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Abstract— Majority of ROVs are underwater vehicles with
relatively slow dynamics virtually providing a ROV pilot extra
time to perform other tasks, such as inspections and arm
operation. However, with many tasks performed simultaneously
with flying, the relevant information is typically dispersed on
a number of screens overloading the pilot’s visual channel.
Surprisingly, there is very little research examining the unique
human-factors problems associated with unmanned underwater
vehicles. Use of audio display has been suggested as a means
to reduce visual workload, to enhance situation awareness, and
mitigate the visual and cognitive demands of contemporary
ROV operations. Our research investigate the effects of sec-
ondary visual tasks on operators workload and performance
using standard visual navigation interface, augmented reality
visual interface and audio interface. All experiments were
performed on the state-of-the-art, real-time ROV simulator
developed by Mobile & Marine Robotics Research Centre,
University of Limerick and augmented reality system developed
by Laboratory for Underwater Systems and Technologies,
University of Zagreb. As expected, the results show that in
no-load conditions visual guidance is better than the guidance-
by-sound. By contrast, the effects of secondary visual load
affect operators’ performance. The use of augmented reality
paradigm and especially hearing, in the form of the auditory
display, emerges as an important advantage. Improvement
depends on a level of experience in using auditory guidance
system. Practice has a major effect on performance, bringing
us to the conclusion that there is a more room for improvement
in using auditory interface.

I. INTRODUCTION

The term remotely operated vehicle or ROV, in the mar-
itime world, refers to a Unmanned Underwater Vehicle that
is remotely operated by a human operator from the surface.
The ROV is directly connected to the user interface through
the umbilical cable (or tether) that transmits the power and
communication.

A contemporary ROV control room is stuffed with screens
presenting everything from video streaming from multiple
cameras to various data acquired from multiple ROV sub-
systems. The information is exclusively presented visually.
The pilot is often required to perform multiple tasks si-
multaneously e.g. piloting, inspection, search and therefore
enormous quantity of information [1], dispersed on different
screens may easily overload the ROV pilots’ visual channel
and prevent them from perceiving all important information
related to the particular task. In ROV applications these
issues, i.e. dispersion of relevant information, overloading
of visual channel and operator multitasking, are recognized
as a significant problem often resulting in failed missions
or even mishaps. Surprisingly, there is very little research
examining the unique human factors problems associated
with unmanned underwater vehicles [2], [3].

Augmented Reality (AR) is a technology which, combin-
ing a real-world scene with a virtual elements, change the
way we receive information. All the relevant information that
exists can suddenly become part of our decision making
process. It embodies not only a usual (ordinary) visual
blending of real and virtual worlds, but it can also merge
capabilities of other human senses i.e. hearing or touch,
unloading the operators’ visual channel and benefiting from
additional advantages specific to that human sense.

Humans use auditory modality for development and main-
tenance of situation awareness in natural environments. We
are able to determine the location of a sound source anywhere
in the 360-degree space around us (even for those that are
out of our field of view), monitor events at multiple locations
simultaneously and to switch our focus of attention between
sound sources at will [4]. Exploiting these human abilities it
is reasonable to expect that operators situational awareness
can be improved using spatial sound interface/display.

To authors’ knowledge, there are not comprehensive stud-
ies that compare performance of visual, AR or audio guid-
ance methods. The aim of this paper is to compare, based
on objective measures, ROV path following performance
using different HMI’s: standard visual-navigation display,
AR visual display and AR auditory display. We hypothesize
that performance of visual navigation (standard or AR) for
no or low workload scenarios will be superior to the audio
navigation. The reasons for that are: spatial acuity of the
visual channel is much better than that of the auditory
channel [5], and humans use vision on a permanent basis for
navigation, we are very well trained for visual navigation. We
also hypothesize that applying additional visual and cognitive
load the advantage of using AR paradigm and especially
hearing, in a form of the auditory display shall come to the
light.

The objective of this paper is to present comparative
test and analyze effectiveness of the different HMIs used.
Hence, section 2 describes the methodology and a simulation
platform used in the paper. Next, experimental results are
provided in Section 3 and are discussed. Finally, a set of
conclusions are provided.

II. METHODOLOGY AND RESOURCES

The nature of the experiments requires substantial number
of experiments and test operators (subjects). The necessity of
conducting the high cost in-field experiments was avoided by
the use of the real-time ROV simulator expanded with visual
and audio AR system. The ROV simulator was developed at
the Mobile & Marine Robotics Research Centre (MMRRC),



Fig. 1. Example of the Mission Layout for the Path Following Experiment

University of Limerick, Ireland while AR system was de-
veloped at the Laboratory of Underwater System and Tech-
nologies, University of Zagreb, Croatia. The experimental
platform and its components are described below.

A. ROV simulator and communication framework

Multi Purpose Platform Technologies for Subsea Oper-
ations (MPPT Ring) is a set of assistive tools developed
in the MMRRC. It comprises simulation, modelling, control
and visualisation tools, [6]. Part of our interest, usually used
to effectively train ROV pilots, is a high-level simulator.
The simulator presents navigation data via typical naviga-
tion screen used for ROV operations (Figure 1). It also
provides position, orientation and feedback data from ROV
sensors, needed by the AR system to accurately generate
virtual environment. Medium used for data transfer is the
Mission Oriented Operating Suite (MOOS) which provides a
framework for inter-process communication, [7]. AR system
can be easily reattached from the simulator to the real
ROV system. In that case accuracy and reliability of ROV
localisation is crucial for the proper performance of the AR
system. Underwater localisation is by no means a trivial task
and was investigated by many scientists, [8], [9].

B. Guidance

Path following refers to the problem of forcing a vehicle
to converge to and follow a desired spatial path, without any
temporal specifications [10]. Applying control algorithms in
a form of a appropriate guidance laws provides method suit-
able for path following or trajectory tracking. The guidance
system generate reference for the yaw rate controller (human
operator) which is responsible for controlling the direction
of the velocity. Path following is ensured by proper steering
laws as long as vehicle speed exist. Consequently, the control
objective is to track the motion of a target that moves along
a predefined path and it is given by:

lim (p(t) — pp(t)) =0 (1)
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Fig. 2. Positioning of a dynamic virtual target (rabbit), relative to the ROV

where p(t) represents actual ROV position and pp (¢) desired
ROV position. For path-following purposes, desired ROV
position pp(t) is actually ROV’s direct projection onto the
path. It means that only cross-track error e(t) is relevant and
control objective can be rewritten as follows:

Jim (e(t)) = 0 @)

Number of guidance laws are developed to ensure stabi-
lization of e(t) to the origin. In our work we have chosen
the method used in ship motion control systems [11] which
is known as enclosure-based steering.

Imagine a circle with radius » > 0 (rabbit distance)
enclosing ROV p(t). The circle intersects the line (path) at
two points. The steering law generated by enclosure-based
steering strategy says that vehicles velocity vector has to
be directed toward the intersection point that corresponds to
the desired direction of travel, [12]. If cross-track error e(t)
is greater than the rabbit distance, circle and path do not
intersect, and virtual target is positioned at the point on the
circle closest to path, guiding the operator straight towards
the path, as illustrated in Figure 2. The enclosure-based
steering with rabbit distance of 10 meters ensures optimal
path following performance using auditory display as shown
in our previous work [13].

Guidance law defines position of the single virtual target
in space. Operators task is to track the target as good as
possible. Based on it’s angular perception, operator orients
the vehicle towards the virtual target. We can say that in
order to achieve efficient path following and satisfy steering
law, good (low bias and high resolution) perception in
the neighbourhood of zero azimuth is essential. Azimuth
perception in the remaining areas does not need to be that
good but it still needs to preserve the feeling of ROV dynamic
i.e. target position (left forward, right), direction of turning
(towards or away from the target) and approximate rate of
turn.

In order to experimentally evaluate HMI performance, the
objective function defined by integral square measures of
weighted tracking error and control effort (vehicles input
forces and torques) is introduced [14].
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P > 0and @ > 0 are the weighting matrices, e is cross-track
error and 7 = [r, 7,]7 is a control effort vector consisting
of forward force and yaw torque. The best performance
corresponds to the minimal performance index.

C. AR system

Visual AR display presents virtual target to the operator as
shown in figure 3. Position of the virtual target is a reference,
generated by path following algorithm. It is assumed that
cognitive load for simple target tracking is lower then for the
navigation using standard “Nav” display (Figure 1), where
based on users perception of ROV position, orientation and
desired path, operator guides the vehicle according to its
own, “natural” guidance law.

On the other hand, Audio AR display presents the target to
the operator over headphones helping him to navigate ROV
towards the virtual target position. Generally, audio interface
can present verbal or non-verbal information about data. But
due to fact that ”...spatial virtual sound, processed at direct
perceptual levels, have lower load during navigation than
verbal commands, which require cognitive mediation” [15],
we propose audio display which supports non-verbal spatial
sound cues.

Relative sound source position in relationship to the ROVs
frame of reference is obtained in terms of ROV orienta-
tion, ROV position and target position. Spatial perception
involves an egocentric frame of reference; measurements
and orientation of visual/sound images are given from the
observer/listeners position. Spatial position of the virtual
target is determined by perceived distance, azimuth and
elevation angles of the target. Virtual observer/listener is
positioned on top of the vehicle in a vehicle flow frame
of reference, oriented in a direction of the vehicles velocity
vector.

The normal human auditory localisation system has rela-
tively good resolution in azimuth for most kinds of signals in
the neighborhood of zero azimuth but it has poor resolution
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Fig. 4. Virtual target remapping using supernormal azimuth localisation
cues. Original azimuth 6 is remmaped to f(6)

in elevation [16], and in distance [17]. For the guidance appli-
cations, even for azimuthal resolution in the neighbourhood
of zero azimuth, where is the best, better resolution is desir-
able. This raises the question of whether it might be possible
to design processing for operator that enhance the effective
resolution artificially. In command/control applications, the
primary goal is to convey unambiguous information to the
human operator without incurring increased response bias
[5]. In a [17], it is pointed out that it should be possible
to improve performance by synthesizing intentionally dis-
torted “supernormal” localization cues even if the result is
“unnatural”. Approaches for creating supernormal auditory
localization cues include simulating localization cues from
a larger-than-normal head or remapping the normal local-
ization cues to create regions of supernormal spatial acuity.
Our supernormal azimuth localization cues were created
by remapping the azimuth position of the sound source
according to 4, maintaining the same distance and elevation
[18], see Figure 4. .
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For K > 1 this transformation provides better-than-normal
resolution in the frontal region (# = 0) but reduce resolution
on the side (§ = +7/2). For K < 1, the opposite occurs. Our
previous research [13] shows that £k = 3 ensures improved
resolution in the frontal region, preserving the feeling of
ROV dynamic, direction and rate of turn.

Virtual Auditory Display is a headphone-based system in
which localisation cues are generated by the inexpensive
(free) spatial sound application FMOD Ex API [19]. The
FMOD Ex is an audio engine developed primarily for game
and multimedia developers, musicians and audio engineers.
The application supports generalized Head-Related Transfer
Functions (HRTFs) [20], [4] to simulate the normal auditory
localization cues and provide spatial audio perception. Dis-
play thus presents spatial sounds in a 3D audio environment,
with each sound being spatialized to seem as if it were
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Fig. 5. Secondary visual task with 50 object, 2 colours and 2 shapes. The
task is to determine weather the red asterisks is present on the screen.

located at the corresponding real-world location. FMOD is
able to spatialize these sounds by tracking the target’s and
listener’s location, momentary orientation and velocity.

Certain types of sounds would lead to more effective
navigation, largely because listeners could more easily lo-
calize them. This would favor broadband sounds such as
noise bursts and complex tones [21], [20], [22]. Non-speech
beacons are generally preferred over speech beacons and a
continuous operation of a beacon preferred over a pulsed
operation [23]. As a result, virtual sound source used for an
AR auditory display is a pink noise amplitude-modulated at
10Hz.

D. Secondary task

A key idea behind the experiments was to vary the visual
load systematically. Secondary visual tasks were calibrated
in order to induce different levels of visual load. The
design of the visual task was based on Treisman’s feature
integration theory [24] which states that the speed at which
a visual target is identified within a display is affected by its
visual similarity to other objects in the display. In addition,
increasing the number of objects in a display has been shown
to increase reaction time to targets, but only when a target
object must be recognised by a conjunction of features (e.g.
colour and shape). The number and visual characteristics of
non-target objects can be used to vary the difficulty of target
identification [25].

In our experimental set up, the task was presented on the
separate screen from the screen used for navigation. The task
was to determine, by selecting "yes” or “no” on the keyboard,
whether a target object was present. The difficulty levels were
determined by varying the total number of the non-target
objects and time available to accomplish the task. In the low-
load condition number of all non-target objects was 10 (two
different colours and shapes) and time to solve the task was
5 s while in the high-load conditions, number of non-target
objects was 100 or available time 2.5 s.

III. RESULTS AND DISCUSSION

Participants: a total of 12 students, professors and staff
from Laboratory for Underwater Systems and Technologies,

Faculty of Electrical Engineering and Computing, University
of Zagreb, participated in the experiments. Experiments were
performed on a ROV simulator linked via MOOS interface
with AR system which presents synthetic spatial visual or
acoustic imagery using regular screen or a sound system
FMOD and stereo headphones AKG K66.

ROV is controlled manually, using joystick. Ability of the
system to simulate different ROVs and apply environmental
disturbances such as waves or sea current, was used to create
numerous real-life mission scenarios. The ultimate operators
goal was to fly the ROV in such a way to overcome the ROV
dynamics and environmental disturbances and successfully
accomplish the mission as planned, solving the secondary
visual task at the same time. Mission results used for analysis
consist of: accomplished mission trajectory p(t), control
effort 7(t) and result of the secondary visual task. Mission
trajectory combined with the desired path pp(t) is used to
calculate tracking errors e(t). Performance index (equation
3) was then calculated using tracking error and control effort.

Missions are grouped into datasets (DS). Three missions
belonging to the same dataset are identical (operator, type
of ROV, mission plan, environmental conditions), except for
presentation display, visual, visual AR or audio. Within the
one dataset, absolute values of all performance index’s are
scaled by the value of the first performance index, mission
accomplished using standard navigation display (5). It allows
comparison of corresponding scaled values from different
datasets in a way that eliminates the effects of mission
specific influences i.e. absolute Pi from longer and shorter
mission can not be compared because P is affected by the
time needed to accomplish the mission. Complete data col-
lection consists of numerous datasets obtained with different
operators, types of ROVs, mission plans and environmental
conditions.

Pi; = Piy/Piy, Piy, Piy € DS; 5)

Where ¢ represents dataset number, n mission index within
the dataset and s scaled performance index. Obviously, P
is always equal to one. For the sake of analysis, performance
index (3) is split into two parts, tracking quality part Pir®
and control effort part (energy used) Pir®, scaled according
to (5).

Pirt — /0 en(®)T-en(t) dt/ /0 () er(t) At (6)

T T
Pist — / ()77 (t) dt/ / AT ()
0 0
Performance index is given now by:
minPi® = Q-Pir® + P-Pir® (8)

A. Path following in a no-load conditions

As mentioned earlier the data were collected in three
experimental settings: (1) using standard visual Navigation
display (NAV), (2) AR visual display and (3) AR auditory



display. A common experimental methodology was applied
across the different experiments. Participants task was to
steer the vehicle along the path with an arbitrary speed pro-
file, while depth was controlled by the auto depth controller.
The same scenarios and dependent measures were included
in all three experiments, meaning that each participant was
asked to navigate the same mission with the same ROV in
the same environmental conditions, 3 times in a row with the
different navigation interface. The lawn mover type of layout,
which is regularly used in a ROV operations, is chosen for the
experiments. Desired path consists of number of waypoints
connected with straight lines. When the ROV reaches the
circle of 3 meters diameter around the way point, virtual
target shifts to the next line, example of the mission set up
is shown in Figure 1. Missions results are grouped in datasets
and scaled according to 5. Performance index is calculated
and split in two parts, tracking performance and control effort
according to 6, 7 and 8. By putting heavy weight of Q, we
prioritize path following quality and vice-versa.

Figure 6 shows PI-tracking error part for all 3 interfaces.
The scaled PI values in the first column (standard NAV
display) of all datasets are equal to 1, because that was the
parameter used for scaling, see 5. Because of that, ”Standard
Visual” column is omitted in all other figures. Tracking
performance using visual AR display is negligibly better than
using standard display. Assumed lower cognitive load needed
for guidance using AR display did not yield any performance
improvement. Our conclusion is that operators were able
to successfully perceive complex information content at a
high rate, associate it with guidance concepts and generate
appropriate actions in a no-load scenarios. As expected,
tracking performance of the auditory interface is slightly
worse (= 20%), which can be explained by the fact that
spatial resolution of the human hearing channel, although
improved, is still inferior. Figure 7 shows that control effort
part of the PI for both visual interfaces is almost the same
again. Adversely, control effort of the auditory display is
better, lower then the one achieved with visual displays.
Looks like that interface providing lower spatial resolution
does not generate as frequent course “hunting” as display
with the better resolution. For lower tracking quality, lower
price (effort) is paid.

Finally, figures 8 and 9 show cumulative performance
index. In a figure 8 tracking performance is prioritized by
putting more weight on tracking part of the PI (P/Q = 3).
This is the realistic case in a ROV applications where energy
is provided through a tether and energy conservation is not a
high priority. Second figure presents the case where tracking
and effort components are equally weighted. Interestingly,
performance using any of experimental interfaces is almost
the same.

B. Path following performance with applied secondary vi-
sual load

In our second experiment, data were collected using the
same experimental settings but operators workload was in-
creased by means of secondary visual task, see II-D. Sec-
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Fig. 10. Performance index - Tracking error part

ondary tasks in a form of low or high load, were presented
on a separate screen. Performance index 8, for the purpose of
this experiment is extended with the results of the secondary
task:

minPi® = Q-Pir® + P-Pir® + R-ST )

where, ST represents result of the secondary task, expressed
in percentage of the incorrect answers and R is the weighting
coefficient of the secondary task.

Figures 10, 11 and 12 show performance results for all
three components of the PI. Tracking performance with low
secondary load is very similar to the no-load results, meaning
that operator using standard NAV display is able to cope with
not very requiring load and maintain the same level of path
following performance. In a high-load experiment, there is
a visible comparative improvement of both AR interfaces.
Control effort comparative results (figure 11) for the low-
load experiment are also similar to the results of the no-load
experiment. In a high-load setup, there is approximately 10%
improvement in performance of the AR interfaces but data
is more dispersed showing that performances differ signif-
icantly from trial to trial. During the low-load experiment
rate of error of the secondary task was generally low for all
interfaces, as shown in figure 12. Increasing the load, error
grows for all interfaces but the most significantly for standard
visual interface. The task was on the edge of multitasking
capabilities of the test subjects. The best results are achieved
using auditory display which can be explained by the fact
that operators visual channel was completely free for the
secondary visual task.

Figure 13 presents cumulative performance index where
all index components are equally weighted. In a low-load
experiment there is a small difference between interfaces but
the best among equals is visual AR interface. In a high-
load experiment, situation is opposite in favor of audio AR
interface.

Figure 14 shows comparative performance of all par-
ticipants using only Audio AR (left graph) versus two
participants trained for audio AR interface (right graph).

Fig. 11. Performance index - Control effort part
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Performance of the trained operators was superior, showing
that practice can significantly improve performance in using
interfaces we are not trained for, i.e. auditory interface, which
is in line with the previous results published in [26].

IV. CONCLUSIONS

Results presented in this paper clearly show that there is
a rationale for using AR paradigm (visual and audio) for the
purpose of ROV navigation. Experimental data confirm our
hypothesis that performance of visual navigation (standard
or AR) for no-secondary-load scenarios is superior, but it
also confirms that under additional visual and cognitive load
auditory interface emerges as an important advantage. It was
shown that in high-load operational environment unloading
the operator yields improved navigation quality. Authors
intention is not to suggest that existing type of navigation
interface should be replaced, it provides more then just a
information needed for guidance i.e. position of the ships or
pipelines in the working area, but at contrary, to suggest that
AR system could become part of the future, more complex
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navigation system. AR can improve overall performance of
the ROV operation by reducing visual and cognitive work-
load and enhancing situation awareness. Results obtained
with auditory interface show that practice has a major effect
on performance, performance increases with practice, as is
often the case with the use of a new interface. There are
many possible approaches how to augment our reality for
the navigation purposes and this is definitely research area
well-worth future work.
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