

within an Application Server and accessing the

supported data sources, however, in the case an

application is not running within Application server or

in case there is no support for JCA from a data source

vendor, a custom solution is needed. We propose the

use of the Strategy design pattern to combine JCA and

other, not supported data sources. Our experience

proved that applications using the proposed approach

could execute within an Application Server or as a

separate application but still accessing diverse data

sources combined in a shared transaction context.

4.3.1 Variation for Data Source Connections

Figure 11 show the variation point and some of the

variations for the data source connection. This

variability combines JCA connections and product

line custom connections, all within an Application

Server. In case an application needs to be deployed

outside of an Application Server, the Strategy support

this variations but have in mind that JCA connection

are not possible to include.

Transaction / Connection

Pool

JD
B
C

J
M

S
C
IC

S

DATA SOURCES

Figure 11. Data Source Connection Variation Point

Figure 12 shows two use cases of this strategy. First,

the transaction support needs to reference the

connections in order to execute commit or rollback.

The other use case for this strategy is the custom

connection pool context. In case the application

developer decides to use the application outside of an

Application Server and use custom connection pool,

the Strategy allows managing the transaction and

supporting the connection management.

Connection

«implementation class»

Connection CICS

«implementation class»

Connection JMS

«implementation class»

Connection JDBC

Transaction

1 *

Connection Pool1*

Figure 12. Structure of the Data Source Connection

strategy

5 Conclusions

Most of the systems using the SPL approach to build

a family of business applications will use more than

one type of variation mechanism. Variation

mechanisms are applied at different levels of

abstraction within an SPL. The PLA is the first place

where the variation is represented in design. The

specific mechanisms by which the PLA addresses the

variation depends on overall software structure of the

entire product line. Design patterns as a proven

solution for general design problems, provide a

mechanism to handle variations at the PLA or at the

level of product design.

This paper has presented the Strategy design pattern

as an architectural variation mechanism and the three

variation points inside a typical business application

SPL framework. The hope is that this experience

based design can be used as a guide for product line

architects to make reasoned choices about which type

of variation mechanism to use at the referenced

variation points.

References

[1] Guide to the Software Engineering Body of

Knowledge, The Institute of Electrical and

Electronics Engineers, Inc., 2004, 8-1, pp. 120.

[2] P. Clements and L.M. Northrop: Software

Product Lines - Practices and Patterns.

Addison-Wesley. 2001, pp. 17, 29, 31.

[3] Kyo C. Kang, Vijayan Sugumaran, Sooyong

Park: Applied Software Product Line

Engeenering, Taylor and Francis Group, 2011,

pp. 6.

[4] Jan Bosch: Design and use of software

architectures: adopting and evolving a

product-line approach, ACM Press/Addison-

Wesley Publishing Co., 2000

[5] Frank van der Linden, Klaus Schmid and Eelco

Rommes: The Product Line Engineering

Approach, Springer, 2007, pp. 14.

[6] Zdravko Roško: Software Product Lines:

Source Code Organization for 3-tier OLTP

Architecture Systems, CECIIS, 2011.

[7] Jan Bosch: Interview on Product Lines and

Software Ecosystems, http://www.se-

radio.net/?s=bosch&submit=Find, 2009.

[8] Charles W. Krueger: Software Reuse, School of

Computer Science, G’arnegie Mellon

University, Pittsburgh, Pennsylvania 15213,

1992.

[9] Wegner, P: Varieties of reusability. In

Workshop on Reusability in Programming
(Newport, R. I., Sept.). ITT Programming,

Stratford, 1983.

[10] Magnus Eriksson: An Approach to Software

Product Line Use Case Modeling,

LICENTIATE THESIS, 2006.

[11] Mikael Svahnberg, Jilles van Gurp, Jan Bosch:

On the Notion of Variability in Software

Product Lines, Blekinge Institute of

Technology, 2001.

[12] Michel Jaring and Jan Bosch: Evolution in

Software Product Families: Architecture

Implementation rather than Architecture

Design, 2002.

[13] Steve Livengood: Product Line Architecture

Variability Mechanisms, Proceedings of the

Workshop held in conjunction with the 10th

Software Product Line Conference, 2006.

[14] Bass, L., Clements, P., & Kazman, R: Software

Architecture in Practice (2nd edition).,

Addison-Wesley 2003.

[15] Jilles Van Gurp , Jan Bosch , Mikael Svahnberg:

On the Notion of Variability in Software

Product Lines, Proceedings of the Working

IEEE/IFIP Conference on Software Architecture

(WICSA'01), p.45, August 28-31, 2001.

[16] E. Gamma, R. Helm, R. Johnson, and J.

Vlissides: Design Patterns, Elements of

Reusable Object-Oriented Software, Addison-

Wesley Publishing Company, Reading, USA,

1995, pp. 315.

[17] Sun Microsystem: Distributed Application

Architecture, 2000.

[18] Markus Volter: Remoting Patterns

Foundations of Enterprise, Internet and

Realtime Distributed Object Middleware,

John Wiley & Sons Ltd., 2005, pp. 135.

[19] http://www.javabeat.net/articles/22-j2ee-

connector-architecturejca-an-introduction-1.html

[20] Zdravko Roško: Dynamic Data Access Object

Design Pattern, CECIIS, 2008.

[21] http://www.javabeat.net/articles/22-j2ee-

connector-architecturejca-an-introduction-1.html

[22] Paul Harmon, Michael Rosen, Michael Guttman:

Developing E-business systems and

architectures, Morgan Kaufmann, 2001. 160,

161.

[23] Frank Buschmann, Regine Meunier, Hans

Rohnert, Peter Sommerlad, Michael Stal, Michael

Stal: Pattern-Oriented Software Architecture

Volume 1: A System of Patterns, Wiley, 1996,

pp. 12,13,14.

[24] Jan Bosch: Evolution and Composition of

Reusable Assets in Product Line

Architectures: A Case Study, Proceedings of

the First Working IFIP Conference on Software

Architecture , 1999.

http://www.javabeat.net/articles/22-j2ee-connector-architecturejca-an-introduction-1.html
http://www.javabeat.net/articles/22-j2ee-connector-architecturejca-an-introduction-1.html
http://www.javabeat.net/articles/22-j2ee-connector-architecturejca-an-introduction-1.html
http://www.javabeat.net/articles/22-j2ee-connector-architecturejca-an-introduction-1.html

