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Abstract— This paper deals with speaker localization in two
dimensions from a mobile binaural head. A bootstrap particle
filtering scheme is used to perform active localization, i.e. to
infer source location by fusing the binaural perception with
the sensor motor commands. It relies on an original pseudo-
likelihood of the source azimuth which captures both the inter-
aural level and phase differences. Since the pseudo-likelihood
is discrete, it is fitted with a mixture of circular distributions in
order to enhance its resolution. For the fitting task two mixtures
are compared and evalutated, namely the mixture of von Mises
and wrapped Cauchy distributions. Furthermore, a solution
is presented for calculating the von Mises curvefitting with
low uncertainty, since the direct implementation can quickly
surpass double precision floating number representation. The
performance of the filter is compared using both the raw
and fitted pseudo-likelihoods on experiments recorded in an
acoustically prepared room with ground-truth obtained from
a motion capture system. The results show that the proposed
algorithm successfully localizes the speaker with an advantage
in the direction of the fitted von Mises mixture likelihood.

I. INTRODUCTION

In the field of robotics, the subject of sound source
localization has been approached and studied from aspects of
many different fields, namely speech processing, estimation
theory, and sensor fusion to name but a few. From the
aspect of sensors, researchers have been using microphone
arrays featuring two to more than a hundred of microphones,
placing them on wheeled mobile robots, humanoid walking
robots, and even autonomous aerial vehicles. Furthermore,
when moving sensors are used, the seamless fusion of
their motor commands with the binaural perception—active
localization—has been acknowledged to overcome ambigui-
ties inherent to the use of static sensors

When considering tracking with bearing-only values, the
pertinent problem was tackled foremostly in naval warfare.
In [?] it was shown that tracking in modified polar co-
ordinates with an extended Kalman filter (EKF) provided
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better and more stable results that when tracking in Cartesian
coordinates. This brought higher complexity in the motion
model, but made the observation model linear and separated
observable and unobservable entries in the state vector. This
model was further developed in [?] where the tracking was
performed with a bank of range-parameterized EKFs in
modified polar coordinates. Although this problem has been
studied for few decades, it still receives attention due to
emerging new filtering methods. In [?] three different filters
were compared for the task, while in [?] various methods
for tracking and decentralized sensor fusion were studied,
including bearing-only scenarios. In [?], relative localization
is performed from a pair of moving microphones, based on a
multiple-hypothesis square-root unscented Kalman filter. The
filtering scheme uses time delays estimated from the sensed
audio signals, together with information on the sensor’s
velocities to perform a consistent source localization. Results
show that the strategy, together with a suitable sensor motion,
allows to break front-back ambiguity and get accurate range
information.

In the context of speaker localization, the bootstrap particle
filter has been utilized in [?] for multiple speaker bearing
and elevation estimation with an 8-channel microphone array
mounted on a mobile robot. In [?], the authors adress the
problem of localizing multiple sound sources in an outdoor
environment from a microphone array mounted on an arial
vehicle. An extension of the MUSIC algorithm is used, that
uses adaptive estimation of the—dynamically changing—
environment noise correlation matrix. The proposed method
is tested with a Parrot AR.Drone and a Kinect device. In [?]
the authors used a 4-channel array to localize narrow-band
emergency signals from a micro air vehicle, where the sensor
model was based on the cross-correlation and doppler shift in
frequency due to the motion of the vehicle. In [?] the particle
filter was used to estimate the bearing of a speaker from a von
Mises (VM) mixture with a 4-channel array mounted on a
mobile robot. In a non-robotic related context, in [?] particle
filtering was utilized to estimate a position of a speaker
in a room environment with 4 microphone pairs placed on
the room walls, where the generalized cross-correlation and
beamformer output power were used as pseudo-likelihood
functions. In [?] the authors analyzed strategies for sensor
motion in the context of speaker localization with PF in
both range and bearing and performed evaluations in a
simulated acoustic environment with single sources under
both anechoic and reverberant conditions. In [?] the authors
used a combination of direction-of-arrival estimates with
speaker’s fundamental frequencies (pitch) and gammatone



prefiltering to form a pseudo-likelihood function for a 24-
channel circular array in order to estimate the bearings of
multiple speakers.

In the present paper, active speaker localization is per-
formed with two microphones mounted on a spherical head
by bootstrap particle filtering [?]. The underlying state space
equation describing the evolution of the source position in the
head frame is defined in both cartesian and polar coordinates.
We propose a pseudo-likelihood function of the source
bearing (azimuth) as the measurement model, which captures
both the interaural phase difference (IPD) and interaural
level difference (ILD) between the binaural signals. Since
the pseudo-likelihood has no analytic expression and is only
given for a discrete set of candidate bearings, the fitting
of circular distributions to the discrete pseudo-likelihood is
discussed in order to enhance its resolution for the purpose
of estimation. Incidentally, this can give further ground
for possible analytical filtering schemes. Two distributions
are presented and compared for the task: namely the VM
distribution, for which we also present a method for evalua-
tion with a large concentration parameter, and the wrapped
Cauchy (WC) distribution. Furthermore, we compare two
bootstrap particle filtering schemes on experimental data—
one using the raw discrete pseudo-likelihood, and the other
based on the fitted circular distribution. As aforementioned,
both fuse the known head velocities with binaural data in
order to infer the speaker location.

The paper is organized as follows. First, the problem is
stated in § II, while § III presents and compares the proposed
fitting with the VM and WC distributions. In § IV the
proposed speaker localization with the bootstrap algorithm is
presented, § IV-B presents the experimental evaluation, and
in the end §V concludes the paper.

II. PROBLEM STATEMENT

A. Kinematics and state space equation

A pointwise sound emitter E and a binaural sensor move
independently on a common plane parallel to the ground.
The two receivers equipping the sensor are denoted by R1

and R2. A frame FR : (R,xR,yR, zR) is rigidly linked to
the sensor, with R the midpoint of the line segment [R1R2],
yR the vector RR1

|RR1| and xR the downward vertical vector.
The frame FE : (E,xO,yO, zO) attached to the source is
parallel to the world reference frame FO : (O,xO,yO, zO),
with xO = xR (see Fig. 1). The source undergoes a transla-
tional motion (velocities vEy, vEz of FE w.r.t. FO expressed
along axes yO, zO), while the sensor is endowed with two
translational and one rotational degrees-of-freedom (veloci-
ties vRy, vRz of FR w.r.t. FO expressed along axes yR, zR;
rotation velocity ω of FR w.r.t. FO around xO = xR).
Assuming vRy, vRz, ω are known, the aim is to localize the
emitter (FE) w.r.t. the binaural sensor (FR) on the basis of
the sensed data at R1, R2. Importantly, the audio sensor is not
localized w.r.t. FO. The relative attitude of FR w.r.t. FE can
be described, when vRy, vRz, ω, vEy, vEz are zero-order held
at the sampling period Ts, by the discrete-time deterministic
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Fig. 1: The considered localization problem.

state space equation

xt+1 = Fxt +G1u1t +G2(xt)u2t, with

F=

[
cos(ωtTs) sin(ωtTs) 0

– sin(ωtTs) cos(ωtTs) 0
0 0 1

]
, G1= –


sin(ωtTs)

ωt

1−cos(ωtTs)
ωt

0

cos(ωtTs)−1
ωt

sin(ωtTs)
ωt

0

0 0 Ts

,
G2(xt)=Ts

[
cos(λt−ωtTs) − sin(λt−ωtTs)
sin(λt−ωtTs) cos(λt−ωtTs)

0 0

]
. (1)

Therein, x, [ey, ez, λ]
′, the state vector, gathers the entries

ey , RE.yR and ez , RE.zR of RE in FR, and the
angle λ , ̂(zR, zO)xO

. The sensor velocities constituting
u1 , [vRy, vRz, ω]

′ are supposed known. In the case of a
static source—as it is the case in the scope of this paper—
u2 , [vEy, vEz]

′ is simply set to zero. When parametriz-
ing the problem in terms of polar coordinates rather than
cartesian, i.e. when using the variables θ , atan2(ey, ez),
r ,

√
e2
y + e2

z , the state space equation comes as

rt+1=
√
r2t+u′tG

′Gut+2rt[sinθt,cosθt]G′ut (2)
θt+1=atan2(rtsin(θt+ωtTs)+g1ut,rtcos(θt+ωtTs)+g2ut)

λt+1=λt−ωtTs,

with u , [vRy , vRz ]
′, G the square matrix made up with

the first two rows and columns of G1, g1 (resp. g2) the first
(resp. second) row of G. To model uncertainty in the relative
motion, a random white Gaussian noise of known statistics
is added to (2).

B. Acoustic model, measurement vector, pseudo-likelihood

Consider first a static world where the sensor is motion-
less. We assume that the source lies in the farfield (i.e. the
source range r = |RE| is sufficiently high compared to the
microphones interspace 2a so that the source wavefronts can
be considered as planar in the vicinity of the microphone
pair). We model the signals y1, y2 monitored at R1, R2 in
the presence of additive noise as follows{

y1(τ) = s(τ) + n1(τ)
y2(τ) = (s ∗ hθ)(τ) + n2(τ),

(3)

where the signal s (i.e. the contribution of the emitter at
R1) and the noises n1, n2 are real, band-limited, individually
and jointly stationary random processes, and ∗ denotes
convolution. The—deterministic—impulse response hθ be-
tween R1, R2, is parameterized by θ, and captures free-field
propagation of the emitted signal as well as head scattering.



Hθ, the Fourier transform of hθ, is supposed known for every
θ within a discrete set of values (say, it has been learnt
from calibration, or is known theoretically). The process
y(τ) , [y1(τ), y2(τ)]

′ is observed over N adjacent non-
overlapping rectangular T/N -width time windows. Denote
yn the observation of y over the nth window. A data vector
Z is made up by stacking the values of

Yn[k] =

√
N

T

∫
R
yn(τ)e

−2iπkNT τdτ, n = 1, ..., N (4)

at k=k1, ..., kB , the B frequency indexes within the band-
width of s. Z is hence defined as Z, [Y [k1]

′, ...,Y [kB ]
′]′,

with Y [k], [Y1[k]
′, ...,YN [k]′]′. Assume now that s, n1, n2

are zero-mean jointly Gaussian and that n1, n2 are identically
distributed, uncorrelated with each other and with s. Then,
under general mild conditions on the power spectra of
s, n1, n2 and on Hθ, the maximum likelihood estimate of θ
can be obtained, given a sample z of Z, by maximizing the
following criterion [?], hereafter referred to as the “pseudo
log-likelihood function”

J(z|θ)=c2−N
kB∑
k=k1

(
ln|Pθ[k]Ĉ[k]Pθ[k]+σ̂2

θ[k]P
⊥
θ [k]|

)
, (5)

with c2,−2NB(ln(π)+1), Ĉ[k], 1
N

∑
n yn[k]yn[k]

†,

Pθ[k],Vθ[k](Vθ[k]
†Vθ[k])

−1Vθ[k]
†, P⊥θ [k],I2 − Pθ[k],

Vθ[k] , [1, Hθ[k]]
′, σ̂2

θ[k],tr(P⊥θ [k]Ĉ[k]).

Therein, †, |.|, tr(.) stand respectively for the Hermitian
transpose, determinant and trace operators, yn[k] denotes a
sample of Yn[k], and the sample covariance matrix Ĉ is
assumed full rank.

Consider now a real world where the sensor moves and
where the source signal and environment noise are possibly
nonstationary. All the fundamental hypotheses leading to (3)–
(4)–(5) are consequently violated. Nevertheless, the problem
can still be handled if, at each process time index t, the data
vector zt is made up from audio data collected over a time
window matched to t, sufficiently short so that, along this
window, the sensor motion is negligible and the recorded
signals can be regarded as finite-time samples of stationary
processes. Hence, at each time index t, the pseudo likelihood
of θt w.r.t. zt, denoted p(zt|θt), can be output and will
henceforth be used in a Bayesian filtering scheme in §IV.
Importantly, p(zt|θt) has in the general case no analytic
expression. Its numerical values are just given for a discrete
set of tested azimuths. This precludes the use of Bayesian
filtering schemes requiring an analytic form of the pseudo
likelihood, e.g. Gaussian mixture filters, unless an analytic
function is fitted to the discrete values. Alternatively, with
particle filters, the pseudo likelihood in its discrete form
can be utilized as a sensor model. However, low azimuth
resolution can affect the particle filter performance and
consistency, and it may be useful to fit some distribution to
the discrete pseudo likelihood. §III is thus dedicated to the
fitting of Von Mises and wrapped Cauchy mixtures models
to the discrete pseudo likelihood.

III. FITTING CIRCULAR DISTRIBUTIONS TO THE
PSEUDO LIKELIHOOD FUNCTION

A. Circular distributions

In this section we present two solutions to fitting the
pseudo likelihood function, namely fitting with the VM
distribution and with the WC distribution. The motivation
behind using circular distributions lies in the fact that they
intrinsically take noneucledian properties of the angular data
into account. For an example, this property proves useful
in the optimization since a circular distribution close to π
continues contributing to points larger than −π. Furthermore,
in the present paper we do not require the component weights
to sum up to one, since the pseudo likelihood function itself
is not a valid probability distribution.

A probability distribution on the unit circle with density
function given by [?]

p(θ;µ, κ) =
1

2πI0(κ)
exp {κ cos(θ − µ)} , (6)

is called the von Mises distribution, where 0 ≤ x ≤ 2π, µ is
the mean direction, κ ≥ 0 is the concentration parameter, and
I0(κ) is the modified Bessel function of the first kind and
of order zero. The distribution is unimodal and symmetric
around the µ and is often referred to as the circular analogue
of the Gaussian distribution. When κ→ 0 the VM becomes
the uniform distribution, while if κ → ∞ it becomes
concentrated at θ = µ.

We used the VM distribution in the context of robot
audition in [?] where the sensor model was represented as
a mixture of VM distribution in particle filtering, while in
[?] we extended this approach to model the entire Bayesian
tracking procedure in the analytical domain of the distribu-
tion. However, both of the aforementioned works were only
concerned with tracking the bearing value of the speaker and
not its position in two dimensions which is one of the goals
of the present paper.

The second distribution that we analyze for the task is a
distribution wrapped on a circle. Given a distribution on the
line we can wrap it around the circumference of a circle
with unit radius. If a random variable θ is defined on a
line, then the corresponding random variable of the wrapped
distribution is θw = θ(mod 2π). Furthermore, if θ has a pdf
p, then the corresponding wrapped pdf pw is defined as [?]

pw(θ) =

k=∞∑
k=−∞

p(θ + 2kπ). (7)

From (7) we can note practical issues when dealing with
the infinite number of terms in the summation. However, it
can be shown that the Cauchy distribution on the line has
an interesting property that its wrapped counterpart, due to
certain geometric series expansion property, reduces to [?]

p(θ;µ, ρ) =
1

2π

1− ρ2

1 + ρ2 − 2ρ cos(θ − µ)
, (8)

where µ is the mean direction and ρ is called the mean
resultant length. When ρ → 0 the WC tends to uniform



distribution, while if ρ → ∞ the distributions becomes
concentrated at point µ.

Naturally, the pseudo likelihood function will suffer from
front-back ambiguity since in the present paper we utilize
a binaural setup. Hence, our sensor model will contain at
least two distinct modes on the interval 0 to 2π and for
this reason we chose to model the likelihood as a mixture
of distributions. If we denote with X a set of distributions
parameters, then an N component mixture can be defined as

p(θ;X ) =
N∑
i=1

ωip(θ;Xi), (9)

where the set X consists of ∪i{µi, κi} for the VM distribu-
tion and ∪i{µi, ρi} for the WC distribution.

B. Computation of the von Mises distribution with large
concentration parameters

The direct form of the VM distribution suffers from
numerical issues when working with large concentration
parameter κ, i.e. with sharp distributions which may be
necessary to fit the pseudo likelihood in the vicinity of its
local modes. The main problem is that for large κ both
the exponent and the modified Bessel function of the first
kind quickly reach the maximum value that can be stored in
double precision floating point representation.

To solve this problem, we move the normalizer of the VM
distribution in the exponent as follows

p(θ;µ, κ) = exp {κ cos(θ − µ)− log(2πI0(κ))} , (10)

and approximate log(I0(κ)) as [?]

log(I0(x)) = log

∞∑
k=0

exp{m(x)}
exp{m(x)}

exp {tk(x)}

= m(x) +

∞∑
k=0

exp {tk(x)−m(x)} ,
(11)

where tk(x) = 2k log x
2 − 2

∑k
r=0 log r and m(x) =

max{tk(x)}. The number of the terms in (11) required to
have an accurate approximation depends on the κ. For the
present application we have found that the maximal practical
value of the concentration parameter for fitting the pseudo
likelihood is κ = 2000, for which an accurate approximation
was empirically determined to be for k ≤ 1100. But for
smaller parameters, e.g. κ = 1000, the number of terms
k ≤ 600 was sufficient. We did not notice any increase in
the computational time when compared to Matlab’s imple-
mentation based on [?].

C. Evaluation of the fitting performance

The fitting of a mixture of distributions to the pseudo
likelihood function p̂(θ) comes down to solving the following

Fig. 2: Fitting the pseudo likelihood for a single frame with
VM and WC mixture

optimization problem

minimize
ω,X

(
N∑
i=1

ωip(θ;Xi)− p̂(θ)

)2

s.t. 0 ≤ ωi ≤ 1, i = 1, . . . , N

0 ≤ Xi ≤ B, i = 1, . . . , N,

where the upper bound B depends on the parameter and the
distribution. For both distributions the upper bound of the
mean directions µ is B = 2π, while for the VM distribution
the upper bound was B = 2000 for the concentration
parameter, and for the WC distribution B = 1 for the mean
resultant length.

Concerning the number of the mixture components all the
results were obtained with N = 4. Initial conditions for the
mean directions were determined by searching recursively
for N most dominant peaks in the vein of [?] where the
authors searched for the number of active speakers. Once
the dominant peak is found, an area around it is removed
and the search continues until the predetermined number of
modes is found. Since in the pseudo likelihood function we
expect two peaks to be dominant we set the initial conditions
for the first two dominant peaks to be κ = 1500 or ρ = 0.9,
while for the rest we set κ = 10 or ρ = 0.1. The weights
are initially set to ωi = 0.5,∀i.

In Fig. 2 we can see the result of fitting for a single
relatively difficult frame when the speaker was close to the
end-fire position of the array and the two dominant modes
started overlapping. Empirically we noticed that this is the
more difficult case for the WC distribution and that often the
two distinct nodes tend to be fitted with a single component
in between them. Overall, the whole dataset consisted of
four experiments with a talking speaker as the source. The
average root-mean-square-error (RMSE) of fitting for the
speaker scenario was 1.6 · 10−3 for the VM mixture and
3.7 · 10−3 for the WC mixture, respectively. Given that, for
the rest of the paper we have chosen to work with the VM
mixture since it provided better fitting in terms of the average
RMSE.

IV. SPEAKER LOCALIZATION IN 2D

A. Particle filtering

Particle filtering is a versatile method to recursive
Bayesian state estimation. It can handle nonlinear prior
dynamics and measurements models, as well as nonGaussian
noises. The posterior probability density function (pdf) of the
state at any time t conditioned on the sequence of observed
measurements up to t is estimated by means of a point-mass
probability distribution with stochastic support, or “weighted
particle set”. Let {xp, wp}Pp=1 depict the random measure
that characterizes the posterior state pdf p(xt|z1:t), where
each particle in the set {xp, p = 1, . . . , P} is associated to



the respective weight in {wp, p = 1, . . . , P}. The weights
satisfy

∑
p w

p = 1, so that p(xt|z1:t) can be approximated
as [?], [?]

p(xt|z1:t) ≈
P∑
p=1

wpt δ(xt − xpt ), (12)

with δ(.) the Dirac delta measure. In other words, sampling
from p(xt|z1:t) returns to sampling a particle with a proba-
bility equal to its associated weight.

The particles are drawn according to a so-called impor-
tance function, then weighted so that the consequent random
measure constitutes a sound approximation to the posterior
pdf. As, for any recursive particle filter, the significant
weights tend to concentrate on a limited set of particles after
few iterations, a resampling step is inserted, which consists in
turning {xpt , w

p
t }Pp=1 into the equivalent evenly weighted set

{x′pt , 1
P }

P
p=1 by independently sampling (with replacement)

x′pt according to P (x′pt = xpt ) = wpt .
In the sequential importance resampling (SIR) scheme [?],

or bootstrap filter, the importance function matches the prior
dynamics p(xt|xt−1), calculated via (2), i.e. each particle xpt
at time t is drawn from its predecessor xpt−1 at time t − 1
according to the proposal density xpt ∼ p(xt|x

p
t−1). Then,

its weight is updated by evaluating its likelihood p(zt|xpt )
prior to setting

wpt ∝ w
p
t−1p(zt|x

p
t ), (13)

where p(zt|xt) represents the sensor model, i.e. the fitted
VM mixture:

p(zt|xt) =
N∑
i=1

ωi
1

2πI0(κi)
exp [κi cos(xt − zt,i)] . (14)

Then, all the particle weights are normalized so that they
sum up to unity.

Once the random measure approximating the posterior pdf
of the state is computed, the posterior mean and posterior
covariance can be estimated via

x̂t = E[xt|z1:t] ≈
P∑
p=1

wptx
p
t , (15)

and

P̂t = E[(xt − E[xt|z1:t])(xt − E[xt|z1:t])
T|z1:t]

≈
P∑
p=1

wpt (x
p
t − x̂t)(x

p
t − x̂t)

T.
(16)

To avoid a loss of diversity in the particle cloud, the
resampling step is applied only when the number of effective
weights Peff = 1/

∑
p(w

p)2 is less than a given threshold,
e.g. 33 % of the total number of particles P .

Consequently, particle filtering can be implemented even if
a closed-form measurement model is not available, in that the
particle likelihoods just need to be evaluated. In our case, the
sensor model comes as the pseudo likelihood digitized with
a resolution of 4◦. However, we assert that the fitting utilized
in the present paper constitutes a form of interpolation which

yields better resolution. So, we henceforth compare the
performance of the bootstrap particle filter which directly
utilizes the discrete pseudo likelihood against the particle
filter utilizing the fitted VM mixture. Importantly, fitting with
a VM mixture would be a prerequisite if the tracking was
performed in the vein of [?].

B. Experimental results

Experiments were conducted in an acoustically prepared
room, equipped with 3D pyramidal pattern studio foams
placed on the roof and on the walls. Two surface micro-
phones were mounted at the antipodes of a 8.9 cm radius
plastic rigid sphere, itself place on a tripod. The two micro-
phones outputs were synchronously acquired at 44.1 kHz.
The sphere tripod was moved manually with a wheeled cart
while the source, a loudspeaker placed at the same height as
the microphones, was emitting various types of signals. The
true source and sensor positions were acquired at 200Hz with
a motion capture system, providing a less than 1mm position
error. For that purpose, small infrared active markers were
placed on the sphere and the loudspeaker, and their signals
were beamed to three infrared camera units placed at the
corners of the room. The experimental setup is depicted in
Fig. 3.

For the considered case of a rigid sphere, Hθ is shown to
have the following analytic expression [?]

Hθ(f) =
ψπ

2 +θ(f)

ψ−π2−θ(f)
, with (17)

ψα(f) ,
1(

2πfa
c

)2

∞∑
m=1

(−i)m−1(2m+ 1)Pm(cosα)

h′m

(
2πfa
c

) .

Therein, ψβ is the normalized Head Related Transfer Func-
tion (HRTF) to the microphone at angle β—with respect
to boresight—on the sphere, where α stands for the angle
between the source bearing and the direction to the consid-
ered microphone, Pm is the Legendre polynomial of degree
m, hm is the mth-order spherical Hankel function and h′m
is its first derivative. This expression was thus used in the
pseudo likelihood computation. In practice, the infinite sum

Fig. 3: Experimental setup: plastic sphere and speaker tripods
in the acoustic room. Infrared cameras were measuring the
ground-true positions.
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Fig. 4: Mean value of range estimates and pertaining three standard deviations of 50 Monte-Carlo runs of the PF with
pseudo likelihood (blue), VM fitted pseudo likelihood (red) and true range (black)

in (18) is approximated by a finite sum, the minimum order
required to make the approximation reasonable depending on
the maximum frequency considered. To avoid cumbersome
computation during localization, Hθ was precomputed and
stored offline for a discrete set of bearings.

In order to assess the performance of the PFs, we ran
50 Monte-Carlo runs on the sensed binaural data using
either the discrete pseudo likelihood or the VM fitted pseudo
likelihood. The runs were performed on four scenarios with
different trajectories of the sensor, out of which one scenario
included an intermittent sound source. In Fig. 4 we can
see the results of range estimation for the four cases, while
Fig. 5 shows the estimation of the bearing. By analyzing the
results we can see that on average the PF with the VM fitted
likelihood gave smaller error in terms of the range estimation
although the performance in the bearing was similar for both
PFs. The explanation lies in the fact that estimating the range
from bearing-only measurements benefited from having an
analytical likelihood compared to the 4◦ resolution of the
discrete pseudo likelihood.

Then, for each entry of the posterior mean output by the

filter, a minimum-width confidence interval was then drawn
(from the posterior covariance matrix ouput by the filter)
which should enclose the corresponding entry of the genuine
hidden state vector with 99% probability. By analyzing the
obtained plots concerning the range estimation error, we
can see that the present implementation of the PF was not
consistent over all the runs, since the true range is outside
of the filter’s ±3σ interval calculated from the estimated
covariance matrix.

V. CONCLUSION

In the present paper we have studied and proposed a
solution for the problem of active speaker localization with a
head mounted binaural microphone sensor. The solution was
based on calculating a discrete pseudo likelihood function
in speaker bearing based on the geometrical properties of
the spherical head. The resulting likelihood was fitted with
a mixture of circular distributions, namely the VM and
wrapped Cauchy distributions, whose comparison showed
better results in the case of the VM distribution. A bootstrap
algorithm was utilized with the direct and VM fitted pseudo


