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ABSTRACT. P-glycoprotein (P-gp, MDR1) is a promiscuous drug efflux pump of substantial 

pharmacological importance. Taking advantage of large-scale cytotoxicity screening data 

involving 60 cancer cell lines, we correlated the differential biological activities of ~13 000 

compounds against cellular P-gp levels. We created a large set of 934 high-confidence P-gp 

substrates or non-substrates by enforcing agreement with an orthogonal criterion involving P-gp 

overexpressing ADR-RES cells. 

A Support Vector Machine (SVM) was 86.7% accurate in discriminating P-gp substrates on 

independent test data, exceeding previous models. Two molecular features had an overarching 

influence: nearly all P-gp substrates were large (>35 atoms including H) and dense (specific 

volume <7.3 Å3/atom) molecules. Seven other descriptors and 24 molecular fragments 

(“effluxophores”) were found enriched in the (non)substrates and incorporated into interpretable 

rule-based models. 

Biological experiments on an independent P-gp overexpressing cell line, the vincristine-resistant 

VK2, allowed us to re-classify six compounds previously annotated as substrates, validating our 

method’s predictive ability. Models are freely available at http://pgp.biozyne.com. 

The final publication is available from ACS via http://pubs.acs.org/doi/abs/10.1021/jm400328s  

http://pgp.biozyne.com/
http://pubs.acs.org/doi/abs/10.1021/jm400328s
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INTRODUCTION 

The P-glycoprotein (P-gp) is the protein product of the ABCB1 gene, also known as MDR1 

(multidrug resistance 1) that belongs to the ATP-binding cassette superfamily of membrane 

transporters. Its main biological function is to protect cells against various potentially harmful 

xenobiotics and other cytotoxic compounds, which it expels out of the cell. P-gp is abundant in a 

number of cells in human organs where it plays a secretory role (e.g. in the small intestine, liver 

and kidney), or acts as a barrier as in the brain endothelial capillaries where it contributes to 

blood-brain-barrier function.1 

Unlike most other membrane transporters, P-gp is known for its promiscuity - it transports a 

wide range of chemically and pharmacologically unrelated substrates, including small molecules 

such as carbohydrates and organic cations, and macromolecules such as proteins and 

polysaccharides.2 Accordingly, the pump can also expel medical therapeutics out of the cell, thus 

reducing their desired effect.3 In particular, many cancer chemotherapeutics, such as vinca 

alkaloids, anthracyclines, epipodophyllotoxins and taxanes, are known to be P-gp substrates. 

Additionally, many human cancers overexpress the ABCB1 gene resulting in multi-drug resistant 

cancers.4 Furthermore, P-gp not only causes cancer chemotherapy failure but also greatly 

influences the general pharmacokinetic parameters of clinically important therapeutics for other 

diseases.5 It is these reasons that prompted our work to distinguish and evaluate P-gp substrates 

from non-substrates early in the drug discovery pipeline in hopes of streamlining compounds for 

future therapeutic development. 

Computational Quantitative Structure-Activity Relationship (QSAR) models for P-gp substrate 

specificity provides a fast and cost-efficient means to achieve this goal, and were therefore the 

subject of many past research efforts. A pinnacle example is the study by Penzotti et al.,6 who 

collected a dataset of 195 P-gp substrates and non-substrates from various sources (e.g. Seelig7), 

and reported a classification accuracy of 80% on the training set, and 63% on an independent test 

set using an ensemble of pharmacophore models. In later studies, the Penzotti dataset was often 

re-used or served as a starting point for data collection. Publicly available datasets used in 

modeling P-gp substrate specificity8–11 have sizes measured in several hundreds of molecules, up 

to 332 compounds collected by Wang et al.10 It should be noted that these datasets have 

significant overlap (see Figure 1), because they tend to use the same data sources. 
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Importantly, these sources rely on different experimental assays to determine whether a 

compound is a P-gp substrate, which may cause variability in the results. As discussed 

previously,11–13 experimental assays may be performed under different conditions (e.g. 

concentration of compound) and often carry biases inherent to each method. Most prominently, 

the common ATPase and calcein-AM assays cannot differentiate between P-gp substrates and 

inhibitors; additionally, the compounds’ passive membrane permeability influences the 

experiment outcome.14 Discordance between experimental measurements was addressed in the 

recent Bikadi et al. study11 by extensive curation - a compound was accepted only if more 

studies confirmed its classification, yielding an arguably high-quality dataset. Nevertheless, the 

197 compounds therein were often classified based on assays in the less reliable group, 

according to the systematization in Didziapetris et al.12: approx. ⅓ of the compounds relied on 

the ATPase assay, and ½ of the compounds on the calcein-AM assay results. For instance, 

doxorubicin, considered a P-gp substrate by many15,16 is here classified as a P-gp non-substrate.14 

 

Figure 1. Overlap of the publicly available datasets used in recent P-gp studies modeling P-gp substrate recognition 

and the dataset reported in this study. The Venn diagram17 shows unique compounds via exact matching of 

canonicalized SMILES after clearing stereochemistry information; on few occasions, this caused multiple 

stereoisomers within a dataset to be represented as a single molecule. 

In contrast to the largely re-used sets of P-gp substrates and non-substrates, previous P-gp 

specificity studies employed very different computational approaches in generating molecular 

descriptors and modeling their relationship to the biological response. For instance, Cabrera et al. 

used topological substructural descriptors in combination with linear discriminant analysis 

reporting an accuracy of 77% on an independent test set.9 De Cerqueira Lima tested various 
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combinations of learning methods (k-NN, Decision Tree, binary QSAR and SVM) and descriptor 

sets (molecular connectivity indices, atom pair descriptors, and descriptors from the VolSurf and 

MOE software) with the best model - SVM with VolSurf - achieving a test set accuracy of 

80%.18 The different learning methods were also compared across various QSAR datasets, 

including P-gp substrate specificity, yielding accuracies in the 70-80% range for the tested 

methods on P-gp data.19 Recently, several researchers8,10,11,20 employed SVM combined with 

various descriptor types and reported similarly high test set accuracies. These studies 

demonstrate how SVMs tend to have comparable or better predictive performance in comparison 

to other methods, as evidenced also in their widespread use in QSAR studies of diverse 

molecules,21 for example applied to series of peptides22 or crown ethers.23 

The properties of a molecule thought to be relevant for P-gp recognition include a wide array 

of structural features, commonly including molecular weight and/or volume, the number and 

spatial arrangement of hydrogen bond acceptors, polar (or total) surface area, polarizability, 

molecular charge, and aromaticity.9,12 There is, however, no consensus about which of these 

features is most important, or if some are important at all. The prime example is the LogP value, 

a measure of hydrophobicity with wide impact on ADME-Tox properties in general,24 which was 

claimed in multiple studies to be either very important,10,25,26 or of little relevance12,20,27 for 

recognizing P-gp substrates. The discrepancies may be caused by (a) small datasets with patchy 

coverage of the molecular space; (b) data from unreliable experimental assays, where a feature’s 

relevance might reflect a bias in the assay; and (c) confounding variables which were not 

controlled for, e.g. the perceived relevance of LogP might be due to the importance of aromatic 

rings which strongly contribute to the LogP. 

In this study we present a novel and comprehensive set of P-gp substrates and non-substrates. 

The dataset is composed of 934 compounds, making it the largest publicly available collection, 

almost three times the size of the previous most comprehensive dataset.10 Furthermore, our data 

shows strong agreement with previous substrate/non-substrate assignments, but low overlap with 

the molecular structures in past datasets. The data collection was performed in a systematic 

manner from the large-scale compound cytotoxicity screening against 60 human cancer cell lines 

at the US National Cancer Institute Developmental Therapeutics Program (NCI-DTP), while 

simultaneously drawing on the extensive knowledge about the expression level of the cellular 

target - the P-gp. The compounds-of-interest were carefully selected among thousands available 
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at the NCI-DTP database and labeled as a P-gp substrate or non-substrate only if they passed a 

stringent check, requiring two independent assessments of correlation of ABCB1 levels to 

cytostatic activity. 

From this large dataset we derive a simple, interpretable rule based on two physical features of 

the compounds - atom count and specific volume - which guarantees that a compound is a non-

substrate of P-gp with 89% precision, while still recovering most of the non-substrates. This rule 

proved to be generally valid, exhibiting a high precision for non-substrates on two independent 

datasets. Additionally, we find 24 molecular fragments strongly enriched in the substrates or the 

non-substrates after controlling for the effects of atom count and specific volume. Finally, we 

integrated a number of diverse molecular descriptors to train a SVM classification model with 

high accuracy and considerably improved statistical support over the previous studies. We 

experimentally validated the model by testing growth inhibition of six compounds on a P-gp 

overexpressing cell line not used in the training database. A free web server, available at 

http://pgp.biozyne.com, was developed to give the scientific community an easy possibility to 

apply our SVM model to classify their compounds as P-gp substrates or non-substrates. 

RESULTS 

Detecting P-gp substrates from cancer cell line screening data. Since P-gp acts by 

extruding substrates out of the cell, ABCB1-overexpressing cell lines should require a higher 

drug concentration to cause growth inhibition. The NCI-DTP cancer cell line panel (NCI-60) is 

heterogeneous in ABCB1 gene expression levels (Figure 2a) and accordingly ABCB1 expression 

levels should inversely correlate with cytotoxicity for P-gp substrates, but not for P-gp non-

substrates. Previous work has shown that such a correlation can be successfully exploited for 

identifying P-gp substrates.28–30 The NCI-60 contains two cell lines that were important for this 

study: the OVCAR-8 and NCI/ADR-RESa, both ovarian cells derived from the same 

individual.32,33 The key differential feature between the two cell lines is in the high ABCB1 

expression in the NCI/ADR-RES cell line (Figure 2c). We have combined eleven previous 

measurements of ABCB1 mRNA levels across all cell lines using principal components analysis 

(see Methods for details) and summarized the outcome in Figure 2a. The NCI/ADR-RES cell 

                                                 

a previously named MCF-7/ADR-RES31 



 6 

line expresses by far the highest level of ABCB1 gene, whereas OVCAR-8 cell has a low 

expression level; 18th cell line out of 60 in the NCI-60 panel. Consequently, if a compound is 

less cytotoxic for the NCI/ADR-RES cell line in comparison to the OVCAR-8, it is plausible that 

the compound is a P-gp substrate. Conversely, if the activity is similar, it suggests that P-gp did 

not interfere with the compound, so it is likely a P-gp non-substrate. For instance, an ~80-fold 

higher concentration of the known P-gp substrate vincristine is required for NCI/ADR-RES 

growth inhibition, than for OVCAR-8 cells (Figure 2b). 

 

Figure 2. (A) Eleven measurements of ABCB1 mRNA levels using microarrays or quantitative PCR across cell 

lines (colored lines), and a summary of the measurements (PC1, grey bars; see Methods). The PC1 weighted average 

of the measurements, where the contribution of each mRNA level measurement (numbers in parentheses) depends 

on how well it agrees with the consensus over cell lines. The top 20 cell lines by PC1 are shown; all remaining 40 

cell lines have very low normalized PC1<0.022. (B) Ratios of cytotoxic activities on NCI/ADR-RES and OVCAR-8 

cell lines of known P-gp substrates and non-substrates. The y axis shows the GI50 ratio (the compound 
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concentration causing 50% growth inhibition) of the NCI/ADR-RES cell line, and the OVCAR-8 GI50. Higher 

ratios indicate that ADR-RES is more resistant to the compound. (C) A comparison of the mRNA levels between all 

genes in the NCI/ADR-RES and the OVCAR-8 cell lines indicates a good general correlation, consistent with the 

former cell line being derived from the latter. The ABCB1 mRNA, encoding the P-gp protein, is highly abundant in 

NCI/ADR-RES, but not in OVCAR-8 cells.  

Thus, differential compound cytotoxicity in the NCI/ADR-RES and OVCAR-8 cell lines 

constitutes a criterion for detecting P-gp substrates (herein, the “difference” criterion). By 

analogy, the variability in P-gp expression in the remaining 58 cell lines in the NCI-60 panel 

(Figure 2a) can be used to establish a second, independent criterion to detect P-gp substrates, 

where an anti-correlation of P-gp levels and cytotoxic activity across the 58 cell lines (the 

“correlation” criterion) is expected. The compounds that hold true to both criteria are likely to be 

P-gp substrates. Conversely, if a compound shows this relationship for neither criterion, it is 

likely a P-gp non-substrate. 

Constructing a comprehensive dataset. Enforcing the agreement of both criteria, we 

extracted a dataset of 958 compounds (471 substrates and 487 non-substrates) from the 

measurements on the NCI-60 cell line panel. We chose the stringency for declaring substrates to 

maximize the statistical support of the agreement between the “difference” and “correlation” 

criteria (Figure 3; see Methods for details). The threshold for declaring a substrate was set to the 

top 8% of the “difference” and “correlation” values, yielding 471 substrates that satisfy both 

criteria. The threshold for the non-substrates was chosen to strike a balance between the sizes of 

the substrate and the non-substrate class, selecting the mid-20% (centered around zero) of the 

molecules by both criteria (Figure 3).  

We further removed multiple copies of identical or nearly identical compounds, reducing the 

dataset to 934 compounds, of those 448 substrates and 486 non-substrates (Table S1; see 

Methods for details). If both compounds from these (near-)identical pairs of compounds had 

been included, this might have resulted in overly optimistic error estimates when constructing 

QSAR models on the data. Our method for declaring P-gp substrates and non-substrates agrees 

well with the substrate/non-substrate annotations in a previous dataset by Penzotti et al.6: 10 out 

of the 10 compounds in our dataset that have a counterpart in Penzotti et al. agree with that 

counterpart. Importantly, there is little overlap between the two sets in terms of the compound 

identities (Figure 3), implying that most of the compounds in our dataset (911/934, 97.5%) are 
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novel with respect to any of the three previous datasets considered here (Figure. 1). Nevertheless, 

the coverage of chemical molecule space is largely similar as the past datasets (Figure S1), 

indicating that a model derived from this data would be generally applicable to various sets of 

compounds. 

 

Figure 3. Constructing a high-confidence set of P-gp substrates and non-substrates from the set of 11 739 

compounds tested on the NCI-60 panel. The two criteria for detecting P-gp substrates and non-substrates are: (i) the 

difference of cytotoxicity (log GI50) between the NCI/ADR-RES and OVCAR-8 cell lines, x axis, and (ii) 

correlation of the cytotoxicity and the ABCB1 gene expression over 58 cell lines, y axis. Areas of the plot with high 

density of points (compounds) are denoted by colored shading, from blue to red. The P-gp substrates are expected to 

show negative correlation and have negative differences, whereas non-substrates should show no such correlation or 

difference. The cutoffs for the optimal dataset (red lines for substrates, blue square for non-substrates) were selected 

to maximize the statistical support for the agreement between the two criteria as measured by Fisher’s exact test P-

value (bottom panel, y axis shows negative log10 of P-value, higher numbers indicate better support), while 

ensuring balanced class proportions, yielding 471 substrates and 487 non-substrates. The points in the bottom panel 

denote cutoffs at the 1st, 2nd, 3rd etc. percentile of the “correlation” and “difference" values. Overlapping 

compounds from the Penzotti et al. data6 are shown as large blue and red dots. 
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An accurate model for recognizing P-gp substrates. We opted to use the SVM classifier 

with the Radial Basis Function (RBF) kernel, found to be the most appropriate method in former 

P-gp substrate classification studies.8,10,11,20 Molecules were represented using 183 2D molecular 

descriptors generated with the Chemistry Development Kit (CDK).34 Prior to training the SVM 

models, 120 randomly selected compounds were set aside as an independent test set, whereas the 

remaining 814 compounds served as a training set. 

The SVM model performed well in predicting P-gp substrates, with an accuracy of 88.2% and 

AUC of 0.95 in cross-validation, indicating that the substrate/non-substrate classes are highly 

internally consistent with respect to the structural features of the molecules. The model showed a 

similar predictive performance on the test set (86.7% accuracy, AUC = 0.94) indicating a strong 

ability to generalize to unseen data. When compared with self-reported measures of model 

accuracy from six previous studies, our cross-validation accuracy is higher (Table 1), 88% vs. to 

our knowledge, at most, 81% previously. Our test set accuracy also exceeds previous models that 

have been evaluated on a fully independent test set (Table 1). Importantly, given an increase in 

accuracy combined with a considerably larger dataset (number of compounds), the statistical 

support for our model’s predictions is orders of magnitude improved over past modeling efforts 

(Table 1). We additionally evaluated our model against two external validation sets - test sets 

exactly as used in Penzotti et al.6 and Bikadi et al.11 studies, and obtained accuracies of 64.7% 

and 78.1%, respectively. These numbers are close to the accuracies obtained on the same test sets 

in the original studies: 63% in Penzotti et al. and 75% in Bikadi et al., confirming the ability of 

our model to generalize to unseen data. 

Table 1. Predictive accuracy of the SVM and rule-based models in this study compared to self-

reported accuracies from previous studies. 

 Cross Validation Independent Test Set 

Model Acc MCC NS 

Preca 

NS 

Recalla 

P-valueb Acc MCC NS 

Preca 

NS 

Recalla 

P-valueb 

our models 

Full SVM model 88% 0.76 86% 89% 6*10-118 86% 0.74 82% 90% 3*10-17 

nAtom-specVol 

rule 

74% 0.53 88% 57% 10-55 66% 0.39 82% 49% 2*10-5 
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descriptors based 

rule 

80% 0.60 81% 80% 3*10-69 77% 0.53 79% 77% 5*10-9 

effluxophore 

rule 

78% 0.57 83% 74% 10-63 74% 0.50 83% 66% 4*10-8 

previous work - models with independent test sets 

Penzotti et al. 80% 0.64 97% 71% 3*10-16 62% 0.32 78% 50% 3*10-2 

Xue et al. 79% 0.60 76% 79% 3*10-13 80% 0.48 67% 57% 3*10-2 

Cabrera et al. 80% 0.60 77% 78% 5*10-15 78% 0.54 77% 78% 10-3 

Bikadi et al.  80% 0.60 80% 79% 10-14 79% 0.57 76% 81% 4*10-3 

previous work - test sets not independent 

Huang et al.c  81% - - - - 90%c 0.80c 89% 89% 4*10-7 

Wang et al.d 75% - - - - 88%d 0.73d 92% 73% 4*10-16 

a The precision and recall scores are given for the non-substrate class. b The P-values are determined using a Fisher’s 

exact test on the cross-validation or test set confusion matrices. c Huang et al.20 used a feature selection scheme that 

chooses a set of descriptors to maximize the accuracy mostly on the test set (there called ‘validation set’, see Eq. 11 

in Huang et al.20). Therefore, the reported accuracy cannot be considered to come from an independent test set since 

the modeling parameters were adjusted to better fit this test set. This is also evident in the reported test set accuracy 

greatly exceeding the cross-validation accuracy; here, the latter is likely to be a better estimate of model 

performance on unseen data. Consequently, the test set precision and recall are likely biased upwards. d In Wang et 

al.,10 similarly to the Huang et al. case described above, descriptors appear to have been selected based on a set of 

compounds that included the test set, meaning the test set was not evaluated independently of the model training 

procedure. Additionally, Wang et al.10 use a non-random train/test partitioning scheme (see Methods in Wang et 

al.10) that ensures that each compound in the test set has another molecule very similar to it in the training set. This 

is likely to bias the estimates of test accuracy upwards as such method sampling does not evaluate the models’ 

ability to generalize across diverse compounds. Again, these factors would explain the unusual finding of a test set 

accuracy being significantly above the cross-validation accuracy. 

Dominant role of molecular size and specific volume. Since the interpretability is among the 

main prerequisites of a practically usable QSAR model, we sought to develop a model relying on 

few molecular features, thus generating easily understandable guidelines which can be taken into 

consideration by medicinal chemists in the process of designing novel pharmaceuticals. By 

performing forward attribute selection using the SVM, we selected a combination of two most 

substrate/non-substrate discriminating features: the number of atoms (nAtom) and the volume of 
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a molecule (VABC, Table 2). The nAtom is significantly more predictive (P = 3*10-4, t-test) than 

the next best CDK descriptor apol (sum of the atomic polarizabilities); similarly, the 

nAtom+VABC combination is more predictive than the nAtom+nAtomP (number of atoms in the 

largest pi chain) combination (P = 5*10-4, t-test). These features are directly related to the ones 

previously reported to be important for P-gp-mediated transport: size, weight or bulkiness of 

molecule.9,12,20,35 The molecular van der Waals volume36 (VABC) is calculated as the sum of the 

contributions of all atoms, with negative contributions of the number of bonds involving non-

hydrogen atoms and additionally for the number of rings, particularly for aromatic rings:  

 

Eq. 1. VvdW (Å3/molecule) = all atom contributions - 5.92NB - 14.7RA - 3.8RNA 

where NB stands for the number of bonds, RA for the number of aromatic rings, RNA  the number 

of non-aromatic rings; atom contributions from Zhao et al.36 are given in Table S2. Thus, VABC 

is highly correlated to the number of atoms (nAtom), allowing us to create a normalized version: 

“specific volume” (specVol), the volume per atom for the given compound. Note that this 

"specific volume" is not, in fact, a measure of molecular size, as it does not appreciably correlate 

to either nAtom, molecular weight or VABC (Figure S2); the specVol descriptor should rather be 

understood as a reciprocal of molecular density. An SVM model trained with only nAtom and 

specVol features yields a cross-validation accuracy of 75.4% and an AUC of 0.83. Plotting 

nAtom versus specVol (Figure 4) reveals that a simple rule combining the two variables can 

separate the majority (recall = 57.7%) of non-substrates with 88.7% precision (Figure 5a): 

compounds with less than 35 atoms (including H) or with specific volume more than 7.3 Å3/atom 

are very likely to be non-substrates. Conversely, almost all P-gp substrates are large and dense 

molecules. The same rule can be successfully applied to compounds from other studies, yielding 

78.0% precision for detecting non-substrates on the Penzotti et al.6 data, and 76.3% precision for 

non-substrates on Bikadi et al.11 data. 
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Table 2. The most informative single descriptors for P-gp substrate recognition in a SVM 

classification model. 

CDK 

descriptor 

name 

Description Accuracy (std. 

dev.)a 

AUC (std. 

dev.)a 

nAtom The number of atoms in a molecule (including H) 70.8% (0.2%) 0.796 

(0.001) 

apol The sum of the atomic polarizabilities (including implicit 

hydrogens). 

70.2% (0.1%) 0.787 

(0.001) 

bpol The sum of the absolute value of the difference between atomic 

polarizabilities of all bonded atoms in the molecule (including 

implicit hydrogens) 

69.2% (0.1%) 0.780 

(0.001) 

MLogP Mannhold LogP;37 a rough approximation of the LogP from the 

number of carbon and heteroatoms 

68.2% (0.6%) 0.774 

(0.001) 

Additional descriptor 

JChem LogPb LogP calculated with Instant JChem software38 58.0% (0.1%) 0.632 

(0.002) 

a The average and standard deviation are given for the accuracy (% correctly classified compounds) and the AUC 

scores obtained in 5 runs of 4-fold cross-validation testing of the SVM trained on single-descriptor datasets. b In 

addition to the four top ranked CDK descriptors (by cross-validation AUC, top part of table), a highly accurate LogP 

estimate38 is included for comparison. 
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Figure 4. The number of atoms (nAtom) and the specific volume (specVol) discriminate the P-gp substrates from 

non-substrates. The two descriptors are complementary: by combining them into a simple rule (thick lines on the 

plot), the majority of non-substrates can be distinguished as compounds with nAtom<35 or specVol>7.3 Å3/atom. 

All training set compounds are plotted as points, with the class denoted by the color. A single outlying non-substrate 

at (244, 6.423) is omitted for clarity. The overlaid tables contain cross-validation performance scores of the SVM 

classifier trained on the full set of 183 CDK descriptors (upper table), and of the nAtom-specVol rule shown on the 

plot (lower table). 

Note that the dominant influence of the atom count and the specific volume in the model does 

not preclude that other molecular features have some bearing on the compounds’ propensity for 

being a P-gp substrate; the rest of the CDK descriptors, when combined, are necessary to explain 

the difference in accuracy from 75.3% for the simple nAtom-specVol model to 88.2% in the 

complete model. An analysis of which single descriptors contribute most to accuracy of an SVM 

model when added on top of the nAtom and specVol (Table 3) has highlighted the importance of 

the number of atoms in largest pi chain (nAtomP), which alone contributes another 3.2% of 

accuracy. A rule-based model that includes the features complementary to nAtom and specVol 
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(Table 3) takes advantage of two extra descriptors to improve accuracy by 5% while remaining 

simple and interpretable (Figure 5b). 

 

Table 3. Descriptors that best complement the number of atoms and molecular volume in SVM 

models. 

CDK descriptor 

name 

Description Excess 

accuracya 

Excess 

AUCa 

nAtomP The number of atoms in the largest pi chain +3.2% +0.047 

khs.sssCH Kier-Hall smarts: [CD3H](-*)(-*)-*. The number of 

carbon atoms bound to three non-hydrogen atoms 

with single bonds 

+3.4% +0.043 

khs.aaCH Kier-Hall smarts: [C,c;D2H](:*):*. The number of 

aromatic carbon atoms bound to two non-hydrogen 

atoms  

+1.9% +0.039 

HybRatio Hybridization ratio: nsp3/(nsp3 + nsp2), considering 

carbon atoms only 

+2.8% +0.038 

naAromAtom The number of aromatic atoms of a molecule +2.1% +0.035 

khs.ssssC Kier-Hall smarts: [CD4H0](-*)(-*)(-*)-*. The 

number of carbons bound to exactly four non-

hydrogens 

+1.8% +0.034 

nAromBond The number of aromatic bonds of a molecule +1.9% +0.034 

additional descriptor 

JChem LogPb LogP calculated with Instant JChem software38 +4.7% +0.046 

 Baseline: 75.9% 0.827 

a Including these descriptors leads to the highest increase in SVM cross-validation accuracy (% correctly classified) 

and AUC scores when examined in addition to the baseline dataset which contained only the number of atoms 

(nAtom) and molecular volume (VABC). b In addition to the seven top ranked CDK descriptors (by excess cross-

validation AUC, top part of table), a highly accurate LogP estimate38 for comparison. 
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Figure 5. Rule-based models describing P-gp substrate specificity. The basic nAtom-specVol based rule for precise 

non-substrate separation (A) can be further enhanced with molecular descriptors that best complement molecular 

size and volume (Table 3), or with molecular fragments found to be significantly enriched at P-gp substrates or non-

substrates (Table S3) which could not be separated by nAtom and specVol, giving more accurate models for P-gp 

substrate recognition (a molecular descriptors based rule B, and fragment based rule C). The symbol “A” at 

molecular fragments structures denotes any non-hydrogen atom. 
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To more thoroughly evaluate the importance of molecular hydrophobicity, in addition to the 

CDK LogP estimates, we tested a highly accurate ChemAxon LogP estimate38 and found it 

significantly predictive, but only after having controlled for the nAtom and specVol (Table 3). 

Alone, this descriptor is not highly predictive (Table 2), therefore the influence of LogP, while 

notable, is secondary to molecular size and specific volume. 

Molecular fragments contributing to P-gp efflux. While the overall molecular properties, 

such as the size and density, greatly affect the P-gp substrate propensity of a molecule, it is 

possible that specific structural fragments could further fine-tune the molecular interactions with 

P-gp and modulate the efflux. The large size of our dataset enables us to test this hypothesis and 

search for such fragments. To this end, we created a subset of the substrates and non-substrates 

matched by their nAtom and specVol properties (see Methods), arriving at 376 compounds; this 

set roughly corresponds to the area in the nAtom-specVol plot (Figure 4) where the two classes 

overlap. The matching procedure allows us to find pharmacophores that facilitate (or prevent) P-

gp efflux beyond their contribution to the nAtom or specVol. We found 7 such ‘effluxophores’ 

and 17 ‘anti-effluxophores’ which are at least 2x enriched in either group (P<0.002 by Fisher’s 

exact test, corresponds to false discovery rate=7.3%); Table 4, Table S3. The effluxophores 

contain amines, particularly secondary amines linked to short aliphatic chains, and aromatic 

rings, while the anti-effluxophores tend to describe aliphatic rings, or short saturated aliphatic 

chains with branching points or with oxygens (carbonyl or ether). 

Based on the enrichment of these fragments in the substrate or non-substrate classes, we infer 

that excluding an effluxophore (or including an anti-effluxophore) during compound design and 

synthesis would lead to an increased probability of making a drug impervious to P-gp efflux. To 

computationally verify this principle, we tested whether including the information on occurrence 

of these molecular fragments improves the rule to discern substrates from non-substrates, while 

retaining its interpretability. Indeed, the rules including (anti)effluxophores have led to a 

substantial increase in recall to 74.1% (effluxophore rule, Figure 5c) for non-substrates, 

compared to the baseline recall of 57.7% for the nAtom-specVol rule (Figure 5a), while retaining 

precision at a high level (Table 1). Importantly, the merit of the simple nAtom-specVol rule 

should be viewed through its ability to summarize the principal determinants of small molecule 

recognition by P-gp, rather than through its predictive power. The extended rule models, or the 
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more complex SVM model, would serve better in scenarios where potential drug candidates are 

evaluated for P-gp substrate-likeness and high accuracy is desired. 

 

Table 4. Examples of molecular fragments strongly enriched in P-gp substrates or non-

substrates. 

Substructures enriched in substrates 

 
p-valuea: 10-6 

enrichment: ∞ 

95% CIb: N/A 

excess accuracyc: +2.59% 

excess AUCc: +0.020 

 
p-value: 2·10-3 

enrichment: 5.67 

95% CI = [1.69, 19.02] 

excess accuracy: +0.84% 

excess AUC: +0.006 

 
p-value: 8·10-4 

enrichment: 3.71 

95% CI = [1.65, 8.35] 

excess accuracy: +1.14% 

excess AUC: +0.006 

 
p-value: 10-5 

enrichment: 3.21 

95% CI = [1.83, 5.65] 

excess accuracy: +1.37% 

excess AUC: +0.012 

Substructures enriched in non-substrates  

 
p-value: 8·10-4 

enrichment: 14.0 

95% CI = [1.86, 105.4] 

excess accuracy: +2.07% 

excess AUC: +0.023 

 
p-value: 2·10-3 

enrichment: 7.50 

95% CI = [1.74, 32.34] 

excess accuracy: +1.22% 

excess AUC: +0.012 

 
p-value: 3·10-5 

enrichment: 6.50 

95% CI = [2.31, 18.26] 

excess accuracy: +3.19% 

excess AUC: +0.028 

 
p-value: 9·10-4 

enrichment: 3.22 

95% CI = [1.57, 6.62] 

excess accuracy: +2.89% 

excess AUC: +0.024   

a P<0.002 by Fisher’s exact test is required for declaring enrichment. Four fragments with the highest enrichment 

shown for substrates and for non-substrates; a more comprehensive list is in Table S3.  The enrichment was tested in 

sets matched by nAtom and specVol, thus these fragments contribute to the substrate-non-substrate distinction 

beyond their influence on nAtom and specVol. The letter ‘A’ in molecular fragment structures denotes any non-

hydrogen atom. b The 95% confidence interval for enrichment of this fragment could not be determined as the 

fragment was completely absent from all non-substrates in the matched sets. c Information about presence or 

absence of single molecular fragments improves the predictive performance of the SVM model when added to the 

simple nAtom-specVol model, and hence is valuable in discrimination between P-gp substrates and non-substrates. 

Experimental validation using independent cell lines. To experimentally validate the utility 

of our SVM model in predicting P-gp substrate propensity, we employed an independent 

biological model system, consisting of a pair of cell lines not present in the NCI-60 screen: the 

commonly used HEp-2 cell line, which was previously39 used to obtain a vincristine-resistant 
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derivative, the VK2 cell line. We found high levels of the P-gp protein in VK2 cells (Figure 6a), 

and, accordingly found these VK2 cells were more resistant to known P-gp substrates vincristine, 

paclitaxel, and colchicine (Figure 6b) compared to the HEp-2 cells lines. This resistance could be 

abolished using P-gp inhibitors verapamil and CP100356 (Figure 6b). However, when treating 

the VK2 cells with verified P-gp non-substrates such as 5-FU, mercaptopurine and chlorambucil, 

we observed similar cytotoxic effects in both VK2 and HEp-2 (Figure 6c), where the addition of 

verapamil had no effect (Figure 6c). These positive and negative controls demonstrate that 

measuring growth inhibition in the HEp-2/VK2 cell line pair is a good experimental assay for 

validating P-gp substrate propensity of compounds. Notably, while a negative result in this assay 

guarantees a P-gp non-substrate, the converse is not necessarily true: VK2 might have other 

resistance mechanisms in addition to P-gp overexpression which would then yield a false 

positive result. We thus use the HEp-2/VK2 comparison assay only to verify the non-substrate 

predictions of our computational SVM model. 

To validate the accuracy of our model, we chose among the compounds that our SVM model 

predicts to be P-gp non-substrates, but that were labeled as P-gp substrates in previous 

investigations6,11. First, we chose three compounds with very high-confidence SVM predictions 

of being non-substrates: tramadol (SVM probability for non-substrate = 98.9%), estrone (98.8%) 

and digitoxigenin (98.7%); Figure 6d. In these three compounds, our cytotoxicity assay results 

show that VK2 and HEp-2 exhibit similar sensitivity, suggesting they are, in fact, not P-gp 

substrates (Figure 6d). Accordingly, verapamil addition did not affect VK2 drug sensitivity 

(Figure 6d). 

Second, we chose three commonly used chemotherapeutics; Figure 6e. Previous studies6,11 

have labeled the topoisomerase poison topotecan as a P-gp substrate. Here, we test two of its 

close analogs that our SVM model predicts to be non-substrates: camptothecin and SN-38 

(administered to the cells as the pro-drug irinotecan). We also included another topoisomerase 

inhibitor - etoposide - previously labeled as a P-gp substrate,6,11 but predicted to be a non-

substrate by the SVM. In all test cases, there was no difference in activity against HEp-2 and 

VK2 cells, and co-administering verapamil with the drugs had no effect on VK2 cell growth 

(Figure 6e), thus confirming our prediction. In summary, we have experimentally validated our 

SVM model’s ability to recognize P-gp non-substrates and provided evidence that the previous 

assignment of given six compounds to the P-gp substrate class should be reconsidered. 
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Figure 6. Sensitivity of the P-gp overexpressing cell line VK2 to P-gp substrates and non-substrates. (A) The 

vincristine-resistant cell line VK2
39 strongly overexpresses the P-gp protein, relative to its parental HEp-2 cell line. 

(B-E) Dose-response curves for VK2 and HEp-2 cell lines grown with or without P-gp inhibitors verapamil (all 

panels) or CP 100356 (panel B). All points are averages of at least two biological replicates, each done in a technical 

quadruplicate. (B) Known P-gp substrates vincristine, paclitaxel and colchicine. (C) Known P-gp non-substrates 5-

FU, mercaptopurine and chlorambucil. (D) Three compounds, estrone, tramadol and digitoxigenin, selected for 

having a high-confidence non-substrate prediction by our SVM model, but labeled as a P-gp substrates in previous 

datasets .6,11 (E) Three anticancer drugs selected for being of broad therapeutic interest, predicted to be P-gp non-

substrates by our SVM model: camptothecin and SN-38, analogues of the drug topotecan, labeled as a P-gp substrate 

in previous datasets,6,11 and the similarly labeled etoposide. 

 

A P-gp Web server. To facilitate the re-use of our P-gp substrate propensity models by 

colleagues working in the field and medicinal chemists in general, we have implemented the 

SVM model, rule-based models and effluxophore detection in a Web server at 

http://pgp.biozyne.com. The Biozyne P-gp server is free for non-commercial use. 

http://pgp.biozyne.com/
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Strategies for designing P-gp (non)substrate compounds. The most accurate way to predict 

P-gp substrate propensity is using our SVM classifier (Table 1) that combines many descriptors 

in a complex model. Medicinal chemists could optimize their existing compound library by 

designing novel variants in silico and submitting them to the SVM (implemented on our Web 

server, or elsewhere) to quickly predict if the alternative structures are substantially less/more 

likely to be a P-gp substrate. Then, the hypothetical structures with the desired properties can be 

synthesized and tested. 

Alternatively, a simpler approach would be to add, remove, or modify an "effluxophore" 

functional group (Table 4, Table S3) from an existing structure. Further extrapolating this 

concept, molecules could also be modified to optimize the overall molecular features -- a 

prominent representative being the specific volume, specVol (Figure 5) -- to alter the P-gp 

propensity. 

To investigate the feasibility of these design principles, we searched for pairs of compounds 

that have substantial structural similarity overall (Tanimoto coefficient ≥ 0.85), while differing 

specifically in one of the effluxophores; we found 10 such pairs (examples in Figure 7A and all 

pairs in Table S4). Similarly, we searched for pairs that are overall similar but differ in their 

respective specVol value; 6 pairs were identified (Figure 7C, Table S5). One member of each 

pair was chosen amongst 448 known P-gp substrates in our training set, while the other, matched 

compound in the pair was chosen from any of the 12998 compounds available from the NCI-60 

screen. 

Within these structure-matched pairs, we compared the compounds' differential biological 

effect on the ADR-RES versus OVCAR-8 cell line, as well as across the other 58 cell lines. The 

compounds lacking a P-gp efflux promoting group consistently displayed both (a) a weaker 

differential activity on ADR-RES (P=0.0002, paired t-test, two-tailed, Fig. 7B), and (b) a weaker 

correlation over 58 cell lines, when compared their counterparts that do possess an efflux-

promoting group (P=0.06, Fig. 7B). An analogous relationship is readily observable where 

increasing the specVol of a P-gp substrate consistently decreases the P-gp's propensity for the 

compounds judged by both biological criteria (P=0.02 and 0.013 in Fig. 7D). Thus, introducing 

or abolishing the functional groups (Table 4, Table S3), and changing the molecular specific 

volume, are two viable strategies to circumvent (or promote, if so desired) P-gp targeting. 
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Figure 7. Structurally similar pairs of compounds which differ specifically in one of the effluxophores (A) show 

differential biological activity (B). The compounds lacking a P-gp efflux-promoting group consistently display a 

weaker differential activity on ADR-RES vs. OVCAR-8 cell lines ("difference", x axis) and a weaker correlation 

with P-gp expression over 58 cell lines ("correlation", y axis). Similarly, within pairs of structurally similar 

compounds which differ in the value of the specVol descriptor (C), increasing the specVol of a P-gp substrate 

consistently decreased the P-gp's affinity for the compounds, as judged by both biological criteria (D). P values are 

by paired t-test. 
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DISCUSSION AND CONCLUSION 

Prior QSAR studies that developed computational models to discriminate the P-gp substrates 

from non-substrates depended on relatively small compound training sets that were largely re-

used from one study to the next (Figure 1). It is perhaps hard to expect a significant step forward 

in understanding the regularities underlying a compound’s recognition by P-gp if only minor 

improvements have been made in the publicly available sets of compounds, even though the 

modeling approaches have become increasingly sophisticated and accurate.  

Here, we aim to address this situation by mining the most comprehensive public database of 

biological activity of compounds against a panel of 60 human cancer cell lines, the NCI-DTP 

database. Extensive information is available from this database including ABCB1 mRNA levels 

that were derived through multiple independent experimental measurements. We used this 

information to search for compounds whose biological activity strongly anti-correlates to 

ABCB1 expression (the putative substrates), or is completely uncorrelated to ABCB1 expression 

(the putative non-substrates). In principle, the approach to create a QSAR compound series from 

existing cell line cytotoxicity screening data could be applied to other target genes as well, given 

there is sufficient information of the gene expression across multiple cell lines. Our work thus 

exemplifies an useful scheme of linking the biological characteristics of cell lines (here, the 

expression data), the cells' response to compounds and the compounds' structural features. 

Recently, two comprehensive screens using hundreds of cell lines (~10x larger than the NCI-60 

panel) have been performed, while simultaneously characterizing the genomic, epigenetic and 

transcriptomic properties of the cells - the "Cancer Cell Line Encyclopaedia",40 and the 

"COSMIC Cell Line Project".41 As more compounds are processed in these new screens, they 

will become invaluable for QSAR studies targeted to many different genes or pathways with 

relevance to cancer and other disease. 

Here, we paid special attention to the P-gp overexpressing NCI/ADR-RES multidrug resistant 

cell line which, conveniently, has its non-resistant counterpart (the OVCAR8) also present in the 

NCI-60 panel.32,33 Thus, the NCI/ADR-RES - OVCAR8 pair presents a unique opportunity to 

establish a second criterion to verify the putative substrates/non-substrates detected by the 

biological activity signature on the other 58 cell lines. 

Our data mining approach to constructing this P-gp substrate dataset could be considered as a 

more general case of the use of cytotoxicity assays, widely used to test P-gp substrates (reviewed 
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in Szakács et al.5 and Didziapetris et al.12). Therein lies a limitation of our approach: assays from 

this class are applicable only to compounds that have some cytotoxic activity. In particular, we 

require at least a small part of the NCI-60 cell line panel (12/60 cell lines) to have growth 

inhibitory activity above the detection threshold (typically meaning that GI50<10-4 M; see 

Methods). Note that this requirement is not too stringent: some commonly used (not anti-cancer) 

drugs meet this criterion, including the antidepressant nortriptyline, the antispasmodic 

cyclobenzaprine, and the anti-protozoal emetine. Nevertheless, given that our SVM and rule-

based models were trained on compounds with cytotoxic activity, it seems prudent to 

recommend their application on other cytotoxic compounds. In this context, development of 

QSAR models that would help direct the design of antitumor drug candidates to safeguard them 

against P-gp activity seems timely, given the recent biological research on ‘cancer stem cells’ 

that cause relapses of cancer after therapy due to their resilience against many drugs in clinical 

use today,42 in-part due to P-gp activity.43 

Our approach aims to take advantage of the natural variability in P-gp levels across the NCI-60 

panel compared to previous work where a cell line may be engineered to over- or under-express 

the ABCB1 gene to detect P-gp substrates. Such an approach was validated in a previous study28 

precisely on the NCI-60 cells, where mRNA levels were measured by quantitative PCR for 

ABCB1 and other drug transporters, and six compounds with strong ABCB1 mRNA-cytotoxic 

anti-correlations were experimentally verified as novel P-gp substrates. The authors noted that 

relying on mRNA levels as a proxy for P-gp activity has its caveats. For instance, mRNA levels 

are not linearly indicative of protein levels, there are additional complex layers of regulation 

between mRNA and translation into the protein product,44 such as mRNA secondary structure 

and codon biases;45 however, the mRNA and protein levels do agree quite well for ABCB1/P-gp 

across the NCI-60 panel.28 Additionally, given that ABCB1 is a member of the large ABC 

transporter family, some substrate specificity overlap is expected between other family members. 

Consequently, the expression levels of other ABC transporters may confound our analysis. Still, 

this effect should be mild since ABCB1 has a dominant role in drug efflux over other 

transporters:28 the other two relevant multidrug transporters ABCC1 (MRP1) and ABCG2 (MXR 

or BCRP) exhibited weaker correlations of mRNA and activity profiles than the ABCB1.28 

Furthermore, given our set of eleven ABCB1 mRNA level measurements (this includes the 

quantitative PCR measurements from Szakács et al.28 but also 10 additional ABCB1 mRNA data 
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points per cell line), we found a striking difference in the mRNA levels of ABCB1 between the 

NCI/ADR-RES and OVCAR-8 cells, but not other ABC transporters (Figure 2c). The strongly 

elevated ABCB1 expression is supported by a previous analysis of gene copy numbers in various 

cell lines,46,47 that found a sharp peak in gene amplification in the region of chromosome 7 

corresponding to the location of the ABCB1 gene (at ~87 megabases) in the ADR-RES cells,48 

but not in the OVCAR-8 cells.49 

By exploiting the sizeable NCI-DTP database containing tens of thousands of compounds, 

together with the knowledge of the cellular expression levels of the ABCB1 gene, we arrived at a 

dataset of 934 P-gp substrates and non-substrates, the largest publicly available collection. The 

size of the dataset allows us to search for principal determinants of P-gp recognition in the 

structure of the molecules with greatly increased statistical support over the previous attempts. 

This point might be especially relevant given that the molecular features previously described as 

characteristic of P-gp substrates are typically inter-correlated and thus a larger dataset allows 

them to be disentangled with more confidence. Our feature selection scheme that employed the 

SVM has singled out the size of the molecule, measured by the number of atoms (nAtom), as the 

most informative single descriptor for P-gp substrate recognition. Among the other descriptors, 

the one that complemented nAtom best was found to be the molecular volume, or equivalently, 

its normalized version, the specific volume (specVol, in Å3/atom; note that this is equivalent to 

reciprocal density). 

The salient role of the nAtom descriptor is not surprising, given that many previous studies 

have highlighted features describing various aspects of the size of the molecule: molecular 

weight,12,20,50 surface area,27,51 or bulkiness.9,35 To our knowledge, the predictive value of the 

specVol - the specific van der Waals volume per atom (uncorrelated to overall volume, Figure 

S2) - for P-gp recognition was not previously discussed. This property is easily calculated using 

a simple formula for determining molecular volume (Eq. 136) which, however, does reflect other 

molecular features said to be relevant for P-gp transport in prior research. Most prominently, the 

formula for volume has a strong contribution of the number of aromatic rings, and aromaticity of 

molecules has been discussed as relevant.6,52,53 Next, the volume also reflects flexibility of the 

molecule: as seen from the formula (Eq. 1), rings (even if not aromatic) reduce both the 

calculated volume (thus also the specVol) and the flexibility. Finally, the number of hydrogen 

bond donors and/or acceptors (N and O), widely cited as important for P-gp recognition,7,12,50,54 
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also has a bearing on the specVol as N and O have a lower contribution to the molecular volume 

than C (Table S2). Since all of the above variables contribute to the specific volume of the 

molecule, and are thus correlated to a degree, it is not straightforward to determine the one most 

likely to be the main causal factor behind P-gp recognition. A larger dataset that offers more 

statistical support for analyses, combined with a state-of-the-art machine learning method - the 

SVM - allows us to get a step closer towards an accurate model: in our data, the number of atoms 

and the specific volume has proven to be the principal determinants of P-gp recognition. A 

simple, convenient rule derived from these features separates the majority of the P-gp non-

substrates with very high precision (Figure 4): compounds with nAtom<35 or specVol>7.3 

Å3/atom are very likely to be non-substrates. 

Still, these two variables are not sufficient to reproduce the accuracy of the SVM model using 

the full set of 183 molecular descriptors (Table 1), meaning other molecular features contribute 

to classification of P-gp substrates, in addition to nAtom and specVol. The most relevant single 

descriptors (Table 2) are connected with size of conjugated systems and aromaticity - possibly 

indirectly describing condensed aromatic rings - followed by the degree of branching and the 

saturation in the molecule. A feature that deserves special mention is the LogP. The importance 

of LogP for discriminating P-gp substrates from non-substrates in QSAR studies has been 

contentious: it was claimed to be either very important,10,25,26 or of little relevance.12,20,27 It is 

possible that LogP could have been declared as relevant in past studies, when in fact it found as 

such only as it was correlated to some other feature relevant for P-gp recognition, for instance 

aromaticity. Closer examinations of the mechanism of P-gp activity have indicated that P-gp 

recognizes and binds substrates that are dissolved in the membrane, implying that the membrane 

solubility, and consequently the LogP, determines substrate recognition.25,55 On the other hand, 

ligand docking simulations into the mouse P-gp crystal structure56 have indicated that the 

hydrophobicity has little bearing on the thermodynamics of transferring a ligand from water to 

the P-gp binding site. Our data supports the importance of LogP for discrimination of P-gp 

substrates from non-substrates, but only after controlling for the number of atoms and specific 

volume. As a single feature, LogP was not highly informative; thus, the number of atoms and the 

specific volume are dominant in distinguishing the P-gp substrates. 

While the global physicochemical properties of molecules, such as the size, the aromaticity, or 

the number of hydrogen bond donors/acceptors, may prove to be sufficient to roughly describe 
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how P-gp recognizes its substrates, there are finer points to be made to more accurately 

characterize the process of recognition.50 For instance, the P-gp substrates may be recognizable 

by a spatial separation of the electron donor groups,7 or possibly through a more complex 

definition of P-gp substrate pharmacophore points involving hydrophobic groups, aromatic rings, 

H-bond acceptors and donors.54,57 Recent studies have taken a more statistically-inspired 

approach, searching for molecular fragments enriched in substrates or non-substrates.10,19,58 Such 

fragments can be easily and quickly identified from databases of 2D structures without needing 

to know or simulate the spatial conformation(s) of the compound. Additionally, a simple set of 

rules that includes fragments to avoid or to include is easier to follow for chemists in the stage of 

molecular design. We have thus followed a similar path in discovering P-gp ‘effluxophores’ and 

‘anti-effluxophores’ (Table 4, Table S3) by enrichment in substrates and non-substrates, 

respectively, with two important differences over past work. First, we searched for enriched 

fragments only in substrate-non-substrate pairs matched in two global properties of molecules 

found to be important for recognition (nAtom and specVol), thus controlling for the confounding 

effect of these properties. In other words, the fragments we identified are guaranteed to 

contribute to P-gp recognition independently of nAtom and specVol. Second, a larger dataset 

allows us to impose a strict check for statistical significance of the enrichment, ensuring a low 

false positive rate of fragments detected to be relevant. Third, we verified that these features 

(presence of absence of fragments) actually are important for discrimination of P-gp substrates 

from non-substrates by including them in the baseline nAtom-specVol SVM model: the simple, 

interpretable features contribute significantly to the classification accuracy (Table 4). A subset of 

the fragments can be selected to refine the simple nAtom-specVol rule (Figure 5), providing a 

more accurate yet still straightforward guide for synthesis of compounds more likely to be non-

substrates. 

In addition to predicting P-gp substrates, another related task is predicting compounds that 

inhibit P-gp activity, which have, for instance, been clinically investigated as adjunct therapy for 

some cancers.59 The specific SVM model we have trained on a set of P-gp substrates and non-

substrates cannot be used to predict P-gp inhibitors - past work has shown these are two separate 

modeling tasks.60–62 In particular, many P-gp inhibitors are allosteric - they do not bind to the 

substrate site and are consequently unlikely to resemble a P-gp substrate.60 Additionally, some P-

gp substrates do not competitively inhibit the transport of other substrates.61 Accordingly, 
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structural features were found to substantially differ between the compounds in the two sets: a 

simple unsupervised learning approach was successfully used to distinguish the P-gp substrates 

from the inhibitors.62 For researchers interested in predicting P-gp inhibitors, a recent paper by 

Broccatelli et al.63 introduces a large set of compounds, used to derive highly predictive QSAR 

models; our work aims to do the same for P-gp substrate prediction. 

In conclusion, our work exploits a readily available source of high-throughput biological 

screening data on cancer cell lines to extract a novel set of P-gp substrates and non-substrates. 

The stringent internal consistency checks and an emphasis on maximizing statistical support in 

the compound selection process guarantees a high quality dataset that agrees with previously 

known P-gp substrates. The enlarged number of available compounds over previous publicly 

available datasets allowed us to construct an accurate and statistically sound SVM classification 

model, which we experimentally validate by using an independent biological test system. 

A search for relevant features singled out the number of atoms and the specific atomic volume 

as the principal determinants of P-gp recognition: all P-gp substrates are large, dense molecules. 

In addition to these features, a number of molecular fragments - ‘effluxophores’ and ‘anti-

effluxophores’ - were found to discriminate the P-gp substrates from the non-substrates. The 

derived rule-based models are interpretable, yet retain their accuracy, and can help direct 

synthesis of novel anticancer agents that would circumvent P-gp mediated resistance to therapy. 

MATERIALS AND METHODS 

NCI-DTP cell line screening data. We downloaded the September 2010 release of the human 

tumor cell line screen database from the National Cancer Institute’s Developmental Therapeutics 

(NCI-DTP) program (http://dtp.nci.nih.gov/docs/cancer/cancer_data.html). From the database, 

we used the -logGI50 - GI50 is the concentration of each compound that retards cell growth by 

50% - as a measurement of activity of a compound against a given cell line. The NCI-DTP 

typically tests a compound once on each of the 60 used cell lines. Some compounds may not 

have data for some cell line; we allow a maximum of 3 such missing measurements for a 

compound. Most compounds are tested at the largest concentration of 10-4 M; if the compound 

has very little or no activity at this concentration, the NCI-DTP database provides this biggest 

tested concentration as the ‘default’ GI50 value. Our dataset contained only the compounds 

where at least 10 cell lines had non-default measurements. In practice, this means that the 
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compounds with no appreciable cytostatic activity on at least 10 cell lines were filtered out, 

leaving a total of 12998 compounds of the initial ~43000. Due to the special importance of the 

OVCAR8 and NCI/ADR-RES cell lines, we imposed the additional condition that the 

measurements for these two cell lines must not be missing or default (i.e. no activity), leaving 

11739 compounds. Some compounds may be tested in more than one experiment, in which case 

we take the average GI50 value over the experiments, except in the case of ‘default’ GI50 values 

which don’t contribute to the averages. The GI50 datasets and scripts that perform the filtering 

are available on request from the authors. 

Collecting and preprocessing ABCB1 expression data. The cellular expression levels of P-

gp mRNA were determined using data downloaded from the August 2010 release of the NCI-

DTP molecular target data available at http://dtp.nci.nih.gov/mtargets/download.html. In 

particular, we extracted P-gp expression measurements from the following Affymetrix 

microarray data sets: WEB_DATA_CHIRON.ZIP (probes 243951_at, 209993_at and 

209994_s_at), WEB_DATA_GENELOGIC_U133.ZIP (same three probes), 

WEB_DATA_NOVARTIS.ZIP (probes 1575_at and 1576_g_at), and the mRNA levels 

measured by quantitative PCR from WEB_DATA_ALL_MT.ZIP (columns MT79,29 MT161464 

and MT266328). In total, we had 11 P-gp mRNA level measurements for each cell line, with a 

small number of missing values. To summarize the 11 measurements into a single quantity, we 

performed a principal components analysis on this 11 P-gp expression x 60 cell lines table using 

the XLStat 2010 software (Addinsoft, Paris, France); Spearman correlations between cell lines 

were used. The first principal component (PC1) is the direction of strongest variability between 

cell lines in the full dataset and alone describes 51.9% variance of the 11 measurements. PC1 

was used as a summary for P-gp expression level; it strongly correlated to the 10 of the 11 

mRNA level measurements (r = 0.63-0.85, average r=0.75). Expectedly, the NCI/ADR-RES cell 

line had by far the highest PC1 value among the 60 cell lines (PC1=20.2), while the OVCAR8 

cell line had a below-average P-gp expression at PC1=-0.5 (arbitrary units, average PC1 over cell 

lines=0.0, standard deviation=2.9). The cell lines from the NCI-DTP panel previously known to 

be naturally multi-drug resistant are HCT-15, UO-31 and TK-10,65 and all have elevated PC1 

values in our data: rank 2/60, 4/60 and 10/60, respectively. P-gp expression data for the cell lines 

is available on request. 
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Forming the “substrate” and “non-substrate” compound classes. The “substrate” and 

“non-substrate” classes were formed according to the “difference” and “correlation” criteria: 

difference of cytostatic activities (-log GI50 values) of NCI/ADR-RES and OVCAR-8 cell lines, 

and Pearson’s correlation coefficient between the cytostatic activity and the ABCB1 gene 

expression (summarization of the eleven different measurements of ABCB1 mRNA levels, 

Figure 2a) over the remaining 58 cell lines in the NCI60 panel. The thresholds for the substrate 

class were iterated through: 1st, 2nd, 3rd etc. percentile of the data distribution for the 

“correlation” and ”difference” criteria independently. In other words, compounds with 

“correlation” and ”difference” above than n-th percentile were considered substrates. In the case 

of non-substrate class, the thresholds were set (centered around zero) so that the resulting 

number of non-substrate compounds approximately matched the number of substrates, ensuring 

balanced class proportions. At each iteration, the statistical support for the agreement between 

the two independent criteria was measured by the Fisher’s exact test P-value. The final cutoff 

values were chosen at the 8th percentile for substrates and at the mid-20% of compounds for 

non-substrates, which is the point where the number of substrates and non-substrates is 

maximized, while keeping the Fisher’s test P-value near-optimal (Figure 3). The resulting dataset 

consists of 958 compounds: 471 substrates and 487 non-substrates. Please refer to Figure 8 for a 

schematic overview of how the dataset was constructed. 

Preprocessing of chemical structures. The compounds structures were downloaded from the 

NCI website (December 2010 release, 66) and represented using SMILES strings. Prior to 

computation of the molecular descriptors, the SMILES were preprocessed using OpenBabel67: 

hydrogens were made implicit and salts were striped. In order to detect highly similar 

compounds in our dataset, pairwise Tanimoto similarity coefficients for Extended Chemistry 

Development Kit (CDK)34 fingerprints were calculated. For each pair of compounds that share a 

Tanimoto similarity of 1 (identical or nearly identical molecules, for examples see Table S1), the 

one with the lower confidence was removed from the dataset. The confidence score was 

measured as the proximity to the reference point (minimum for substrates, zero for non-

substrates) considering the “difference” and “correlation” criteria. In total, 24 compounds were 

removed from the dataset in this step. The compounds' structures in SMILES format and their 

substrate/nonsubstrate labels are listed in the Supporting Information (Table S6) or available for 

download at http://pgp.biozyne.com. 

http://pgp.biozyne.com/
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Figure 8. A schematic representation of the methods employed in our analysis, where the NCI-60 cancer cell line 

cytotoxicity screening database is combined with known ABCB1 expression levels and used to form a high-

confidence dataset of 448 P-gp substrates and 486 P-gp non-substrates. 

SVM training and performance measures. The molecules were represented by 183 2D 

molecular descriptors calculated with Chemistry Development Kit (CDK).34 The 934 compounds 

were split into a test set (120 randomly chosen compounds) and a training set (814 compounds of 

which 2 were not accepted by CDK when calculating the descriptors, so the effective training set 

size was 812). To train the SVM model, we used the LIBSVM software68 adapted for the Weka 

data mining environment.69 Following the recommendation of LIBSVM authors,70 we used with 

a Radial Basis Function (RBF) kernel, while optimizing the c (from 2-5 to 220) and gamma (from  

2-15 to 25) parameters in a grid search procedure. The model with the best Area Under ROC 

Curve (AUC) was obtained for c=23 and 𝛾=2-2; AUC=0.95. For model validation 4-fold cross 

validation was used, and to get more stable results latter was repeated 5 times with different 
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random initialization. The RBF (or Gaussian) kernel, 𝐾(𝑥𝑖, 𝑥𝑗) = exp⁡(−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2
), is a 

popular kernel function which allows the SVM to represent complex nonlinear relationships in 

the data by effectively adding a smooth “bump” around each data point. The choice of kernel 

influences the predictions by defining the manner in which the data points are deemed similar or 

dissimilar in. To ensure that the choice of RBF kernel was optimal for our modelling effort, we 

also repeat the above-described grid search procedure for the polynomial kernel while varying its 

two parameters: degree (from 1 to 5) and c (from 2-5 to 215). The highest cross-validation AUC 

for the polynomial kernel was obtained for c=2-1 and degree=2; the AUC was = 0.93 and the 

accuracy 87.6%, both somewhat lower than the accuracy obtained with the RBF kernel (see 

above) and we thus choose to keep the RBF kernel SVM as our primary classifier. Reassuringly, 

the individual predictions obtained with the RBF kernel and the poly kernel agree very well: for 

the 120 test set compounds, the P-gp substrate probabilities obtained with the best RBF SVM 

model and the best poly SVM model correlate with R2 = 0.90 (see Figure S3). Thus, the 

predictions are robust to the exact choice of the kernel and there is little kernel-dependent bias in 

our results.  

The predictive performance of our models was evaluated based on the number of true positives 

(TP), false positives (FP), false negatives (FN), and true negatives (TN) by the following 

performance measures: accuracy (Acc); precision and recall - class specific performance 

measures; the Matthews correlation coefficient (MCC) - provides a balanced evaluation of 

prediction, where MCC of 1 indicates perfect, and MCC of 0 random prediction. The measures 

are defined as follows: 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
 

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
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The AUC score is the probability that the classifier will rank a randomly chosen positive 

instance higher than a randomly chosen negative instance, AUC of 1 indicates perfect prediction, 

and AUC of 0.5 random guessing; for details, see Fawcett71]. Final scores are averages over five 

runs. Additionally, statistical significance of results was measured by P value of Fisher’s exact 

test. The best model was selected according to the cross-validation AUC score, and then 

additionally evaluated on the independent test set. The test set was in no way used to decide on 

any parameters used during the training phase. 

Feature selection. To select the most important molecular descriptors in P-gp substrate 

recognition, we used a forward feature selection scheme employing an SVM. The full, 183 

descriptor dataset was divided into datasets containing single descriptors and evaluated 

according to the cross-validation scheme as described above. The AUC and the accuracy of the 

SVM trained on the single descriptor were a measure of relevance for the descriptor. In the 

second iteration, the best descriptor from the first iteration remained fixed, while all pairwise 

combinations with other descriptors added one by one were evaluated for cross-validation 

performance of the SVM model. 

Enrichment of pharmacophores and training of rule-based models. To control for the two 

most important properties singled out by the feature selection scheme, the number of atoms 

(nAtom) and specific volume (specVol; in Å3/atom), matched pairs of compounds were created as 

follows: for each substrate, a corresponding non-substrate that lies within a radius of 0.04 

(pairwise substrate-non-substrate distances were calculated using [0,1] normalized nAtom and 

specVol attributes), with prerequisite that each compound can be used in substrate-non-substrate 

pairs at most once. For 376 compounds matched in such a way, presence of 4860 chemical 

substructures associated with bioactivity reported by Klekota and Roth72 was determined using 

OpenBabel.67 For each substructure present at least once the size of enrichment was calculated as 

ratio of frequencies of occurrences at substrate and non-substrate group. Finally substructures 

that are at least 2x enriched in one of the groups and are statistically significant (P<0.002 by 

Fisher’s exact test) were considered important in P-gp mediated efflux. In total 7 substructures 

enriched in P-gp substrates, and 14 enriched in P-gp non-substrates met these criteria (Table 4, 

Table S3). Information about presence or absence of fragments which occur in at least 10% of 

compounds (38/376) was used to further enhance the nAtom-specVol rule (Figure 5a). The 

“Repeated Incremental Pruning to Produce Error Reduction” (RIPPER)73 rule learning algorithm 
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implemented in Weka74 was trained on subset of molecules with nAtom>=35 and specVol<=7.3 

to give sets of rules which were then merged with nAtom-specVol rule, giving more accurate rule 

based model (Figure 5c). The molecular descriptors which best complement the molecular size 

and volume (Table 3) were used to train an additional rule based model (Figure 5b). A schematic 

overview of our modeling workflow, including the SVM model and others, is given in Figure 9. 

 

Figure 9. A schematic representation of the methods employed in our analysis, where the 934 compounds are 

characterized by CDK descriptors, used to derive a (1) highly accurate SVM model, the (2) simple nAtom-specVol 

rule, more complex and accurate (3) rule based models, and finally to find (4) molecular fragments enriched in 

substrates or non-substrates. 

Experimental section 

Cell Culture. The HEp-2 cell line, previously known as a larynx carcinoma cell line, but 

subsequently found to have been established from HeLa cells (www.atcc.org) was previously 

used to derive a vincristine-resistant counterpart called VK2.
39,75 Both cell lines were maintained 

in RMPI (Sigma) supplemented with 10% decomplemented fetal bovine serum (iFBS, Sigma), 
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2mM L-glutamine (Lonza), 100 U/ml penicillin, 100 μg/ml streptomycin (Gibco), and were 

incubated at 37 °C with 5% CO2 in a humidified incubator. 

Drug Susceptibility Testing. HEp-2 cells were seeded at 2500 cells/well in 96-well plate 

while 3000 cells/well were used for the VK2 line because of its longer doubling period. After 24 

h, cells were treated with indicated compounds and concentrations where highest DMSO 

concentration at <1%. Following a 72 h incubation, an MTT assay (Sigma) was performed per 

standard protocol, see e.g. Supek et al.,76 Ester et al.77 The absorbance (A) of the microtiter plate 

was measured on a microplate reader at 570 nm where absorbance is directly proportional to the 

number of living, metabolically active cells. When indicated, 1 hour prior to drug addition, cells 

were incubated with the P-gp inhibitors verapamil at 10 µM78 or 1 µM CP-100356,79 which we 

determined to be the highest concentrations that do not affect cellular viability (data not shown). 

Each treatment was performed in technical quadruplicates, with at least 2 biological replicates. 

Results were analyzed according to slightly modified protocol used at the NCI-DTP 

(http://dtp.nci.nih.gov/branches/btb/ivclsp.html ) as previously described.76,77 Briefly, a positive 

percentage of growth (PG) indicates cell growth following drug treatment, where percent growth 

is relative to a negative control (no drug). A PG of 100% shows that the treated culture grew as 

well as the negative control, and 0% means growth has stopped upon adding the drug. A negative 

percentage indicates cytotoxicity following drug treatment where -100% shows no cells survived 

the treatment at the specific drug concentration. 

Compounds. All compounds used for experimental testing were purchased from Sigma-

Aldrich and were all declared by the seller to have purity 98% or higher (paclitaxel, 5-FU, 

mercaptopurine, chlorambucil, estrone, tramadol, digitoxigenin and etoposide), except irinotecan 

(>97%), vincristine (>95%), colchicine (>95%) and camptothecin (>90%). 

Western Blotting. P-gp expression was analyzed by western blotting using the anti-Mdr 

antibody recommended for detection of P-gp and Mdr-3 of human origin (G-1, sc-13131, Santa 

Cruz Biotechnology). HEp-2 and VK2 were lysed using lysis buffer (50 mM Tris (Sigma) pH 

7.6, 150 mM NaCl (Kemika, Zagreb), 2 mM EDTA (Sigma) and 1% NP40 (BioRad), 

supplemented with protease inhibitors (Complete Mini protease inhibitors, Roche) for 30 min on 

ice. Cell extract was subsequently harvested and pelleted for 15 min at 13k rpm. Protein 

concentration was determined using the Pierce BCA Protein Assay Kit (Thermo Scientific) as 

per manufactures’ instructions and proteins were fractionated by SDS-PAGE on 8% gel, 
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transferred to PVDF membrane and immunoblotted using Mdr antibody (1:1000 dilution) 

followed by a goat anti-mouse conjugated HRP secondary antibody (1:5000 dilution) (Cell 

Signaling). SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific) was used 

for developing blots. 
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Supporting Table S1. Example pairs of near-identical compounds cleaned from the initial 

dataset. 

NSC Number Compound retaineda NSC Number Compound removeda 

17743 

 

17744 

 

670013 

 

675252 

 

44185 

 

32944 
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645305 

 

645301 

 

736612 

 

736611 

 

a Prior to training of classification models, the dataset was cleaned of compounds that share a 

Tanimoto coefficient of 1 to another compound in the training data, meaning they are structurally 

identical or near-identical compounds. Shown are five such example pairs, from each pair the 

compound with worse confidence based on “difference” and “correlation” criteria was removed 

from the dataset. In total, 24 compounds were removed in this step. 

 

Supporting Table S2. Atom contributions for calculation of molecular van der Waals volume 

(Zhao et al., 2003, J. Org. Chem.). 

atom volume(Å3) atom volume(Å3) 

H 7.24 P 24.43 

C 20.58 S 24.43 

N 15.60 As 26.52 

O 14.71 B 40.48 

F 13.31 Si 38.79 

Cl 22.45 Se 28.73 

Br 26.52 Te 36.62 

I 32.52   
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Supporting Table S3. Molecular fragments significantly enriched in P-gp substrates or non-

substrates. 

Substructures enriched in substratesa 

 
p-value: 10-6 

enrichment: ∞ 

95% CI = N/A 

SMARTS: NC(=N)N 

 
p-value: 2*10-3 

enrichment: 5.67 

95% CI = [1.69, 19.02] 

SMARTS: [!#1]c1c([!#1]) 

c([!#1])c([!#1])c([!#1])c1[!#

1] 

 
p-value: 8*10-4 

enrichment: 3.71 

95% CI = [1.65, 8.35] 

SMARTS: [!#1][CH2] 

[CH2][CH2][NH][!#1] 

 
p-value: 1*10-5 

enrichment: 3.21 

95% CI = [1.83, 5.65] 

SMARTS: [!#1][NH2] 

 
p-value: 3*10-5 

enrichment: 3.14 

95% CI = [1.78, 5.54] 

SMARTS: [!#1][CH2] 

[CH2][NH][!#1] 

 
p-value: 1*10-3 

enrichment: 2.91 

95% CI = [1.51, 5.60] 

SMARTS: c1ccc2ncccc2c1 

 
p-value: 2*10-5 

enrichment: 2.88 

95% CI = [1.73, 4.82] 

SMARTS: [!#1][CH2] 

[NH][!#1] 
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Substructures enriched in non-substratesa 

 
p-value: 8*10-4 

enrichment: 14.0 

95% CI = [1.86, 105.4] 

SMARTS: [!#1][CH]([!#1]) 

[CH2][CH2]C([!#1])([!#1])[CH

3] 

 
p-value: 2*10-3 

enrichment: 7.50 

95% CI = [1.74, 32.34] 

SMARTS: CCC(=O)CC 

 
p-value: 3*10-5 

enrichment: 6.50 

95% CI = [2.31, 18.26] 

SMARTS: C1CCCC1 

 
p-value: 9*10-4 

enrichment: 3.22 

95% CI = [1.57, 6.62] 

SMARTS: CC1CCCCC1 

 
p-value: 4*10-4 

enrichment: 3.09 

95% CI = [1.62, 5.92] 

SMARTS: C1CCCCC1 

 
p-value: 10-4 

enrichment: 2.29 

95% CI = [1.48, 3.54] 

SMARTS: OC=O 

 

 

 
p-value: 4*10-5 

enrichment: 2.21 

95% CI = [1.50, 3.26] 

SMARTS: CCCCO 

 
p-value: 10-3 

enrichment: 2.19 

95% CI = [1.36, 3.52] 

SMARTS: COC=O 

 
p-value: 10-5 

enrichment: 2.18 

95% CI = [1.52, 3.12] 

SMARTS: CC(C)C 

 
p-value: 6*10-4 

enrichment: 2.17 

95% CI = [1.39, 3.41] 

SMARTS: CCC(C)CC 

 
p-value: 4*10-5 

enrichment: 2.13 

95% CI = [1.47, 3.07] 

SMARTS: COC 

 
p-value: 5*10-4 

enrichment: 2.04 

95% CI = [1.36, 3.05] 

SMARTS: CCC(C)C 

 
p-value: 5*10-4 

enrichment: 2.04 

 
p-value: 3*10-4 

enrichment: 2.03 

 
p-value: 2*10-4 

enrichment: 2.03 
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95% CI = [1.36, 3.05] 

SMARTS: CCCCCO 

95% CI = [1.38, 3.00] 

SMARTS: CCCCCCC 

95% CI = [1.40, 2.95] 

SMARTS: CCOC 

 
p-value: 4*10-5 

enrichment: 2.03 

95% CI = [1.44, 2.86] 

SMARTS: CCCO 

 
p-value: 2*10-4 

enrichment: 2.00 

95% CI = [1.38, 2.90] 

SMARTS: CC=C 

 

a At least 2x enrichment in either substrates or non-substrates, and additionally P<0.002 by 

Fisher’s exact test, is required. The enrichment was tested in sets matched by nAtom and 

specVol, thus these fragments contribute to the substrate-non-substrate distinction beyond their 

influence on nAtom and specVol. The letter ‘A’ in molecular fragment structures means any non-

hydrogen atom. 
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Supporting Figure S1. (A) The chemical space coverage of Penzotti et al., Bikadi et al. and our 

dataset, presented as a plot of the first two principal components of 183 CDK molecular 

descriptors used in this study. A single outlying point at (-18.69, 37.19) from Penzotti et al. 

dataset was omitted from the plot. (B)  Comparison of distributions of number of atoms (nAtom) 

in our compound set to three recent studies (Bikadi, Wang and Penzotti), reveals that the 

distributions are very similar. Thus, our compound set is as representative of the drug-like 

molecules in the 30-80 atom range as the other previous P-gp compound sets. 
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Supporting Figure S2. A lack of correlation of the "specific volume" (specVol) to common 

measures of size molecular size in our dataset. "nAtom" is the number of atoms in the compound, 

H included. "MW" is the molecular weight. "VABC" is the molecular volume in cubic Angström 

(Zhao et al., 2003, J. Org. Chem.). MW, nAtom, VABC and specVol are normalized to range from 

0 to 1 so that they can be shown on the same plot. 
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Supporting Figure S3. Agreement of predictions between the default RBF kernel SVM (c=23, 

gamma=2-2), and the alternative polynomial kernel (degree=2, c=2-1), for the 120 test set 

compounds. 
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Supporting Table S4. Pairs of structurally very similar (Tanimoto coefficient ≥ 0.85) 

compounds which differ specifically in one of the effluxophores (red) – molecular fragments 

significantly enriched in the P-gp substrate group (Table S3).  

Effluxophores present Effluxophores absent Effluxophores present Effluxophores absent 
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Supporting Table S5. Pairs of structurally very similar (Tanimoto coefficient ≥ 0.85) 

compounds which differ in the value of specific volume (specVol) – molecular descriptor 

important for P-gp propensity.  

specVol < 7.3 specVol > 7.3 specVol < 7.3 specVol > 7.3 

    

    

  
  

 

Supporting Table S6. Set of P-gp substrates (class 1) and non-substrates (class -1) used for 

training (t) and validation of (e) the SVM model.  
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