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Abstract-- This paper presents fault location recognition in 
transmission power system using artificial neural network 
(ANN). Single phase short circuit on 110 kV transmission line fed 
from both ends was analysed with various fault impedances, 
since it is the most common fault in power system. Load flow and 
short circuit calculations were performed with EMTP-RV 
software. Calculation results including currents and voltages at 
both line ends were used for training ANN in Matlab in order to 
obtain correct fault location and fault impedance, even for those 
cases that ANN has never encountered before. The network was 
trained with back propagation algorithm. Test results show that 
this approach provides robust and accurate location of faults for 
a variety of power system operating conditions and gives an 
accurate fault impedance assessment. 
Keywords: Fault Location, Transmission Lines, Feed Forward 
Neural Network, Artificial Neural Network 

I. INTRODUCTION 

A transmission line is an important component of the 
electric power system and its protection is necessary for 
ensuring system stability and to minimize damage to 
equipment due to short circuits that may occur on 
transmission lines. Short circuit currents cause mechanical and 
thermal stresses that are potentially damaging for high voltage 
equipment.  

Transmission-line relaying involves three major tasks: 
detection, classification and location of transmission line 
faults. Fast detection of transmission line fault enables quick 
isolation of the faulty line from service and, hence, protecting 
it from the harmful effects of the fault. Accurate fault location 
is necessary for facilitating quick repair and restoration of the 
faulty line in order to improve reliability and availability of 
the power supply. By accurately locating a fault, the amount 
of time spent by line repair crews in searching for the fault can 
be kept at a minimum. 

However, the identification of the faults is not always an 
easy task. If a fault occurs, it should be isolated as quickly as 
possible to preserve the stability of the rest of the system. 
Protective relays for transmission lines normally use voltage 
and current input signals in order to detect, classify and locate 
faults in a protected line. In the case of a fault the relay will 
send a trip signal to a circuit breaker in order to disconnect the 
faulted line. In an interconnected system the rest of the 

network can then continue working normally or at least under 
close to normal conditions. 

Different types of algorithms for finding fault location on 
transmission lines have been developed and proposed over the 
years. These algorithms may be broadly classified as follows: 
a) computing power frequency current and voltage phasors to
find impedance and hence the fault location, 
b) using line differential equations and estimating line
parameters, 
c) travelling waves which uses one or two terminal data.

Some protection relays can have problems with detection of
fault location due to high fault impedance and DC offset in 
short circuit current. Travelling wave approach has problems 
with fault detection very close to the substations and if fault 
inception angle is near to zero (or at zero crossing). 

One of the tools recently introduced into power system 
protection is Artificial Neural Networks (ANN). ANN [1] is 
powerful in pattern recognition, classification, generalization 
and it is useful for power system applications because it can 
be trained with off-line data [2]-[5]. ANN also has excellent 
features such as noise immunity, robustness and fault 
tolerance. This paper describes the application of ANN for 
fault location recognition in transmission power system. 

II. POWER SYSTEM MODEL

The data used to train the ANN learning algorithms 
consisted of calculated currents and voltages at both line ends. 
A small part of Croatian transmission system which consists 
of a single-circuit 110 kV transmission line connecting two 
substations was analyzed in this paper. A model shown in 
Fig. 1 used for load flow and short circuit calculation was 
developed using EMTP-RV software [6] in order to obtain the 
mentioned voltage and current values.  

The 110 kV transmission line is 60 km long, equipped with 
single ground wire and it transmits power from substation 1 to 
substation 2. The position of conductors at towers is shown in 
Table I and characteristics of conductors are shown in Table II. 

Constant distributed parameter transmission line model was 
used in EMTP-RV. Skin effect was taken into account in 
calculations. Ground return resistivity was assumed 250 �m. 
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Fig. 1.  Model for load flow and short circuit calculation in EMTP-RV software 

TABLE I 

Position of conductors at towers and midspan 

Conductors 
Horizontal 

position 
(m) 

Vertical height 
at tower 

(m) 

Vertical heigth 
at midspan 

(m) 

Phase A 3.8 28.8 10 

Phase B -3.3 32.6 12.2 

Phase C 2.8 28.8 14.4 

Ground wire 0 37.7 20.778 

TABLE II 

Characteristics of conductors 

Conductors 
Phase 

conductors 
Ground 
wires 

Cross section 
(mm2) 

240 120 

External diameter 
(mm) 

31 22 

DC resistance 
(Ω/km) 

0.119 2.85 

Parameters of equivalent network were calculated from short 
circuit currents by using the following expressions [7]: 

33 sc
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where: 
Isc1, Isc3 – single-phase and three-phase short circuit currents; 
Un – rated voltage;  
c – factor =1.1. 

Substations were modelled with voltage sources behind 
Thevenin equivalent [8].  

Fig. 2.  Thevenin equivalent 

Thevenin impedance was calculated by using the following 
expression:  
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Thevenin impedance is coupled RL-branch with an impedance 
matrix given by the series connection of R and L. The matrices 
[ ]THR  and [ ]THL  can be entered directly or using sequence

data. The power variant Fortescue transformation matrix [ ]A  
is used in EMTP-RV to calculate the full matrices from 
sequence components.  
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Sequence data (zero and positive resistance and reactance) 
are shown in Table III. Large numbers of training data have 
been generated using EMTP-RV, considering fault at 0 km, 10 
km, 20 km, 30 km, 40 km, 50 km and 60 km of the line. Each 
short circuit was calculated for fault resistances of 0 �, 10 �, 
25 � and 50 �. Also different power flow conditions were 
taken into account. 
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TABLE III 

Calculated sequence data for susbstation 1 and 2 

Substation 
no. 

Positive 
sequence 
data (�) 

Zero 
sequence 
data (�) 

Rd Xd R0 X0 
1 5.12 14.96 7.30 27.09 
2 7.74 29.72 6.24 31.75 

In the first step the load flow calculations were performed 
by varying active (0 - 100 MW) and reactive power (10 - 
30 MVAr). The results of three-phase load flow calculations 
(voltages at the beginning and at the end of line before the 
fault occurrence) are used as input parameters for the 
calculation of short circuit.  

For each fault resistance and power flow condition 7 short 
circuits on different locations were simulated according to 
Table IV.  

TABLE IV 

Simulation fault location and timings data 
Fault location 

(km) 
0 10 20 30 40 50 60 

Beginning of 
the fault (ms) 

0 160 320 480 640 800 960 

End of the fault 
(ms) 

100 260 420 580 740 900 1060 

The first harmonic of the instantaneous value of the current 
and voltage were converted to polar coordinates representing 
amplitude and angle of the phasor in a rotating reference 
frame. Polar coordinates in stationary state of the fault were 
used as input data for ANN. 

Figures 3 - 6 show calculation results in case of single 
phase short circuit in phase A with a fault resistance 10 �. 
Power flow of 100 MW and 30 MVAr was analyzed. 
Occurrence of short circuit on each location is shown. 

����

����� ����� ����� 	����

����

�����

Fig. 3.  Voltage phasor amplitudes  

Fig. 4.  Voltage phasor angles 

Fig. 5.  Current phasor amplitudes 

Fig. 6.  Current phasor angles 

III. ANN MODEL

Feedforward networks [1] often have one or more hidden 
layers of sigmoid neurons followed by an output layer of 
linear neurons. Multiple layers of neurons with nonlinear 
transfer functions allow the network to learn nonlinear 
relationships between input and output vectors. The linear 
output layer is most often used for function fitting (or 
nonlinear regression) problems. In this paper the ANN uses 
back propagation learning algorithm (BP) and the gradient 
descending method to minimize the error. For optimization of 
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the training method architecture based on the Levenberg–
Marquardt (Trainlm) optimization technique was selected. 
Selection of number of hidden neurons in BP network is 
difficult to determine. Prediction accuracy of BP network 
increases with the number of hidden neurons. If the number of 
neurons in hidden layer is small, the network cannot learn 
very well and training accuracy gets affected as well. If the 
number of neurons is large, training time increases and the 
network leads to fitting ineffectively. The structure of BP 
ANN is shown in Fig. 7. The model of BP ANN is shown in 
Fig. 8. 

Fig. 7.  The structure of BP ANN 

Fig. 8.  The model of BP ANN 

IV. TRAINING AND TESTING OF ANN FOR FAULT
LOCATION 

The Neural Network Toolbox, a part of Matlab software 
was used to set up the ANN topologies, train them and obtain 
the appropriate weights. Results gained from EMTP-RV 
simulations were used as an input vectors for ANN.  

A. Training ANN 

Inputs were divided into three parts: one used for training 
(called training set consisting of 80% of data), one for 
validating (called validation set consisting of 10% of data), 
and one for testing (called testing set consisting of 10% of 
data). The training data and validation data set were randomly 
fed to the ANN.   

In the first layer of the network, the net input is a product of 
the input times the weight plus the bias. If the input is very 
large, then the weight must be very small in order to prevent 
the transfer function from becoming saturated. It is standard 
practice to normalize the inputs before applying them to the 
network. Generally, the normalization step is applied to both 
the input vectors and the target vectors in the data set. In this 
way, the network output always falls into a normalized range. 
The network output can then be reverse transformed back into 
the units of the original target data when the network is put to 
use in the field. Most of the network creation functions in the 
toolbox, including the multilayer network creation functions, 

such as feedforwardnet, automatically assign processing 
functions to network inputs and outputs. These functions 
transform the input and target values which are provided into 
values that are better suited for network training. 
Preprocessing and postprocessing in this case was done 
automatically. 

The ANN was formed as shown on Fig. 8 and fed with a set 
of 112 input vectors. Every vector consists of 24 elements 
containing amplitudes and angles of current and voltage 
phasors at both line ends. Target data set consists of 112 
vectors containing fault location and fault impedance. The 
number of hidden neurons was determined experimentally and 
was set to 3. The training performance is shown on Fig. 9. 
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Fig. 9.  The training performance 

Fig. 9 shows the decreasing of Mean Squared Error (MSE) 
over time. After the best validation performance is reached the 
network is trained. 

As a result of training an error histogram is generated 
showing the difference between target and output data (Fig. 
10). The blue bars represent training data, the green bars 
represent validation data and the red bars represent testing 
data. The histogram can give an indication of outliers, which 
are data points where the fit is significantly worse than the 
majority of data. 
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B. Testing the ANN 

Testing was conducted with 24 data sets (vectors) which 
were different than the data used for training. That included 
different fault locations, power flow conditions and fault 
resistance values. Results of ANN testing are shown in 
Tables V and VI where:  

FLTest - fault location used for testing of ANN;  
FLANN - result of ANN fault locator;  
FRTest - fault resistance used for testing of ANN; 
FRANN - result of fault resistance estimated by ANN. 

TABLE V 

ANN testing results - fault location 

Load flow condition FLTest 
(km) 

FLANN 
(km) 

ErrorFL

(%) 
ErrorFLT

(%) 

0 
5 6.065 21.30 1.77 
5 4.345 13.10 1.09 

73 MW, 24 MVAr 5 4.004 19.92 1.66 
90 MW, 27 MVAr 5 6.243 24.86 2.07 

0 
15 16.270 8.47 2.12 
15 14.323 4.51 1.13 

73 MW, 24 MVAr 15 15.537 3.58 0.90 
90 MW, 27 MVAr 15 18.014 20.09 5.02 

0 
25 24.705 1.18 0.49 
25 24.459 2.16 0.90 

73 MW, 24 MVAr 25 25.799 3.20 1.33 
90 MW, 27 MVAr 25 28.193 12.77 5.32 

0 
35 34.561 1.25 0.73 
35 34.280 2.06 1.20 

73 MW, 24 MVAr 35 36.083 3.09 1.80 
90 MW, 27 MVAr 35 37.065 5.90 3.44 

0 
45 45.046 0.10 0.08 
45 45.516 1.15 0.86 

73 MW, 24 MVAr 45 45.903 2.01 1.50 
90 MW, 27 MVAr 45 46.044 2.32 1.74 

0 
55 55.142 0.26 0.24 
55 56.080 1.96 1.80 

73 MW, 24 MVAr 55 55.771 1.40 1.29 
90 MW, 27 MVAr 55 53.877 2.04 1.87 

The percentage error of fault locating was calculated by 
using the following expression: 

100(%) ⋅
−

=

Test

TestANN
FL FL

FLFL
Error  (5) 

The maximum percentage error of ANN fault locating was 
less than 25 %.

 The percentage error of fault locating with regard to line 
length d was calculated by using the following expression: 

100(%) ⋅
−

=
d

FLFL
Error TestANN

FLT   (6) 

Maximum percentage error of fault locating with regard to 
line length was less than 6 %. 

TABLE VI 

ANN testing results - fault resistance 

Load flow condition FRTest 
(�) 

FRANN 
(�) 

ErrorFR

(%) 

0 
7 8.491 21.30 

33 33.060 0.18 
73 MW, 24 MVAr 40 40.363 0.91 
90 MW, 27 MVAr 60 57.078 4.87 

0 
7 6.861 1.98 

33 32.668 1.01 
73 MW, 24 MVAr 40 40.685 1.71 
90 MW, 27 MVAr 60 57.616 3.97 

0 
7 6.231 10.99 

33 33.986 2.99 
73 MW, 24 MVAr 40 40.067 0.17 
90 MW, 27 MVAr 60 58.326 2.79 

0 
7 6.074 13.23 

33 33.643 1.95 
73 MW, 24 MVAr 40 41.234 3.09 
90 MW, 27 MVAr 60 58.650 2.25 

0 
7 6.662 4.84 

33 33.336 1.02 
73 MW, 24 MVAr 40 40.911 2.28 
90 MW, 27 MVAr 60 57.996 3.34 

0 
7 7.550 7.86 

33 32.775 0.68 
73 MW, 24 MVAr 40 41.070 2.67 
90 MW, 27 MVAr 60 55.830 6.95 

 Maximum percentage error of the fault resistance 
estimation was calculated by using the following expression: 

100(%) ⋅
−

=

Test

TestANN
FR FR

FRFR
Error  (7)

The maximum error of ANN fault resistance estimation 
was lower than 22 % occurring in case of low resistance faults. 
In majority of cases the percentage error of fault locating and 
fault resistance estimation was less than 10 %. 

V. CONCLUSIONS 

This paper describes the application of ANN for fault 
location and fault resistance estimation in transmission power 
system, in case when limited amount on input data is used for 
ANN training. A power system model for load flow and short 
circuit calculations was developed in EMTP-RV software. 
Voltage and current values at the both line ends obtained from 
different fault conditions were used as an input vectors for 
ANN training. Different fault locations, power flow 
conditions and fault resistance values were analyzed. The 
ANN with back propagation learning algorithm (BP) was 
applied.  

In majority of cases the percentage error of fault locating 
and fault resistance estimation was less than 10 %. Mean 
value of percentage error of fault location estimation was 
equal to 6.6 %. Mean value of fault resistance percentage error 
was equal to 4.3 %. Test results show that this approach 
provides robust and accurate location of faults for different 
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power system operating conditions and gives an accurate fault 
resistance assessment, even when using simple ANN 
architecture. Estimation of fault location calculated by ANN 
can be valuable information to maintenance and repair crews 
as an additional information.  
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