The international Symposium on Graphic Arts brings together researchers, specialists and students to share knowledge in printing technologies, materials, methods and processes.

17th to 18th June 2013
Pardubice, the Czech Republic

Department of Graphic Arts and Photophysics
Faculty of Chemical Technology
University of Pardubice
XIth Symposium on Graphic Arts, Conference Proceedings

University of Pardubice, Department of Graphic Arts and Photophysics, 2013

*Texts were not corrected*
Content

Lecture Presentations

The Application of Polyaniline Dispersions by Means of Screen Printing
Marketa Drzková1, Nikola Pefinka1, Milena Hajn2, Marie Kaplanová1, Jaroslav Stejskal1..........................7

Inkjet printing of tungsten sol-gel ink
Tjasa Vidmar1, Ursha Opara Krasovec1, Petr Dzik1, Marko Toplic1 .............................................................8

Behaviour of Printed Electroluminescent Panel in Accordance to the Order of Layers
Kristiin Petru1, Tomaz Syrov1, Petr Nemec1.................................................................................................14

Photoactivity of Nano-oxide Layers of Screen Printed DSSC on Glass and PET Foils
Milan Mikula, Pavol Gemeiner, Vladimir Drvonka, Peter Gabovic1 ................................................................15

Creativity and interactive solutions in the graphic communications
Szentgyorgyvolgyi R.1, Horvath C.1, Kovacs G.1 .........................................................................................21

Study on the design, production and interactivity of pop-up books
Piroska Prokai, Csaba Horvath, Rebeka Bettina Voross ............................................................................30

Lean and green printing … the new attitude of printers
Csaba Horvath, Rozalia Szentgyorgyvolgyi, Akos Borbely ........................................................................37

Efficient paper recycling
Diana Gregor-Svetec, Klemen Mozina, Barbara Blaznik, Raša Urbas, Urška Vrabič Brodnjak, Gorazd Golob ......44

Printing substrate as a quality parameter in flexography
Jelena Poljak, Tomislav Hudika, Sanja Mahovic Poljaček, Miroslav Gojo .........................................................52

Dependence of Binder and Photocatalyst in Photocatalytically Active Printing Ink
Andreja Pondelak1, A. Sever Škapin2, M. Klanšek Gunde3, O. Panák1, M. Kaplanová1 ........................................53

Modification of flexographic printing plates surface properties by variation of UVC finishing
Tamara Tomasegovic1, Sanja Mahovic Poljaček1, Tomislav Cigula1 ...............................................................59

Comparative Study of the Physical Properties of Hybrid and UV Offset Inks
Bohumil Jasek, Helena Odstrcilova, Jan Valish ...............................................................................................60

Dot shape and legibility analysis of multilayer UV ink-jet printed Braille text
Gorazd Golob1, Diana Gregor Svetec1, Raša Urbas1, Bojan Rotar1, Nevenka Jereb1, Volodymyr Mayik2, Taras Dudok2 ..........................................................61

An influence of accelerated ageing on distinctness of image for coated offset prints
Ivana Tomic1, Igor Karlovic1, Ivana Juric1, Rozalia Szentgyorgyvolgyi2 .........................................................68

Weather resistance of inkjet prints on plastic substrates
Akos Borbely, Rozalia Szentgyorgyvolgyi ......................................................................................................74

A study of varnish influence on inkjet printing lightfastness
Eva Stepanková, Michal Vesely, Petr Dzik ........................................................................................................75

Changes of Gamut Volume during long-term tests
Silvia Kacervova, Michal Vesely, Petr Dzik, Eva Stepankova ........................................................................80

Differences in screen printed letter shapes and stem widths on various textile materials
Bojan B., Nedeljkovic1 ..................................................................................................................................86

Influence of the tone value of types on character formation and optical character recognition accuracy
Igor Karlovic1, Ivana Tomic1, Ivana Juric1 ......................................................................................................92

Prediction of RGB camera values by means of artificial neural networks
Miha Lazar1, Aleš Hladnik1, Dejana Javorsek1, Tim Jerman1 .........................................................................93
Poster Presentations

Removal of Copper Ions Present in Waste Offset Printing Developer by Electrocoagulation–Electrofloation Process
Saška Adamović, Miljana Prica, Božo Dalmacija, Ljiljana Rajić, Dragšan Adamović .......................... 97

The study of modern writing means on documents with spectroscopic methods
Eva Belányiová, Milena Reháková, Michal Čeppan, Adriana Jabconová ........................................... 102

Analysis of Laser and Inkjet Prints Using Spectroscopic Methods for Forensic Identification of Questioned Documents
Lukaš Gál, Michaela Belovičová, Michal Oravec, Miroslava Palková, Michal Čeppan .......................... 103

Structural, optical and thermal properties of benzofluoran-based thermochromic composite
Metka Hajzeri, Nika Vatič, Ondrej Panák, Marie Kaplanová, Marta Klanišek Gunde .......................... 109

Optimizing a selection of printing press for label production
Hamrelinski Jacek, Pyr’yev Yuriy ........................................................................................................ 115

Study of printability of new types of coated printing paper made from 100% recycled fibres
Stefan Jakucevicz, Jan Panák, Karol Henryk Dreszer ................................................................. 116

Influence of surface properties of ink jet papers on print sharpness
Ivana Jurič, Igor Karlović, Ivana Tomić .......................................................................................... 121

Analysis of change in surface roughness of samples printed using screen printing with variable mesh type
Nemanja Kašiković, Gojko Vladić, Rastko Milošević, Dragoljub Novaković, Mladen Stančić ........... 127

Pharmaceutical Packaging and ID Cards with Printed Antennas of RFID Tags
Urška Kavčič, Miloje Đokić, Marijan Maček, Vasa Radonić and Tadeja Muck ................................. 133

Influence of the scanning resolution on image segmentation accuracy for an objective fold cracking evaluation
Magdolna Pál, Dragoljub Novaković, Živoš Pašo, Sandra Dedijer .................................................... 138

Influence of high grades paper properties on
Adhesive Binding Strength in a humid condition
Suzana Pasanec Preprotić, Maja Jakovljević .................................................................................. 144

Influence of the pad printing plate printing element depth on the quality of the printed product
Živoš Pašo, Sandra Dedijer, Magdolna Pál, Tomislav Cigula .......................................................... 151

Typeface Persona: A Review Study
Irma Puškarević, Uroš Nedeljković, Ivan Pintjer ......................................................................... 156

Analysis of changes in paper cutting forces during the cutting cycle in single-knife guillotine
Rusin Agnieszka, Petraszvili Georgij ............................................................................................... 161

Effect of concentration of iron-arene photoinitiator on its migration from cured polymer film
Ondřej Školka, Bohumil Jaššírek, Petr Němec ............................................................................. 165

Scientific committee:
Michal Čeppan, Slovak University of Technology in Bratislava (SK)
Aleš Hladnik, University of Ljubljana (SI)
Csaba Horváth, Óbuda University (HU)
Marie Kaplanová, University of Pardubice (CZ)
Igor Karlović, University of Novo Sad (RS)
Marta Klanišek Gunde, National Institute of Chemistry Slovenia (SI)
Mladen Lovreček, IARIGAI (HR)
Virginie Nazabal, University of Rennes/University of Pardubice (FR/CZ)
Petr Němec, University of Pardubice (CZ)
Michal Veselý, Brno University of Technology (CZ)
Influence of high grades paper properties on Adhesive Binding Strength in a humid condition

Suzana Pasanec Preprotić, Maja Jakovljević
Faculty of Graphic Arts, The University of Zagreb, HR - 10000 Zagreb

Abstract: Class book, pocket book, annual book, proceedings book and note book are the reusable paperback products. That is a good reason researching adhesive binding quality when soft bound book is stored on humid conditions. The benefit of paperback form is an easy way of handling the text block during the reading. Also the paperback has mostly required reading for customers’ different ages for its low-price and practicality. Uncoated paper mostly takes place in making of text block form including perfect binding technique with HM adhesive. If adhesive binding quality is sufficient, the text block damages almost certainly. This research focuses on understanding of high grades paper properties because adhesive binding strength is only available at paper bindability. The text block volume has consisted of a number of loose leaves and hold together at spine edge with adhesive. Paper bindability can be observed in every aspect paper adherent features, the bounded layers increase in strength if paper properties are suitable for adhesive binding. The hypothesis is that paper property would indicate a reduction in the adhesive binding strength in humid condition. Paperbacks were exposed to moisture-low heat ageing over period of time (ISO 9142). The static tensile stress method (loose leaf pull-test) has been in use. The adhesive joint strength results are compared with a rating of adhesive strength according to FOGRA Nr.71006 guidelines for page pull-test.

Keywords: adhesive joint strength, paper properties, text block binding edge

Introduction
Generally, Paperback is defined as flat back book with a paper cover. It is often made of the loose leaves by cool settings adhesive [1]. Perfect binding method includes securing loose leaves into a solid text block by means of thermoplastic adhesive alone [2]. The loose leaves binding edges are applied with adhesive, loose leaves are fasten firmly together because high grades paper adherend improves adhesive mechanical interlocking [3]. Furthermore, different uncoated high grades papers (wood-free, wood content) are the most commonly used in paperbacks production [4]. High grades paper bindability increase depends on increase of its tensile strength property [5]. The loose leaves binding edges after roughening process directly explains high grades papers adherend characteristics and it’s establish adhesive joint strength durability [6–8]. High grades paper structural characteristics affect to its dimensional stability changes in relation to atmosphere relative humidity increasing. Hence, fibers network structure hygroexpansivity mainly causes paper physical properties changes [9]. Paper strain rateCD property increasing occurs due to fibers more expanded in paper lateral (CD) than in longitudinal (MD) direction after ageing. The loose leaves are more extensible in lateral direction [10] through Paperback width, hence paper physical properties determine the adhesive binding strength increasing.

Experimental
The experiment is divided into two parts, in the first part of research two commercial high grades papers with same basic weight, 80 g/m2 were included. The first uncoated paper (N_80) contains
free pulp only and the second bulky paper (V_80) contains mechanical wood pulp more than 10% [11]. The commercial papers name are Amber graphic (N_80) and Munken print White 15 (V_80). Selected papers were used in perfect binding “one-shot” process with hot-melt adhesive (Planatol HM 6010). Optimum adhesive binding method (text block spine treatment, adhesive bond application) was performed according to preliminary test and standard conditions (ISO 187, 1180, 3219). The paper grain direction runs parallel with text block binding edge. “Flat-back” adhesive binding is method of adhering loose leaves together at the binding edge into text block. The binding edges are filled with rigid adhesive and loose leaves are locked in fixed text block spine without radius.

Ten samples for each text block (N_80kb, V_80kb) were aged using standard technique for accelerated ageing; The high moisture-low heat ageing based on standard ISO 9142 (23 °C and 90 % relative humidity) for 1 and 2 years ageing.
The main text block quality of adhesive joints is its strength, which depends on both adhesion of adhesive to adherends and cohesion of the paper structure. The adhesive joint strength result explains text block binding quality. A binding endurance pull test determines the uniform force required to pull a loose leaf along the binding edge. The pull test measures tensile strength of loose leaf and pulling it from bond line or adhesive-adherend layer. The total load force is divided height by the loose leaf binding edge in centimeters to give its pull unit (N/cm)[12]. The result \( F_z \) (N/cm) was compared with a rating of adhesive joint strength (bad, sufficient, good and very good binding strength) according to FOGRA guidelines for page pull test [13,14]. The results are presented as the Tensile Index (Nm/g), due to comparative high paper grades strength and text block binding strength.

In the second part of research, the high grades paper properties measurements were included in order to compare paper properties towards the adhesive joint strength. Determinations of elementary, chemical, surface and mechanical paper properties was performed by ISO 187, 536, 534, 2758, 8791–2, 1924–2, 1974 and TAPPI T413. Furthermore, determination high grades papers mechanical property-linear elongation (strain rate), \( \varepsilon(\%) \) results were included for understanding of the adhesive joint strength results in relation to artificial ageing process. The measurements of paper features are only included cross-machine direction because it lies parallel to the text block binding edge.

**Results and Discussion**
The high grades paper properties (N_80, V_80) are determined including Standards (Tab.1). Arithmetic value was calculated on the base of ten measurements for each paper. Paper strain rate property has the intention of achieving a marked effect on adhesive joint strength results according FOGRA value rating (8,26 Nm/g). As we have seen the both of them have shown the same in value of basic weight feature, but V_80 (mechanical pulp) has shown significant higher in bulk result than N_80 (chemical pulp). Paper bulk property increasing should have positive impact on adhesive joint strength through mechanical interlocking adhesion with HM adhesive. The great ratio of air space to solid content of paper contributes mechanical interlocking adhesion, bindability actually. Also its surface roughness and thickness properties have made significant greater in size than paper N_80. As opposed to bulky paper, wood-free paper N_80 has shown significant lower results in bulk and thickness features. Also its mechanical properties are significant better than bulky paper because the cellulose inter-fiber bonding increasing. The surface roughness result is significant lower than bulky paper, what is mostly relevant impact factor on mechanical interlocking adhesion intensity. Increasing of ash content property directly influence on adhesion reduction due to the particles of dust contribute lower ratio of air space to solid content of paper. Mechanical properties of wood-free paper is significant higher, it’s as well to expect that paper N_80 significant contributes the adhesive
binding strength. The state of its being stable is clearly seen after ageing process over period of time, which is not observed in bulky paper.

Table 1: The high grades paper properties and the adhesive joint strength results

<table>
<thead>
<tr>
<th>High grades paper properties</th>
<th>N_80</th>
<th>V_80</th>
<th>ISO Unit</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic weight</td>
<td>77.94</td>
<td>77.69</td>
<td>g/m²</td>
<td>ISO 536</td>
</tr>
<tr>
<td>Thickness</td>
<td>86.85</td>
<td>115.54</td>
<td>µm</td>
<td>ISO 534</td>
</tr>
<tr>
<td>Bulk</td>
<td>1.11</td>
<td>1.49</td>
<td>cm³/g</td>
<td>ISO 534</td>
</tr>
<tr>
<td>Ash content</td>
<td>25.18</td>
<td>21.12</td>
<td>%</td>
<td>TAPPI T413</td>
</tr>
<tr>
<td>CaCO₃ content</td>
<td>15.94</td>
<td>21.27</td>
<td>%</td>
<td>TAPPI T413</td>
</tr>
<tr>
<td>Surface roughness</td>
<td>196.25</td>
<td>409.56</td>
<td>ml/min</td>
<td>ISO 8791-2</td>
</tr>
<tr>
<td>Tensile strengthₐCD</td>
<td>26.78</td>
<td>19.91</td>
<td>Nm/g</td>
<td>ISO 1924-2</td>
</tr>
<tr>
<td>Strain rateₐCD</td>
<td>3.40</td>
<td>3.10</td>
<td>%</td>
<td>ISO 1924-2</td>
</tr>
<tr>
<td>Tearing strengthₐCD</td>
<td>2.06</td>
<td>1.56</td>
<td>mNm²/g</td>
<td>ISO 1974</td>
</tr>
<tr>
<td>Tensile StressₐCD</td>
<td>24.63</td>
<td>15.31</td>
<td>Mpa</td>
<td>ISO 2758</td>
</tr>
<tr>
<td>Elastic modulusₐCD</td>
<td>2.10</td>
<td>1.28</td>
<td>GPa</td>
<td>ISO 2758</td>
</tr>
<tr>
<td>Paper strain rateₐCD</td>
<td></td>
<td></td>
<td>%</td>
<td>ISO 1924-2</td>
</tr>
<tr>
<td>before ageing</td>
<td>2.40</td>
<td>1.90</td>
<td>ISO 1924-2</td>
<td></td>
</tr>
<tr>
<td>after 1st year ageing</td>
<td>2.44</td>
<td>1.94</td>
<td>ISO 1924-2</td>
<td></td>
</tr>
<tr>
<td>after 2nd year ageing</td>
<td>2.57</td>
<td>2.14</td>
<td>ISO 1924-2</td>
<td></td>
</tr>
<tr>
<td>Adhesive joint strengthₐCD</td>
<td></td>
<td></td>
<td>%</td>
<td>FOGRA (8.26 Nm/g)</td>
</tr>
<tr>
<td>before ageing</td>
<td>10.79</td>
<td>11.16</td>
<td>Nm/g</td>
<td>FOGRA (8.26 Nm/g)</td>
</tr>
<tr>
<td>after 1st year ageing</td>
<td>10.78</td>
<td>9.75</td>
<td>Nm/g</td>
<td>FOGRA (8.26 Nm/g)</td>
</tr>
<tr>
<td>after 2nd year ageing</td>
<td>10.31</td>
<td>10.88</td>
<td>Nm/g</td>
<td>FOGRA (8.26 Nm/g)</td>
</tr>
</tbody>
</table>

The quantitative relation between two values of same feature has shown a rate one value contains or is contained within the other (Fig.1). As we have seen the better part of a properties being the similar in value including basic weight, thickness, bulk, CaCO₃ content and surface roughness, the while the ash content property has shown a significant deviation from each other. We should definitely notice that wood-free paper (N_80) features are reduced in relation to wood-contain paper (V_80).
In point of fact the similar in values have not identified for mechanical features (Fig. 2). The chemical pulp (N\_80) contributes significant higher the ratio in relation to mechanical pulp (V\_80), the similarity between strain rate values is observed before ageing process.

We have seen (Fig. 3) that the ratio of strain rate feature is remaining the same even after ageing process over period of time. These results could indicate that wood-free (N\_80) and wood-contain paper (V\_80) contributes the adhesive binding strength to same extent. But this is could not be right on because the fiber wall structure has different the ability to resume its normal shape after being stretched. The crystalline region of pure cellulose fiber wall (N\_80) is more elastic than the amorphous region (V\_80) one [9].
The bindability of each paper (N_80; V_80) has expressed come into the adhesive joint strength result. The mechanical interlocking adhesion increasing affects how successful it is. Paper tensile strength gives adhesive joint strength in order to help achieve binding strength before and after ageing likewise. This paper feature is having a significant influence on the adhesive joint strength result to change in humid condition, as we have seen on Figure 4. The adhesive binding strength is mainly significant less than the paper tensile strength. That the appearance is normal due to paper pulled away from binding edge of text block. But the rating of adhesive binding strength for both paper is very good according to FOGRA (8,26 Nm/g). The tensile strength results (paper, adhesive joint) calculated to the Index strength value (N/mg) as a general rule the purpose of strength results comparison. As we have seen, wood-contain paper just beginning to significant change from the first to the second year after ageing in humid condition. These are the reason the presence of amorphous region in the paper and without doubt the lower value of tensile strength (AJS: 9,75 Nm/g). Its wall structure is not elastic and fiber network of paper doesn’t tend to keep back the primary structure. With regard to the amorphous region becomes softer in humid condition. After the second year of ageing, the adhesive binding strength significant increasing (AJS: 10,88 Nm/g) has resulted paper higher strain rate result and its plastic deformation, brittle fracture. On the other hand, the wood-free paper (N_80) gives lower tensile strength values than bulky paper. This is explained viscoelastic behavior of the crystalline cellulose region which is stable (more elastic) in humid condition. A slight decline in the adhesive binding strength (AJS: 10,31 Nm/g) is obviously after the second year of ageing. The mechanical features are prominent in the stability of adhesive binding strength. We have noticed that are elastic modulus and tensile stress feature values providing its stability. This is particular situation doesn’t live on especially under adverse conditions including wood-contain paper.
Figure 4: Adhesive joint strength results depending on ageing process in humid condition

Conclusion
On the basis of the obtained results it can be concluded that very good adhesive binding strength is successfully bring about the wood-free and wood contain paper. The results are explained from the aspect of high grades paper features. It was proved that paper basic properties are the essential factor of the effectiveness of the bindability. The mechanical properties are next important factors of the effectiveness of the adhesive binding strength after ageing process in humid condition. The hypothesis is partially proven, the paper features have caused less in result of the adhesive binding strength but the rating of binding strength is very good. For that reason that kind of high grades paper is able to be used for particular purpose of the education books, a book giving instructions and the fiction books. Also many times some of these books are affected by particular unwelcome or unpleasant condition (beach, basement, school bag).

References


Under the auspices

of Dean of Faculty of Chemical Technology, University of Pardubice

and the International Association of Research Organizations for the Information, Media and Graphic Arts Industries

We want to thank our sponsor

---

Title: XI\textsuperscript{a} Symposium on Graphic Arts
Publisher: University of Pardubice
Edition: first
Number of pages: 166
Number of copies: 60
Typesetting: Jitka Odvárková
Print: Department of Graphic Arts and Photophysics
Year: 2013
ISBN: