

Backward-Forward Transaction Service

Design Pattern

(CECIIS 2010)

Zdravko Roško

Faculty of Organization and Informatics

University of Zagreb

Pavlinska 2, 42000 Varaždin, Croatia

zrosko@yahoo.hr

Abstract. Two models of handling transactions;

backward based transactions and forward based

transaction compensation, need to be integrated into

a model which can be used in distributed

transactions, including web service transaction

model. Backward based atomic transactions handling

ACID (Atomicity, Consistency, Isolation, and

Durability), two phase commit (2PC) and resource

locking is not suitable for long-lived transaction or

loosely-coupled nature and autonomy of web services.

This paper presents the Backward-Forward

Transaction Service Design Pattern which combines

backward based transactions and forward based

transaction compensation that can be used

independently of the EJB, MTS or other technology

supporting the two models.

Keywords. Transaction, Pattern, Compensating

Service Transaction, ACID, EJB, Data Access Object,

Web Service, EIS.

1 Introduction

As more businesses migrate towards an e-business,

integration with existing internal and external

enterprise information systems (EIS) becomes the key

to success for many businesses. Many companies

need to integrate their existing EIS systems with new

type of client applications, such as; mobile, web-

based, web services, etc., as well as to provide a

support for business to business (B2B) transactions

(Figure 1).

A business transaction is an interaction in the real

world, usually between an enterprise and a person,

where something is exchanged [1]. For example, if an

automated payment is made, the amount must be

either both, withdrawn from first account and added

to the second one, or nothing should happen. In case

of a failure preventing transaction completion, the

partially executed transaction must be “rolled back”
by the transaction supporting system.

The general term “Transaction” has been

introduced by Gray [2] and is defined by the four

properties contained in the ACID acronym:

Atomicity, Consistency, Isolation, and

Durability. These properties guarantee that a system is

maintained in a consistent state, even as transactions

are executed within it concurrently. This includes the

situations where one or more transactions fail to

commit [3].

As new transactional applications have emerged,

the limitations of classical transactions have been

recognized and are well known. To handle transaction

processing within these application domains, a

number of alternative or extended transaction models

have been suggested [4].

Figure 1. EIS environment

J2EE Connector architecture (JCA) part of Java 2

Platform, Enterprise Edition (J2EE) 1.3, specifies a

standard architecture for accessing resources in

diverse EIS, including ERP systems and mainframe

transaction processing systems such as SAP R/3, IBM

CICS, legacy applications and non-relational database

systems. Currently JDBC Data Access API provides

easy integration with relational database systems for

Java applications. In a similar manner, the Connector

Architecture simplifies integration of Java

applications with heterogeneous EIS systems [5].

This paper presents the transaction model to be used

outside of the technology supporting the two models

EAI Tier (DBMS, ERP, CICS, EJB,...)

Middle – Tiers (Enterprise Services)

Clients (Mobile, Web, Web Service,...)

http://en.wikipedia.org/wiki/Rollback
http://java.sun.com/j2ee/index.jsp
http://java.sun.com/j2ee/index.jsp
http://java.sun.com/products/jdbc/index.jsp

of transaction services (backward/forward). The

model can service transactions within the client-server

or three-tier application server environment.

Backward-Forward Transaction Service (BFTS)

presented here, is a compound design pattern which,

among other features, addresses the missing elements

from JCA including the following:

 Plain Old Java Object (POJO) transaction

management implementation (not using

J2EE application server).
 Compensating Service Transaction (CTS)

[6] support.

 Client side transaction management in the

diverse EIS environment.

The advantages of BFTS are:

 It provides a unified client programming

model for accessing any back-end

transactional system.

 It can execute within an application server

context or as a stand-alone process.

 Support for connection pooling of diverse

beck-end systems (JDBC, JMS, EJB, CICS,

etc.)

 Support for transaction management within

application server context or as a stand-alone

process.

In the integration of a systems, the main concern is

the unification of the design decisions and their

assumptions [7]. The contribution of this paper is

threefold and is concerned by unification of the

design for transaction management in heterogeneous

environment. First, the problem with the context of

EIS perspective is presented. Second, it explains the

solution which includes backward (ACID) and

forward CTS transaction management. Third, Java

implementation of BFTS is presented for showing a

practical use of the pattern.

2 Context

A business transactions requiring the access to

multiple types of data source systems (RDBMS, Web

Services, legacy systems, ERPs, EJBs, CORBA

services, and so forth), scale up for high performance,

avoidance of errors due to concurrent operations,

must be Atomic, Consistent, Isolated and Durable

(ACID). They also require a uniform client

programming model. BFTS design pattern is a

compound pattern assembled from Sovereign Value

Object [8], Dynamic Data Access Object [9], Pooling

[10], Adapter [11], Command, Factory Method,

Singleton, Façade, Proxy [11], and serves as a

transaction client programming model.

BFTS solves a distinct problem, and not just a

combination of problems of its contained patterns,

including: connection handling, flat transaction

handling, transaction timeout, multi-user concurrency,

external transaction access (JTA, EJB, J2C) and

Compensating Service Transaction [6].

Figure 2. shows BFTS Use Case for managing

“Backward Transaction Service” to handle classic

ACID type of transaction, and for managing “Long-

lived Transaction Service” on the client and on the

server side. Server side transaction service collects the

transaction posts in the memory or in the persistence

store such as RDBMS. “Forward Transaction

Compensation Service” uses ACID as a mechanism

for handling a collection of transaction “undo” actions

in case a rollback is required for long-running

transaction.

Forward Transaction

Compensation Service

Server Cache

Transaction Service

Transaction Service Client

Backward

Transaction Service

Long-Lived

Transaction Service

Server Persistence

Transaction Service

Client Cache

Transaction Service

Single Execution Multiple Execution

«extends» «extends»

«extends»

«extends»

«extends»

«extends»

«uses»

Figure 2. BFTS Use Case

3 Implementation

Transaction can exist within any Java application

outside of the J2EE/JEE container. It also can exist

and be used on the client or on the server environment

execution. The service is configurable by simple setup

parameters. Configuration of the transaction service is

used to change the behavior of the service. Figure 3

shows the backward-based POJO classic ACID

transaction environment which includes different

beck-end systems, supported by the pattern, where

persistence hides any data source system capable of

supporting transactions (RDBMS, EJB, JMS, SAP,

CICS, etc.).

Figure 3. Classic ACID transaction

3.1 Compensating Service Transaction

When a global client transaction, composed of a

number of smaller units of works, encounters failure

condition, runtime exception is raised and termination

of the global transaction is required. In case the global

transaction is long-running service, it can severely

degrade performance and can also reduce the

scalability of the system. Therefore, instead of

looking the resources, the global transaction is

supplemented with compensating logic, which does

not require maintenance of global transaction original

state, or lock resources for the duration of the global

transaction. Compensating actions are used as the

extensions to the global transaction units of work via

addition of “undo “capabilities. The actions are stored

to the server or client cache, or to the database, and

later used for rollback, in case a global transaction

exception is raised. Compensating actions are restored

in the form of Sovereign Value Objects [8] containing

all the properties “undo” actions require (business

data, target component and target service name) in

order to execute the action as a command [11] to

restore unlocked resources to the global transaction

original state.

The actions can be designed to execute the

compensating service with additional functions, such

as sending out a notification about failure to the

system administrator.

Application programmer needs to prepare “undo”

logic for each service, where the compensation action

is required. The “undo” logic is prepared in the form

of an action (SVO).

Action is returned as an output parameter from the

business component service to be cached and

eventually used for compensation in case of failure of

the global transaction.

3.2 Client side transaction management

To create a new long-lived transaction on the client,

its representation must be stored at the client

transaction collection, until the global transaction

commit or rollback is called. The server is called at

the end of client transaction, and the collection of the

transaction data and actions is sent to the server at

once, to be committed as one ACID transaction.

BFTS supports a sequential server calling after global

transaction commits or rollback is called, but it

cannot, however, guarantee the data consistency in

case the commit or rollback fails in the middle of the

process. The transaction can be roll backed to ignore

all posting to the collection, in case a failure

preventing the transaction completion.

The server side of the transaction service handles all

other tasks such as connection management to many

types of data sources, server side transaction

coordination, security and logging.

Figure 4 shows client side transaction caching in case

the client needs a full control of transaction

compensation “undo” actions. The usage of this

option requires a specific configuration parameters

setup.

Figure 4. Client side transaction service

3.3 Server side transaction management

BFTS supports transaction data caching at the server

memory cache or within the relational database.

Client initiates a global transaction by calling the

server to execute a business operation. Each client call

to the server is saved and used later at the time a

commit or rollback is requested from the client.

The transaction compensation data, in the form of

“undo” actions, is also saved and used in the case a

global transaction calls the rollback after the commit

is done. Figure 5 shows the server side caching

context.

Figure 5. Server side transaction service

3.4 Structures

BFTS handles backward (ACID) transactions by

using the Dynamic Data Access Object (DDAO) to

transparently access business data from various beck-

end systems.

Figure 6. shows the class diagram for BFTS backward

transaction service.
The classes included are:

 J2EETransactionFactory handles transaction

through various stages during its life cycle.

The factory creates transaction per client

request and uses the thread identifier as a

unique key in multi-user environment.

During its lifetime, a transaction passes

through the following stages:

No Transaction, Active, Committed, Rolled

Back.
 J2EETransaction is an implementation of the

flat transaction model which assumes that

units of work are at the same hierarchy. The

changes that are done as part of this

transaction are either committed or aborted.

This model suffers from a few limitations

specific to a flat transaction models.

J2EETransaction holds the connection pool

of currently used connections to various

back-end systems. The connections are

extracted from J2EEConnectionPool and

used during the lifetime of the transaction

and returned back to the pool after commit or

rollback of the transaction is done.

 J2EEConnection is an abstract class to

represent various back-end systems such as:

RDBMS, CICS, JMS, AS400, etc. and is

used to handle logical unit of work across

multiple type of data sources. It can be used

as an abstract base class for implementation

of any kind of back-end connection capable

of supporting transaction management.

 J2EEConnectionJDBC is a concrete

implementation of the abstract

J2EEConnection and is used to handle all

connection related work to JDBC data

sources such as Oracle, SQL Server, My

SQL, Sybase, DB2, etc.

 J2EEConnectionCICS is a concrete

implementation of the abstract

J2EEConnection and is used to handle all

connection related work to CICS back-end

data sources.

 J2EEConnectionJMS is a concrete

implementation of the abstract

J2EEConnection and is used to handle all

connection related work to MQ and other

JMS back-end data sources.

+connect()

+commit()

+disconnect()

+rollback()

+ping()

-user

-password

-host

-port

J2EEConnection

+createPool()

+destroyPool()

+getConnection()

+initialize()

+returnConnection()

-pool

-user

-password

-host

-port

-max

-min

-pingcommand

J2EEConnectionPool

J2EEConnectionJDBCJ2EEConnectionCICS J2EEConnectionJMS

+getConnection()

+initialize()

-configuration

J2EEPersistenceService

+currentTransaction()

+deteteTransaction()

+createTransaction()

-transactions

J2EETransactionFactory

+getConnectionForThread()

+addConnection()

+begin()

+commit()

+rollback()

+prepareTxn()

-pool

-timeout

-starttime

-endtime

-status

J2EETransaction

-is created by

1

-creates

0..*

1

-creates*

-is created by

1

-creates

*

-is hold by1

-holds

*

Figure 6. Backward based transaction

BFTS also handles forward based transaction service

(Figure 7).

The classes included are:

 J2EETransactionCompensationFactory is

used by the client to create and hold the

transaction with its state.

 J2EETransactionCompensation is a client

side service used to begin, commit, rollback,

add Step, and to keep the transaction and

compensation data and actions locally

cached before they are sent to the server for

processing.

 J2EETransactionCompensationService

which handles multiple user transaction

contexts by using transaction token

generated by J2EETransactionCompensation

on the client or by itself in case the client

does not provide one at the start of a

transaction. The class handles begin, commit,

rollback, rollback Forward private

operations called by the main service

operation in order to handle the transaction.

Compensation actions are executed in time

descending order.

 J2EETransactionJdbc is a DDAO used to

handle the persistence of the transaction data

to the database.

 J2EECompensationJdbc is a DDAO used to

handle the persistence of the compensation

data to the database.

 J2EEApplicationController is a main entry

point to the transaction processing. It can be

configured to handle transaction

management using JTA, EJB or BFTS

transaction context.

 J2EETransactionCompensationFacade

interface is the client API to BFTS

component. The interface is implemented at

the server (logical) side and on the client

side. Server façade can be used by a client

administration console to view the current

state of transactions and compensations.

J2EETransactionCompensationFacadeProxy

«interface»

J2EETransactionCompensationFacade

J2EETransactionCompensationFacadeServer

J2EETransactionCompensation

J2EETransactionCompensationFactory

+service() : void

J2EETransactionCompensationService

-is created by 1

-creates *

J2EETransactionJdbcJ2EECompensationJdbc

J2EEApplicationController

Figure 7. Forward based transaction

3.5 Dynamics

Figure 8. shows the message flow between the objects

within the transaction context on the server.

J2EEApplication controller is called by client to do a

business transaction. The client can be a separated

process or could be a fat-client within the same

process as the logical server. The controller starts a

transaction by calling begin operation on

J2EETransaction which triggers the creation of the

transaction by its factory. After the creation of the

transaction for “current” thread, each connection to

any back-end system, required by

J2EEDataAccessObjects, is moved from the

connection pool to the transaction object. At the end

of the business logic, the transaction is either

committed or rolled back by calling various beck-end

systems implemented commit or rollback operations.

J2EEApplicationController J2EETransaction

begin

BusinessComponentFacade

execute

commit

rollback

J2EEConnectionJ2EEBusinessObject J2EEDataAccessObject

doBusinessLogic

doDataAccessLogic

doDataSourceAction

moveTo

commit

rollback

Figure 8. Server transaction

Figure 9. shows the message flow between the objects

within the transaction context on the client in case a

transaction compensation service is used.

Transaction compensation actions, with its data, are

collected whether on the client or on the server. Client

application is not aware of transaction handling

mechanism because of its transparency. Client

application initiates the transaction and calls a typical

business component to execute business operations.

The compensating transaction service handles the rest

of the transaction work, such as collection of actions

and compensations, and does the commit or rollback

of the transaction or compensation actions.

BusinessComponentProxy
J2EETransactionCompensationFac

tory

begin

commit

rollback

J2EETransactionCompensationClientApp

doBusinessLogic
getCurrentTransaction

deleteTransaction

Figure 9. Client transaction compensation

4 Example Use Case

The Telecoms Equipment Inventory (TEI) Web

services have been used by Physical Network

Inventory (PNI) client application to provide

centralized access to all processing and data

associated with the telecoms equipment. TEI business

objects and data are used by many other concurent

applications, meaning that no long-running data or

object looking is permitted. The PNI is a Graphical

User Interface (GUI) application used to draw

buildings and other locations associated with the

telecoms equipment.

Figure 10. PNI Use Case

PNI holds a bulk of application data, being posted to

TEI either at once after the local validation is passed

or randomly after user completes each part of work.

However the PNI logical unit of work, composed of

many small parts, should be treated as a one

transaction on the TEI side. PNI transaction is a set of

related Web services that may need to be cancelled

after they were executed. To handle this requirement

a solution has to provide an „undo“ logic for each

Web service called by PNI. PNI clients use BFTS to

start a transaction, send multiple messages to TEI, and

finally commit or rollback the transaction (Figure 10).

Instead of having implemented one giant ACID

transaction, a compensation-based approach treats

each web service invocation as one ACID transaction,

commited as soon as it has executed. The lock of

resouces is reduced, but it means that cancellation has

to be done by executing a separate ACID transaction

that logically cancels the work after it was commited.

Global Transaction

BEGIN

SmallWorld Transaction

Begin

BFTS Transaction Begin

Magik /command 1

Magik /command 2

status = AbcFacadeProxy.addEquipment(XML)

if status = OK

 status = AbcFacadeProxy.modifyLocation(XML)

 if status = OK

 status = AbcFacadeProxy.addLocation(XML)

if status = OK

begin

 Magik /command 3

 Magik /command 4

end

message = status /* OK-success, else it contains

transaction step id */

/* Client with Exceptions handling does not need to

check the status for OK */

/* The context of the transaction is owned by client

program (assuming single threaded client*/

Global Transaction

COMMIT

BFTS Transaction Commit

SmallWorld Transaction

Commit

Global Transaction

ROLLBACK

BFTS Transaction Rollback

SmallWorld Transaction

Rollback

 Figure 11. Pseudo code Magik/Java

Figure 11. shows the pseudo code of a typical client

usage of the BFTS transaction service. The client is

using Magik programming language, accessing

SmallWorld object database, and calls BFTS to access

back-end server composed of JDBC, JMS and EJB

systems. All data sources, including the object

database, are part of a global transaction.

TEI Web

Services

PNI

Client

GUI
TEI

Data

cache

Conclusion

In this paper, BFTS pattern for handling long-running

forward transactions, combined with backward based

ACID transaction management, is introduced. The

pattern can be used to build transactions and reliable

transaction compositions with Web services and other

distributed technologies. BFTS is used to capture

transaction messages, save them, save the “undo”

message for each transaction, and handle transaction

logic toward any kind of back-end system (EJB,

JDBC, CICS, JMS, etc.). BFTS does not require any

container as a prerequisite.

Further, the BFTS follows a clean separation of

concerns, having transactional properties isolated

from other aspects of business logic. The design is

also open for to accommodate other technologies

other than Web services.

There are, however, some issues that need to be

further explored, such as creation of “undo” logic for

complex business operations, high-availability

caching of transaction messages, business processes

orchestration, fail-over and load balancing related

issues.

References

[1] Philip A. Bernstein, Eric Newcomer. Principles of

 Transaction Processing For the System

 Professional. Morgan Kaufmann Publishers, page

 2, 1997.

[2] Gray, J. & Reuter, A. Transaction Processing:

 Concepts and Techniques. Morgan Kaufmann

 Publishers Inc. San Francisco, CA, USA, 1993.

[3] Alexandros Marinos, RETRO – A (hopefully)

 RESTful Transaction Model. University of

 Surrey, 2009.

[4] Thomas Strandenaes, Randi Karlsen. Transaction

 Compensation in Web Services. Department of

 Computer Science, University of Tromso, 2002.

[5] http://java.sun.com/javaee/overview/whitepapers/

 connector.jsp, 2010.

[6] Thomas Erl. SOA Design Patterns, pages 632-638.

 Prentice Hall, Boston, 2009.

[7] Software Architecture as a Set of Architectural

 Design Decisions, Anton Jansen, Jan Bosch,2005,

 IEEE Computer Society Washington, DC, USA.

[8] Zdravko Roško: Sovereign Value Object,

 Facultyof Organization and Informatics

University of Zagreb, IIS 2007.

[9] Zdravko Roško: Dynamic Data Access Object,

 Faculty of Organization and Informatics

 University of Zagreb, IIS 2008.

[10] Michael Kircher, Prashant Jain. Pattern-Oriented

 Software Architecture, page 97. John Wiley

 &Sons, 2004.

[11] Erich Gamma, Richard Helm, Ralph Johnson,

 John Vlissides, Design Patterns: Elements of

 Reusable Object-Oriented Software, Addison-

Wesley Publishing company, pages 139, 233, 207,

185, 107, 127, 1995.

http://www.cs.surrey.ac.uk/
http://www.cs.surrey.ac.uk/
http://java.sun.com/javaee/overview/whitepapers/%0b%20%20%20%20%20%20connector.jsp
http://java.sun.com/javaee/overview/whitepapers/%0b%20%20%20%20%20%20connector.jsp

