

Sovereign Value Object

Design Pattern

Zdravko Roško

University of Zagreb

Faculty of Organization and Informatics, Varaždin, Croatia

zrosko@yahoo.com

Abstract. Distributed systems architecture (CORBA,

DCOM, EJB, etc.) and currently recommended design

patterns, do not successfully help to solve the problem

of data transport from client to server, data usage,

data integrity, data transformation, internal

programming techniques, program response time,

methods signature flexibility, etc. From an integrated

architectural point of view, proposed Sovereign Value

Object (SVO) design pattern is a reusable component

which helps to solve many of the complexities which

currently exist.

Keywords. Design Pattern, Value Object, Java,

Service Oriented Architecture (SOA), component,

method signature, property container, façade, Model

View Controller (MVC), Core J2EE Design Patterns,

XML, SOAP, Result Set, Copy Helper, name-value

pairs.

1. Introduction

Sovereign Value Object is a design pattern

response to the industry need to simplify application

programming, improve performance, encapsulate data

on a reusable way, and make the programs less error

prone. Throughout the history of distributed systems

and application programming, there were no

recommendation specification or design pattern

available to address the overall data encapsulation

issue. IBM Copy Helper solution for transfering data

in the Component Broker distributed envirnoment,

was the first significant attempt to address the data

transfer between distributed objects. A known issue

with CORBA and EJB distributed systems in the past

was the need to invoke network transport for each

attribute setter and getter call from client to the

server. Service method signature, reusability of once

encapsulated Value Object [1], and many other issues

are solved by using Sovereign Value Object design

pattern. Recently published specification (November

2006) of Service Data Objects (SDO) by BEA

Sysems, Inc., is the most complete specification in

regards to data programing architecture, but it still

does not specify the potential usage, and effective

design of SDO. The author has been using Java SVO

for 8 years and has improved its functionality over

time.

2. Value Object

The idea of the Value Object (Sun Microsystems

2001) design pattern was to solve a performance issue

with clients need to exchange data with enterprise

beans. The client invokes business object’s getter and

setter methods for each field, which are potentially

remote and cause network overhead. Use of Data

Transfer Object (variation of Value Object) was the

solution to the issue. A single method call is used to

send and retrieve the Data Transfer Object. When the

client requests the enterprise bean for the business

data, the enterprise bean can construct the Data

Transfer Object, populate it with its attribute values,

and pass it by value to the client [2]. The major

limitation of Value Object is the need to use many

other patterns in connection to the Value Object.

Example 1. Implementing the Data Transfer
Object Pattern - Transfer Object Class

public class ProjectDTO implements

java.io.Serializable {

 public String projectId;

 public String projectName;

 public String managerId;

 public String customerId;

 public Date startDate;

 public boolean started;

 public boolean accepted;

 public Date acceptedDate;

 public String projectDescription;

}

The issue with Value Object was defined too

narrowly. This usage model of Value Object could be

characterized as transient, since the Value Object is

used for secondary reasons. Sovereign usage model,

in contrast, uses a Value Object as a primarly data

container throughout the complete life cycle of data,

from creation to persistence or removal.

Sovereign Value Object is a pattern around which a

number of transient functions will revolve, such as

validation, mapping, caching, logging, etc.

3. Sovereign Value Object

SVO appears as single row (contains maximum one

instance of any type of attribute) and inherits from

J2EEValueObject. SVO can contain a result set

(multiple instances of any type of attribute) by

inheriting from J2EEResultSet class.

3.1. Design

While designing the interface to its business methods,

application development needs to define a SVO for

each significant business entity and use it in all tiers

within the application. When multiple entities are

needed (SQL query), SVO result set needs to be

created and used independently from the type of the

persistence.

Figure 1. Sovereign Value Object design

3.2. Structure

SVO inherits property container and implements

getters and setters for each of its attributes. Like a

SOAP document, SVO object has a header part to

keep the user, session and information about class and

method (service) to invoke in the case the SVO is

used as command [3]. SVO inherits toXML and

fromXML methods to enable transformation from

XML to Java object and vice versa. Transformation

from SOAP document to SVO object and vice versa is

supported to enable Service Oriented Architecture

(SOA). SVO contains name-value pairs of preferably

String data fields, but it also supports name-object

pairs. Nested SVOs are supported to enable complex

structured data, by having a reference to another
SVO. SVO inherits standard conversion methods such

as getAsDate(), getAsStringOrEmpty(), which ensures

no NullPointer exceptions while using SVO.

Implementation of SVO converts between String and

any data types. SVO is Cloneable which makes it

possible to perform deep copy of its data when

needed. As Serializable object SVO can be

transported through the network or to the file.

Figure 2. Sovereign Value Object and SOAP

4. Sovereign Value Object applicability

SVO is a complete data encapsulation and is used on

the client, transport, business logic, data access, and

services layers of a typical application. Having SVO

as a part of the infrastructure core classes, the

application SVOs need to inherit the

J2EEValueObject or J2EEResultSet and implement

the get and set methods only.

4.1. Model View Controller (MVC)

SVO can be used as a model (Observable) component

of the MVC architectural pattern. The same model

can be transferred to the next layer (ProxyFacade) or

could be used for other applications processing needs

(validation, local cache, etc.).

4.2. Interface to methods

Using SVO as the only input or output method

parameter, ensures the method signature stability from

any future changes. Having stable interface is a must

for today’s applications. SVO has unlimited capacity

for accepting any kind and any number of attributes.

Changes to the number and types of the input or

output data parameters to a business object method,

does not mean change of the method interface if using

SVO.

SOAP Document

SOAP

Header

SOAP

Body

SVO Object

SVO Header

(User, Session,

Service)

SVO

Body

J2EEValueObject

+ properties : Hashtable

+ getAsString ()

+ getAsDate ()

OrderVo

+ getOrderNo ()

+ setOrderNo ()

OrderVo attributes are not

declared in the OrderVo

class. OrderVo class defines

GET and SET methods only.

Attribute values are saved to

the properties:Hashtable of

the J2EEValueObject.

Observable

«interface»

Validator

«interface»

Serializable

«interface»

Cloneable

«interface»

Observer

J2EEResultSet

+ Vector : rows

OrderResultSet

4.3. Validation

Data integrity, field edits, cross edits and other types

of validation while using SVO as data holder is made

simpler. Sending SVO objects to a Rule Engine,

Workflow Engine or Validation service is supported,

since SVO is designed as a bean with setter and getter

methods for its data attributes manipulation.

4.4. Command design pattern

SVO is an implementation of the Command [3,4]

design pattern. Having an execute method, SVO is

capable to start the service as described in its header.

SVO is for client to use it locally, but it actually

executes within the remote server, transparent to the

client. Command pattern is used to encapsulate

Façade business method calls, such as placeOrder,

transferFunds, etc. The client interaction with a

command SVO is simple. Once the client instantiate

the SVO, it simply sets attributes onto the SVO, until

the command contains all the data required to execute

a specific business method.

4.5. Data caching

By implementing Observable and extending

Observer, it is possible to store SVOs on the client or

server cache for later retrieval. SVO result sets can be

cached at the persistence tier, and monitored for

changes which are reflecting the data stored within

SVOs at the cache.

4.6. Services

SVO passed to a different type of service

infrastructure components serves as a source of data

to be used for logging, security check, workflow

process, session, etc.

4.7. Persistence mapping

By using the same standard data dictionary (metadata

or origin names) on the client and on the server layer,

SVO enables persistence of its attributes without

programming intervention. Data values available at

the Data Access Object are mapped to the Persistence

using metadata of the persistence layer. Also, it is

possible to use SVO for validating the fields length

against the persistence fields definition.

4.8. Result Set

J2EEResultSet is a practical way to marshal tabular

data from a JDBC ResultSet or other data source,

down to all application layers, without the overhead

of converting the data to other kind of objects.

J2EEResultSet is used to encapsulate the data from
many kinds of data sources such as RDMS,
Mainframe Application Server, ERP, Messaging

Server, File System, etc. Data is transferred to the

calling program and connection to the data source is

not maintained. This way, any strategic change of the

data source does not affect the business logic, or any

other part of the application programming code.

Replacing RDMS with ERP should not cause a single

line of a code change if SVO is used in connection to

Data Access Object design pattern which is an

implementation of Strategy [3] design pattern.

4.1. JSP Bean

SVO can be used as a JSP bean or bean list to act as a

model in the JSP architecture context.

Figure 3. Sovereign Value Object usage
context

5. Sovereign Value Object implementation

Example 2. Implementing the base
infrastructure Sovereign Value Object Class

public class J2EEValueObject extends Observable

implements Serializable, Cloneable, Obeserver,

Validator, XMLConvertable {

 public Object clone();

 public void deleteProperty(String name);

 public J2EEValueObject fromXML(String xml);

 public Date getAsDate(String name);

 public void set(String name, String value);

 public J2EEValueObject execute();

 public void update(Observable o, Object arg);

}

 View/Controller

 Model

 Proxy Facade

 Server Facade

S

e

r
v

i

c
e

s
 Business Object

Rule

Engine

Workflow

Logging

 Data Access Object

Result Set

Cache

Persistence

Security

Client

Result Set

Cache

Example 3. Implementing the application
Sovereign Value Object Class

public class ProjectSVO extends J2EEValueObject {

 public String getProjectId();

 public String getProjectName();

 public Date getStartDate();

 public void setProjectId(String value);

 public void setProjectName(String value);

 public void setStartDat(Date value);

}

5. Related Patterns

SVO can be used by Proxy, Front Controller,

Business Delegate to reduce the coupling between the

presentation-tier clients and business services.

Command design pattern hides the destination service

which handles the data inside the SVO.

Façade needs to have a simple and flexible interface

by using SVO as its only input or output parameters.

Business Object (pass through type) and Data Access

Object keep its data inside SVO while accepting,

manipulating, and passing it to the other destinations.

6. References

[1] Core J2EE Pattern Catalog, VO

[2] Core J2EE Pattern Catalog, DTO

[3] Eric Gamma. Design Patterns, Elements of

Reusable Object-Oriented Software. Addison-

Wesley Publishing Company., 1995.

[4] Mark Grand. Patterns in Java. John Wiley & Sons

Inc., 1998.

