
 INTERNATIONAL DOCTORAL SEMINAR 2013, May 13-15, 2013, Dubrovnik, Croatia

1

BUSINESS APPLICATIONS ARCHITECTURE MODEL
BASED ON SOFTWARE PRODUCT LINE APPROACH

Zdravko Roško

Adriacom Software Inc., Stablinac 4/58, Vodice, Croatia
zrosko@gmail.com

ABSTRACT

Software product line architecture is one of the most important artifacts defined at the early
stage of a product line development process. Since the rest of the products are developed
based on the initial product line architecture, it is of high importance to ensure the
architecture stability by enabling the software’s evolution possibilities. Industrial evidence
shows that companies spend more resources on maintaining and evolving their
architecture and products than on the initial development of them. Hence, there is a need
for flexible software architecture that stays stable as the requirements evolve. In this paper
we propose a structural model, some architecture quality metrics, case-based reasoning
methodology to predict the architectural stability and a feature model for business
applications. The goal of the proposed architecture model is to develop a framework for
business applications development and evaluating the stability of product line architectures
in the face of changes in requirements.

Key words: Software product lines, feature model, architecture, case-based reasoning, metrics

INTRODUCTION TO THE PROBLEM

Software reuse is the process of creating software applications from existing artifacts
rather than building them from the scratch. Effective reuse requires a strategic vision that
reflects the unique power and requirements of this technique [1]. There are many software
engineering technologies that involve some form of software reuse such as: application
frameworks, design patterns, components, application generators, etc. Many organizations
employ these technologies, and many are ready to take the next step towards more
effective reuse of software.
Software product lines (SPL), in which; requirements, architecture, modeling and analysis,
components, test cases, test data, test plans, documentation templates, and other
software engineering artifacts, can be reused over a number of applications, is at the
moment the most promising form of the software reuse [2]. SPL is defined as a set of
software-intensive systems, sharing a common, managed set of features that satisfy the
specific needs of a particular market segment or mission and that are developed from a
common set of core assets in a prescribed way [3]. SPL development process consists of
domain engineering process, (core assets development for reuse) and application
engineering process (product development with reuse) that builds the final products, where
construction of the reusable assets and their variability is separated from production of the
product-line applications. SPL is mostly used by organizations that develop software for

 INTERNATIONAL DOCTORAL SEMINAR 2013, May 13-15, 2013, Dubrovnik, Croatia

2

mobile phones, cars, electronic instruments, while information systems domain is not often
considered as a potential base for developing SPL. Successful product lines have enabled
organizations to capitalize on systematic reuse to achieve business goals and desired
software benefits such as productivity gains, decreased development costs, improved time
to market, higher reliability, and competitive advantage [4]. Considering the costs, as
stated by [5] SPL offer benefits when producing at least a certain number of products.
Figure 1 (partially taken from [5]) illustrates the costs and distinct stages of producing one
versus multiple products from the same product line. The solid line sketches the costs of
developing the products independently, while the dashed line sketches the costs of
developing the products using software product line engineering approach [6]. The figure
shows the case when less then four products are spawned from the same product line,
where the price of product line engineering is relatively high, and the case whereas it is
significantly lower for larger quantities of products being spawned from the sample product
line [6]. There is a break-even point, we call it „SPL early stage end“ at which the two lines
intersect. It indicates that the costs are the same for both cases. As referred in [5] recent
empirical experiences have shown that this break-even point is located at around 3 or 4
systems in the particular case of software engineering.

1

2

3

4

5

6

Effort

1 2 3 4 5 6
Number of

products

Single product

Product line

Lower costs

per product

SPL

Early

stage

end

SPL

Early

stage

start

Figure 1. Costs of a SPL development

Business applications are a kind of software that is used by business users to perform
various business functions. Most of the business applications are interactive, they interact
with a user through a user interface in order to read, process or change some persistent
business data. The SPL for interactive applications defines, product line requirements, a
software architecture and a set of reusable components. The existing frameworks such as
Spring may sound like a solution for the problem, however it does not impose any specific
programming model, it does not address all possible interfaces needed and it may lack a
certain up to date features. Hence, making a product line architecture dependent on
externally developed artifacts with not enough power to replace or change some of the key
architecture features, is not a solution. One of the most important parts of a SPL is its
architecture (PLA). The PLA plays a central role at the development of products from a
SPL as it is the abstraction of the products that can be generated, and represents
similarities and variabilities of a product line [7]. The PLA must consider the needs of the
complete set of products in order to provide a framework for the development and reuse of

 INTERNATIONAL DOCTORAL SEMINAR 2013, May 13-15, 2013, Dubrovnik, Croatia

3

new assets. These new assets have to be conceived with the required flexibility in order to
satisfy the needs of the different products in the SPL [6]. PLA consist of frameworks
(Szyperski., 2002) as core assets, whose design captures recurring structures,
connectors, and control flow in an application domain, along with the points of variation
explicitly allowed among these entities [7]. In this paper we use the term „SPL platform
framework“ to represent the implementation of the generic architecture and components
which are not business-specific but rather generic in the sense that they can be used by
more than one business domain such as: banking, insurance, manufacturing, and etc. We
propose a business application architecture model which includes:

 Business applications entities structural model

 Feature model for business applications

 Some „SPL Platform Framework Responsibility“ metrics for SPL stability

 Case-based reasoning methodology used to predict the architectural stability

BUSINESS APPLICATIONS ENTITIES STRUCTURAL MODEL

Today's interactive business applications consist of the three logical layers which have a
distinct and specific responsibility: presentation, business logic and data access logic.
Presentation layer's function is an interaction with the application's users which includes:
various rendering of the data, data edits, data validation and formatting, data inter-
dependency checks, and other user initiated actions. Business logic layer function is to
process data entered by a user and/or data retrieved from the persistence data source.
Business logic should stay free from dependencies on various data sources and let the
variability mechanism of SPL to choose among different data sources. Data access logic
layer function is to handle all interactions with the persistent data sources. The layered
model does not imply that each layer should be in a separate address space, even thought
in today’s business application‘s environment the most of the time a three-tier model is
used. Control and data can flow in both directions in layered systems. However, lower
layers must not depend on functions provided by higher layers. Such a design avoids
accidental structural complexity, and supports the use of lower layers in other applications
independently of the higher layers [8]. Table 1 shows that business domain specific
components shared among different products spawned from the same product line are not
a part of the SPL platform framework, but rather are part of the business-specific
components but still belong to the domain engineering process.

Prod 1 Prod 2 Prod 3 Prod 4

Business-specific components

SPL Platform Framework (common services)

External Components

OS/Language Environment

Table 1. Proposed PLA structure

 INTERNATIONAL DOCTORAL SEMINAR 2013, May 13-15, 2013, Dubrovnik, Croatia

4

The structural model is the framework through which components, attributes, and inter-
relationships within the system are expressed [9]. The structural model enforces a
consistency in the business applications structure by a set of constraints (e.g., the way a
data is passed between layers, organization of the source code, the relationship between
the source code pieces). The Figure 2 shows the structural model for business
applications we propose. The proposed model specifies: the kind of entities that will exist
in the design (how do we package the entities), how the real world product (application) is
mapped to the software entities (what is in a package) and the dependencies between the
entities (how do packages relate to each another). Given a fact that most of the business
applications are composed from a client part, which may be run in a separate address
space, and a server part which may be run within an application server on the other
address space, we assume that some of the software assets are shared between the two.
Client resources include the entities which are used by client part of an application while
server resources include the entities used by server part of an application. Shared
resources are the entities which are shared by client and server parts of an application.
This structure does not impose a separation of client and server to the two separate
address spaces, but indeed represent a variation point which can be used to compose an
application as a one part to be run in one address space or as a two separate parts to be
run in two distinct address spaces. The Figure 2 shows 13 distinct dependency
relationships among different SPL structural entities. As we will show later some of them
will be used as elements of the new proposed metric for stability of SPL platform
framework.

PRODUCT PLATFORM

CLIE
NT

SHARED

SERVER

ENVIRONMENT

COMPONENTS

EXTERNAL

COMPONENTS

1 234

6

5

7

8

9
10

11

12
13

C

L

I

E

N

T

P

A

R

T

S

E

R

V

E

R

P

A

R

T

Uses

Inherits

Platform

Server

Client

Figure 2. Proposed structural model and dependencies

FEATURE MODEL FOR BUSINESS APPLICATIONS

Features are important distinguishing aspects, qualities, or characteristics of a family of
systems [10]. Features are use to depict the shared structure and behaviour of a set of
similar products. Feature model for business applications is used for representing the
possible configuration space of all the products of a product line in terms of its features.
Business applications feature model is composed from the client and server models.

 INTERNATIONAL DOCTORAL SEMINAR 2013, May 13-15, 2013, Dubrovnik, Croatia

5

Feature model for client (Figure 3) captures variability and commonality between the
features of the different products available in a given domain.

Figure 3. Client feature model

Figure 4 shows server feature model. Not all possible configurations of the server features
produce a valid server part of an application. For instance, a configuration of server part of
an application that uses EJB as a type of business objects cannot use a non EJB
transaction feature. Such restrictions are expressed in the form of integrity constraints. An
example of these constraints is: Business Object EJB EXCLUDES XYZ Transaction.
These constraints ensure the correct composition of product features in the various final
business applications developed from this feature model.

Figure 4. Server feature model

PLATFORM FRAMEWORK RESPONSIBILITY METRICS

Software metrics to measure quality attributes of an architecture such as “Design Quality”
metrics [11], metrics to measure structural soundness of product line architecture [12],
PLA metrics [13], and complexity metrics for software product line architectures [7] do not
address the quality of SPL platform framework responsibility. Within the context of SPL for
business applications which is based on generic components, early indicators of the
software product line architecture (PLA) quality attributes can be used in order to avoid
low-quality products during the later stages of product development [14]. We propose a
„SPL Platform Framework Responsibility“ metrics which can be used as an early indicator
of the future product's quality. A platform framework, is a group of components and
services that provide a coherent set of functionalities through inheritance, interfaces and
specific design patterns. The application development process should be concerned with

 INTERNATIONAL DOCTORAL SEMINAR 2013, May 13-15, 2013, Dubrovnik, Croatia

6

the business requirements rather than with the low level APIs or external component's
interaction rules. Platform framework needs to ensure the application development
process independence by taking the responsibility to interact with external third-party
components. By external components we refer to a non-development components
developed by a third party organizations and used by the SPL platform framework or by a
products spawned from it, illustrated in Figure 5. Referencing an external component
directly from a business application product, makes the product less stable and harder to
develop or change. The more external components a product relies on, the larger the
likelihood to misunderstand or misuse some of these services. Therefore, the product is
more difficult to understand and develop, and thus likely to be more fault-prone. The
product line platform framework should take as much as possible of the responsibility to
interact with external components. We propose a five simple and intuitive architectural
metrics as a measurement for SPL platform framework quality based on architectural
elements dependency [14].

1

Used Dependency

Environment

(rt.jar)

External

Components

SPL Products

SPL Platform

2

3

4 51

2

n

Not used

Figure 5. SPL Platform Framework Metrics

As illustrated in Figure 5 there are 5 distinct high level dependency metrics of an SPL for
business applications. SPL platform depends on its environment such as Java or .NET
and on a number of external third-party components, while SPL products depend on its
platform framework its environment and on a third-party external components. The
proposed „SPL Platform Responsibility“ metric use the three dependencies metrics (Figure
5): D3: „Platform Afferent Coupling“ - the number of distinct references outside the
platform that depend upon classes within the platform, D4: „Product Efferent Coupling“ -
the number of distinct references inside the product that depend upon classes within
environment components (e.g. Java RTE), D5: „Product Efferent Coupling“ - the number of
distinct references inside the product that depend upon classes within external
components. We can calculate the Platform Responsibility (PR) for a product line platform
framework through the following equation:

The PR can be calculated for each product or for all of products spawned from the product
line. PR = (D4+D5) / (D3+D4+D5): The range for this metric is from 0 to 1, where PR=0
indicates that SPL platform used by product makes the product more stable and protected
from frequent changes to the external third party components, while the SPL platform
serves the product by taking the responsibility to interact with external components. PR=1

 INTERNATIONAL DOCTORAL SEMINAR 2013, May 13-15, 2013, Dubrovnik, Croatia

7

indicates a completely irresponsible SPL platform.Table 4 shows the calculation of the PR
for three products (P1, P2, P3).

 D3 D4 D5 PR

P1 4 3 3 0,60

P2 4 3 0 0,43

P3 4 0 0 0,00

Total 12 6 3 0,43

Table 2. Multiple product PR calculation

The proposed metrics may be analyzed within the framework of measurement theory such
as the Distance framework [15] and framework based on desirable properties which
serves guidance provided to define proper measures for specific problem [16].

CASE-BASED REASONING USED TO PREDICT THE STABILITY

Predicting product design stability of software product lines for business applications, i.e.,
the ease with which a product evolves while it's design remains stable, can be used in
order to plan product maintenance activities during the later stages of product's existence.
A well designed product spawned from a software product line inherits most of the
characteristics from the SPL platform framework but it also shares many similarities
between other products. Product stability is a complex measure and its prediction is of
high importance for any software maintenance planning. We propose an approach that
uses the case-based reasoning (CBR) and k-nearest neighbour (k-NN) technique to
predict the product stability. The application engineering process that uses and apply the
stability prediction will help ensure that final product's maintenance is planned by using
the most closest and similar cases from the historical case-library. Since there is a lack of
knowledge about software evolution, we believe that CBR is an appropriate approach to
the business application stability prediction problem. We hypothesize that two products
(business applications) which show same or similar characteristics will also evolve in a
similar way. Case repository for applications and its versions needs to have an appropriate
structure which will enable the stability prediction. We propose to use the dependencies
metrics explained earlier and a set of structural software metrics. Each metrics may be
assigned a weight calculated by assigning the importance factor to each metric.

CONCLUSION

In this paper we propose some parts of an architecture model for software product lines in
the field of information systems. We propose an entities structural model, feature model for
business applications, a new metrics for measuring the „responsibility“ of a common
platform framework and a case-based reasoning approach for predicting the stability of an
architecture. Our future research is directed at the design of a complete architecture model
based on a case study to help reduce the effort to maintain business applications.

 INTERNATIONAL DOCTORAL SEMINAR 2013, May 13-15, 2013, Dubrovnik, Croatia

8

REFERENCES

[1] I. The Institute of Electrical and Electronics Engineers, „Guide to the Software Engineering

Body of Knowledge,“ p. 120, 2004.

[2] Z. Roško, „Strategy Pattern as a Variability Enabling Mechanism in Product Line

Architecture,“ 2012.

[3] L. N. Paul Clements, Software Product Lines: Practices and Patterns, 3 ed., Westford, MA:

Addison-Wesley Professional, 2001, p. 608.

[4] V. S. S. P. Kyo C. Kang, „Applied Software Product Line Engeenering,“ Taylor and Francis

Group, p. 6, 2011.

[5] G. B. a. F. J. v. d. L. Klaus Pohl, „Software Product Line Engineering:Foundations, Principles

and Techniques,“ Springer-Verlag, pp. 12, 14, 15, 46, 62, 156, 157, 2005.

[6] C. Parra, „Towards Dynamic Software Product Lines: Unifying Design and Runtime

Adaptations,“ 2011.

[7] I. M. G. J. C. M. Edson A Oliveira Junior, „Empirical Validation of Variability-based

Complexity Metrics for Software Product Line Architecture,“ 2001.

[8] K. H. D. c. S. Frank Buschmann, „Pattern-Oriented Software Architecture,“ zv. 4, p. 187,

2007.

[9] J. Robert G. Crispen and Lynn D. Stuckey, „STRUCTURAL MODEL: Architecture for

Software Designers,“ 1994.

[10] K. K. K. &. L. J. Lee, „Concepts and guidelines of feature modeling for product line software

engineering,“ Lecture Notes in Computer Science, pp. 62,77, 2002.

[11] R. Martin, „OO design quality metrics. An analysis of dependencies.,“ 1994.

[12] A. Rahman, „Metrics for the Structural Assessment of Product Line Architecture,“ 2004.

[13] N. M. a. A. v. d. H. Ebru Dincel, „Measuring Product Line Architectures,“ Software Product-

Family Engineering, pp. 151-170, 2002.

[14] Z. Roško, „Assessing the Responsibility of Software Product Line Platform Framework for

Business Applications,“ CECIIS, 2013.

[15] G. a. G. D. ". a. f. f. s. m. c. D. R. R. 9. (. 1.-4. Poels, „DISTANCE: a framework for software

measure construction,“ DTEW Research Report 9937, pp. 1-47, 1999.

[16] L. C. S. M. a. V. R. B. Briand, „Property-based software engineering measurement,“ Software

Engineering, IEEE Transactions on 22.1, pp. 68-86, 1996.

[17] „An Industrial Case Study of Product Family Development Using a Component Framework“.

[18] K. S. E. R. Frank van der Linden, „Software product lines in action, the best industrial practice

in product line engineering,“ Springer, p. 8, 2010.

[19] D. G. Ebrahim Bagheri, „Assessing the maintainability of software product line feature models

using structural metrics,“ 2011.

