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Abstract

49 Underdetermined blind separation of nonnegativeeddent sources consists in
51 decomposing set of observed mixed signals intotgreaimber of original nonnegative
and dependent component (source) signals. Thatim@ortant problem for which very
56 few algorithms exist. It is also practically reletdor contemporary metabolic profiling
58 of biological samples, such as biomarker identiftca studies, where sources (a.k.a.

pure components or analytes) are aimed to be ¢attdrtom mass spectra of complex
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multicomponent mixtures. This paper presents metfad underdetermined blind
separation of nonnegative dependent sources. Theoth@erforms nonlinear mixture-
wise mapping of observed data in high-dimensioeptaducible kernel Hilbert space
(RKHS) of functions and sparseness constrained egative matrix factorization
(NMF) therein. Thus, original problem is convertedo new one with increased
number of mixtures, increased number of dependemtces and higher-order (error)
terms generated by nonlinear mapping. Providedaimgitudes of original components
are sparsely distributed, that is the case for neectra of analytes, sparseness
constrained NMF in RKHS yields, with significantopiability, improved accuracy
relative to the case when the same NMF algorithipeisormed on original problem.
The method is exemplified on numerical and expemia@e examples related
respectively to extraction of ten dependent comptsdrom five mixtures and to
extraction of ten dependent analytes from masstisperf two to five mixtures.
Thereby, analytes mimic complexity of componentgested to be found in biological

samples.

Key words. Underdeterminedlind source separation, Dependent sources, Regitidu

kernel Hilbert spaces, Empirical kernel maps, Ngatige matrix factorization.

1. INTRODUCTION

Blind source separation (BSS) refers to extraotibanknown source signals from
observed mixture signals only [1-4]. Within BS&rfrework a nonnegative BSS

(NBSS), where both mixing and source matrix arenegative, has drawn significant
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attention recently yielding algorithms such as regative independent component
analysis (NICA) [5], nonnegative matrix factorizati(NMF) [3, 6-8], convex
analysis/geometry [9-11], nonnegative least coteelaomponent analysis (nLCA)
[12], determinant based sparseness measure apgoBE&ES [13], and sparse

component analysis (SCA) that combines data clugt@nd /, -minimization [14, 15].

A challenge for NBSS algorithms set by real wontdigpems is characterized by more
sources than mixtures available, i.e. NBSS probseunderdetermined (UNBSS),
whereas sources are dependent. Such problemsiadsdogith research related to
health, food and environment, set motivation foralepment of the uNBSS algorithm
to be presented herein. For example, 326 analyes guantified in extracts of
Arabidopsis thaliana leaf tissue [16], while the independent gas chtography-mass
spectrometry (GC-MS) study éfFabidopsis thaliana leaves detected 497 unique
chemical components [17]. Metabolic profiling, tieseen as one of the most
challenging tasks in chemical biology [18], aimsdentify and quantify small-
molecule analytes (a.k.a. pure components or ssupresent in biological samples,
typically urine, serum or tissue extract. Theraiymber of analytes can be large. For
example, analysis of human adult urinary metabolbgnkquid chromatography-mass
spectrometry (LC-MS) revealed presence of 1484 cmapts, while 384 of them were
characterized by matching their spectra with refees stored in libraries [19]. Great
majority of algorithms developed for separatiomdependent sources are incapable to
deal with uNBSS problem, [5, 6, 9-14]. As opposethem, few algorithms capable to
handle uNBSS problem with dependent sources indilidg, 15, 20]. Hence, we
propose new method for uNBSS problem with nonnegatependent sources. Itis a

preprocessing method that performs nonlinear mexwise mapping of observed data
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and sparseness constrained NMF in high-dimensioapbed space. As properly
pointed out in [13], performances of many algorithdepends on optimal usage of
parameters required to be knowpriori, such as balance parameter that regulates
influence of sparseness constraint [15, 20], orlemof overlapping components that
exist in mixtures [8]. These parameters are diffituselect optimally in practice. To
the best of our knowledge the nonnegative matrteuspproximation (NMU)
algorithm is the only one that can handle uUNBS®lgr with dependent sources and
does not requira priori information from the user. Therefore, we proposeineto
combine nonlinear preprocessing transform (NPTh wie NMU algorithm in mapped
high-dimensional space. Hence, the NPT-NMU algaritithe NPT-NMU is
exemplified on numerical and experimental probleN®vertheless, proposed
preprocessing method can be used in combinatidnatiter sparseness constrained

NMF algorithms such as NMF algorithm with-constraints (NMF_LO) [8].

The rest of the paper is organized as followsti&e@ introduces instantaneous
(memoryless) linear mixture model, commonly usediamometrics, defines uNBSS
problem and presents theory upon which proposed &fpfoach is based. Section 3
describes experiments performed on synthetic anariABires. Results of comparative
performance analysis between NMU, NMF-LO, NPT-NMidla&NPT-NMF-LO
algorithms are discussed in Section 4. The NMF4g@rihm has been used as a

reference since it is known thég-constraints yield best results in the case of deeet

(overlapping) sources [21, 22]. In numerical, amdreexperimental, examples it was
possible to set optimally parameter related to remalb overlapping sources.

Concluding remarks are given in Section 5.
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2. THEORY AND ALGORITHM

Aimed application of proposed method is in exti@tif analytes from
multicomponent mixtures of mass spectra. MS is ehahie to its increasing
importance in clinical chemistry, safety and quyationtrol as well as biomarker
discovery and validation. Identification of analyis often achieved by matching
experimental spectra to the ones stored in thary23]. For an example the NIST and
Wiley-Interscienceiniversal spectral library [24], contains more tB&0 000 mass
spectra (corresponding to more than 680 000 congg)uhus, we also assume that
library of reference mass spectra is availableseduate quality of components
extracted by the proposed metHoslithough various analytical methods are available
for the separation of individual compounds from tuigs, ideal separation cannot be
always accomplished, especially when dealing witimglex samples [19]. There are
also analytes that are prone to chemical decomposind thus cannot be isolated [25].
Furthermore, when two or more analytes elute fronomatography column close to
each other in time their peaks overlap partiallg@mpletely [26]Thus, instead of
analytes, their mixture will be compared with tleéerence pure components in the
library. This sets motivation for development af@ithm for uNBSS problem with

dependent sources.

2.1. Underdeter mined nonnegative blind sour ce separation with dependent sour ces

! Please note that any BSS algorithm when appliekperimental data requires some kind of expert
knowledge to evaluate the separation results. Hehel library of pure components is such an "eXpert
The same concept is also in use in hyperspectedénanalysis.
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Linear mixture model (LMM) is commonly used in chemmetrics [27-30]in general,
and in MS in particular [29, 30} is the model upon which linear instantaneous BSS

methods are based [1-#}.the absence of additive noise the model reads as
X =AS 1)

where X DR} represents matrix of acquired nonnegative masdrspsach that each
row {xn,} :':1 of X contains one recorded multicomponent mixture rspsstra
comprised of intensity values &z channels A ORy™ represents mixture matrix,
whereas each column vec{a,, } L represents concentration profile of the
corresponding analyte across tenixture spectraSOR}Y," is a matrix with the rows

{sm} ::1 representing mass spectra of the unknown numbdrasfalytes present in the

mixture spectrX. Thereby, the number of analytdscan be less than, equal to and
greater than the number of recorded mixtures spbBictFhis, respectively, leads to
over-, even- and under-determined BSS problemdincase it is assumed that
information about concentration of analytes (starethe mixing matrixA) is not

known to the BSS algorithm. That is, it is expeditedn BSS method to estimate matrix
of analytesS by having at disposal matrix with recorded mixtuspectra& only. Due

to high complexity of spectra of biological sampdemsl, quite often, small number of
recorded spectra available, it is certain thauithsanalyses corresponding BSS
problem will be (highly) underdetermineld: >N. Thus, in this paper the following

assumptions are made on LMM (1):
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Al) 0<s, <10m=1,..M t=1.T ?
A2) a,,20 On=1,..N m=1.Mand|a,|,=10m=1..M °

A3) M >N
A4) M<<T, *

Due to Al) and A2) it is clear thxt=0 as well. Furthermore, components spectra will

overlap implying that at som&/z coordinates multiple components will be present.

This implies for column vectors & {||s,t |, < K};’ where|s,||, denotes/,quasi-norm

that counts number of nonzero entriespf Thus,K stands for maximal number of

analytes that can be present at the particolacoordinate. Hence, sourc{asm_} x:l

will be statistically dependent. The uNBSS probldnis ill-posed due to the fact that
matrix factorization suffers from indeterminaci¥sAS=AB™BS for some invertible
MxM square matridB. Hence, it has an infinite number of solutions adiegful
solutions are characterized by the permutationsaating indeterminacies in which

caseB=PA, whereP represents permutation amtirepresents diagonal scaling matrix.

2 Provided that A1) is not satisfied it can be $@tisby scalingX with a constant: X - X/c. The

. . . . . T
conservative scaling strategy that always guaramég is given with:c = arg ma>{||x,t ||1}t_1 . However,
t §

scaling byc = arg ma>{ Xm}:f=1 will satisfy A1) in great majority of occasions.
nt '

* Due to the scaling indeterminacy that is inherenhéBSS problem magnitude of the mixing vectors
cannot be guaranteed. Therefore, A2) constraiméssimed commonly in BSS.

* This technical assumption is necessary to ensate¢lolution of the spectrometer is high enough to
enable discrimination between components the numibehich is expected to be large.
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However, constraints are necessary to be imposdédand/orS to obtain solution of

UNBSS problem (1) that is unique up to permutaéind scaling indeterminacies. The
M

necessary constraint is sparseness of analytetra;{)q]g} .- Sparseness constraint

implies that in relation t&l andM the maximal number of analyt&spresent at the
particularm/z coordinate is small enough. Howevris application dependent. When
number of sources present in the mixture is lakgejll grow. Compressive sensing

theory has established condition betwBgM andK necessary to obtain unique
solution for underdetermined system of linear eiqnmat{x,t = As,t}tT:l assuming thah
is known and random with the entries distributecbading to Gaussian or Bernoulli
distributions. Fort, -constrained solutionfs, }_, number of measurements
necessary to obtain unique solution with probabdite is given withN=Klog(M/K)

[31]. When( , -constraint, 8p<1, is used instead, condition on number of
measurementd is given with:N=C;(p)K + pCy(p)Klog(M/K) [21], whereC; andC;
are constants that depend on choice of the rpmtﬁence,lgmoN >C,(0)K , i.e. whernp=0
number of measurements does not depend dvi . That explains good results 6f-

constrained algorithms for solving (1) [8, 23], whEompared againgt -constrained

algorithms wherK is increasing. However, when (1) is associated WNBSS problem
in chemometric#\ is not random but deterministic, i.e. it is a cancation matrix. To

the best of our knowledge there is only one resldited to condition necessary for
unique solution of the underdetermined system af#gnsy{x, = As,t}tT:l whenA is

deterministic. It is shown in [32] that for cycliolynomial matrixA it applies:

N=0O(K?). That is significantly worse tha¥=Klog(M/K) [31], for randomA. When

http://mc.manuscriptcentral.com/cem
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analysis of complex mixtures takes place, wherelrarmof sources can be large and

consequentlK will grow, it can be necessary to ensure large remolb mixtures

©CoO~NOUTA,WNPE

spectraN in order to obtain solution of the uUNBSS problemt{tat is, possibly, unique
12 up to scaling and permutation indeterminacies. H@ayevhenN is associated with
14 biological samples it can virtually be impossilbesttisfy this requirement. Therefore,
we propose nonlinear transformation of LMM (1) iggeasi-linear model with
19 increased number of measurements.
22 2.2. Nonlinear transform of linear mixture model

ST
We propose mixture-wise nonlinear transform of LMIM: {x_t — qo(x_t)DRgL}t_l,

59 such thatN > N . We would likeN to be (very) large and possibly even infinite. The

31 mapping has the following structure:

NI T N
35 q)(x_t)z[{c “Nx]?...xﬁg}: _____ qN:J such that ansN, Ot=1,..T (2)

n=1

20 In (2) {c%.qN} are real constants that are mapping dependeriakgyg into account

43 that X, :Zx:lanmsmt , (2) can be written as:

0
47 0
48 o(x,)=ce+B . +B,or | Oy | Ot=1,...T 3)

X
50 S.tHot

whereHOT stands for higher order (nonlinear) terms introduicy mappingqo(x,t) , €1

is a unit vector ink™, Owx1 is column vector with zero entries agg,,; is N-M -1

. N Y — .
60 column vector comprised eﬁbﬁﬂ X.. X g }qL - and Zm:lqm < N. Provided that

------
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LMM (1) is related to MS data analysfss,,} ::1 represent analytes in mixtures mass

spectra at the particular/z coordinate, i.et corresponds tavz. Then, all the cross-

termsst x...xsk will be zero if only one analyte is not presentrés$ coordinate.

2 2

Thus, s,,or in (3) will simplify to s, ,,o; :[Sn S Sy ..sﬂt]T. Due to assumption

Al), {0<s, < ]}x:l, many higher order terms B8),,,; Will go to zero as power term

increases. Speed of decay depends on distributiamplitudes. For sparse
distributions, such as those encountered in MiS rgasonable to expect that only

several HOT of each source will be significantlgaper than zero. For an example, for
amplitudesy=0.5, the 10th order power is 870, Nevertheless, powers df,, } le

will represent new sources that are statisticatlgeshdent with the original ones. Thus

we can write (3) as:
_0
w(x_t)zcoe1+8[§} Ot=1,...T (4)
ot

where’s, :[s,t s_tHOT]T and B combines on appropriate wByandBor. Model (4) can

be written in matrix format yielding:

—10
@(X)=| cer..ce, +B{§} (5)

xT times

wherep(X)ORY,", BORY,™* andSORE . Hence, the uNBSS problem (1)
characterized by triplet; M, K) is converted into new problem (5) characterized b

triplet (N, P, Q) whereP>M stands for number of dependent sources in (5)id

http://mc.manuscriptcentral.com/cem
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stands for number of overlapping sources in (5vigled that amplitudes of the sources

are sparsely distributed it is justified to expebett:

©CoO~NOUTA,WNPE

10 (N /N) >>(P/M) as well as N /N) >>(Q/K). (6)

In the light of the uniqueness condition relatedlgsis presented in [32], sparseness
16 constrained factorization of (5) will with signiat probability yield, depending on
18 fulfillment of (6), increased accuracy when complaagainst the same factorization

21 method used for the uUNBSS problem (1). The diff\culith factorization of problem

23 (5) is thatN can be large or even infinite, in which case faz&tion becomes

26 computationally intractable. To alleviate this wiffity a special type of nonlinear
28 mapping @ is selected such that space induced by it is rejmibte kernel Hilbert
space (RKHS) of functions. To this end we introdtieefollowing definitions and

33 theorems.

36 Definition 2.2.1. A real function x R" xR" _ R is positive semi-definite if it is

39 symmetric and satisfies for any finite set of psil{lk,t};in R"and real numbers
T . T
42 {a}.: Zi’j:laiaj/((x_i,x_j)z 0.

46 Theorem 2.2.1. The Moore-Aronszajn theorem, [3&}iven any nonnegative definite

function K(x,y) there exists a uniquely determined RKHSconsisting of real valued
o1 functions on seX O R" f :X — R such that: ()\OxOX, «(o,x)0OH,; (ii)
o4 OxOX, Of OH,., f (x) =(f k(X)) . Here,(o,) denotes the inner product

55 x

associated wittH, .

http://mc.manuscriptcentral.com/cem
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Definition 2.2.2. Replacing f (x) in (i) in Theorem 2.2.1. byc(o,x), it follows

K (x.,x)=(k (o,x,) & (o.X)) , . By selecting the nonlinear map @éx) = « (o, x) it

ot

follows & (x..,x)=(¢(x.,) ,qo(x))H . That is known akernel trick. The nonlinear

K

mapping@(x,,) is called explicit feature map (EFM).

Practical importance of thieernel trick is enormous since it substitutes evaluation of

inner product of possibly infinite dimensional mapys <¢1(x,t),¢f(x)>H in H, by

evaluation of kernel functio(x,,x) in the space spanned by empirical set of patterns

X. To substitute EFM-based nonlinear mappings in §§) implicit kernel-based
mappings we need to define empirical kernel mapMEKTo this end we use the

following definition, see also definition 2.15 i84].

Definition 2.2.3. Empirical kernel map. For a given set of patte{mg DRN}; 0Xx,
DON, we call ¢ RY - RP, where

X, > K (oX,,)

eg? =[K (VX)) vk (Vo ,x_t):|T Ot=1,..T the empirical kernel

map with respect t{)v,d}(?:l.

Hence, EKM ¢(x,) is obtained by projecting EFMp(x,,) associated with kernel

K (°,x,) on aD-dimensional subspace in RKHS spanner{&)&v_d)DRN}D .

d=1"

http://mc.manuscriptcentral.com/cem
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k(X V)
w(x)=[o(v,) - o(vo ):|T o(x.) = Ot=1,..T . 7)

K (X Vo)

If (4) is substituted in (7) we obtain:

k(e,V..) o
=g, +[¢(v1) ¢(VOD)]T§[_:|=C+E[§} Ot=1,...T
k(e,V.p) B t !
Cc
Hence, we can write (7) in the matrix version as:
= leT
@(X)=C+ B[g } (8)

wherey (X)ORg,", CORE,™ BORD* andSORY™. Cin (8) represents bias term
and does not play a role in parts based decompnsjfiw(x) that is enforced by

sparseness constrained NMF. Hence, the uNBSS pndidlecharacterized by triplet
(N, M, K) is converted into new problem (8) characterizedriplet (O, P, Q) where
P>M stands for number of dependent sources in (8)i stands for number of
overlapping sources in (8). Analogously to (6),yded that amplitudes of the sources

are sparsely distributed it is justified to expebett:
(DIN) >>(P/M) as well as (IM) >>(Q/K). 9

In the light of the uniqueness condition relatedlgsis presented in [32], sparseness

constrained factorization of (8) will with signifiat probability yield, depending on

http://mc.manuscriptcentral.com/cem
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fulfillment of (9), increased accuracy when complaagainst the same factorization
method used for the uUNBSS problem (1). Thus northetyaand sparseness
constrained factorization of (8) should extracgoral sourceism,} ::1 as well as their
powers that actually are new sources that are digmenvith the original ones. While in
(5) N is large or even infinite) in (8) is finite. To perform projection implied k§y) a
basis in the original empirical data 3ehas to be constructed ={v,d DRSL}L such

that

span{g(v., )}, = span{@(x, )} (10)

wherespan denotes a vector space spanned by particular secudrs, i.e. it is

expected that basis vectors span the same vecoe $ipat is spanned by empirical set
of patterns. The basis can be constructed on several ways, for examjihg) usita
clustering whereas cluster centers represent asisrs. Hence, basis construction can

be computationally challenging problem for itsdlhis, however, can be avoided if
each pattern vectc{rx,t}tT:l is chosen as a basis vector, ¥&X. Then condition (10) is
satisfied perfectly. In this case, however, dimensf the projected sub-spabesquals
the number of thevz channelsl. Hence, the matriyAX) implied by (8) will have
dimensionsTxT. For low-resolution mass spectrometris of the order of several

thousands and matrix factorization problems impligd8) are computationally

tractable even on today's personal computers. Whemes to the kernel function
Kk (°,x,) necessary to comput(x, ) in (7), respectively (8) for matrix formulation, it

is important that induced RKHS is high-dimensiordihough there are many kernel

functions that satisfy this requirement we resiigtselves herein to the one, arguably,

http://mc.manuscriptcentral.com/cem
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most often used kernel, [34]: the Gaussian kernel

/((X,i ,X.j) = exp(—HX,i —x.,—Hz/JZ) whered?® denotes kernel bandwidth or variance. In

principle, optimal value of” depends on dimensidhiand has to be estimated through
cross-validation. When Al) and A2) apply we havenid empirically that variance is in
the intervalo®0[0.1, 1]. Higher order terms (HOT) presentSnin (8) can also be seen
as a noise that is generated by nonlinear transfitom Thus, error introduced by HOT

can be reduced by applying entry-wise either $o#gholding nonlinearity on

{w(X) ) {w(X), =2 (w(x),)=max(op(x), —r)}:l [35], or hard

dt=1"

DT

thresholding nonlinearitx,{:t//(x)dt ~ v, (zp(x)dt) =y¢(X), lw(x)d?r} wherel, . _,

dt=1
represents indicator function. Through numericgeziments under assumptions Al)
and A2) we have empirically found that, if "de-rnings' operator is applied,
thresholding parameter ought to be set#d0’. Hence, from the user perspective the

NPT-NMU algorithm is virtually almost parameterdre
2.3. Spar seness constrained factorization

The NMU algorithm [7], with a MATAB code availab& [36], has been used to
evaluate effectiveness of proposed nonlinear mexépansion method. The NMU

method performs factorization of (8) in a recurgivanner extracting one component at

a time. After identifying optimal rank-one soluticéﬁ_l,g_)the rank-one factorization is

performed on the residue matw((x) - w(x) —E_ﬁ_ . To preserve non-negativity of

YUX) an underapproximation constraint is imposed?oandé: Eésw(x) . This

constraint yields localized parts-based decommusitihere different basis elements

http://mc.manuscriptcentral.com/cem
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describe disjoint parts of the input da#X). It has been proven in theorem 1 in [7] that

sparseness (number of non-zero entries§ and S is less than sparsenessygk). A
main reason for preferring the NMU algorithm ovérey sparseness constrained NMF
algorithmds that there are no regularization constantsréggire a tuning procedure.
When performing NMU-based factorization of mat#x) in (8), the unknown number
of analyted? needs to be given to the algorithm as an inpuepresents nonnegative

rank oft,U(X) in (8) and its optimal selection is related thedelarder selection.

However, the well-known difficulty with model setean methods is that very often,
due to different theoretical assumptions, theydy{significantly) different result when

applied to the same data. Due to this reason laoddae to the reason of not to lose
some of the components our strategy was to setsameed value d? asP=D=T.
Then, due to (8)P < P. Then, the NMU algorithm will extract all the components
contained int//(X) at an increased computational complexity, i.e Tderank-one
factors will be computed unnecessarily. Neverttgldsat is the price worth being paid
in order not to lose some components that poténtiah lead to biomarker discovery.
When allT components are extracted they are compared witrefeeence components
from the library. We identify analytes candidatsedl@gose that are maximally correlated
with components in the library. As a reference sofuin the benchmark problem we
have used solution obtained by applying the NMFalgbrithm [8], to the original
problem (1). The MATLAB code of the NMF_LO algonithis available at [37].
NMF_LO is based on natural sparseness measuré,thseudo-norm of the source or

component matrixS. The NMF_LO when applied to (1) requirggriori information

on the number of componer¥sand number of overlapping componekitdn
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numerical scenario botd andK are known while in experimental scenario selecting
optimal (true) value oK can be difficult. Nevertheless, the NMF_LO can jdeva

good reference in validating worst-case and avepag®rmance of the NMU algorithm
when applied on uNBSS problem (1) and as well as\iAT-NMU algorithm, that is
the NMU algorithm applied on uNBSS problem (8). $¥enmarize the NPT-NMU

algorithm in the Algorithm 1.

3. EXPERIMENTS

Studies on numerical and experimental data repdeémlv were executed on personal
computer running under Windows 64-bit operatingtasm with 64GB of RAM using
Intel Core i7-3930K processor and operating witthogk speed of 3.2 GHz. Matlab

2012b environment has been used for programming.
3.1. Numerical simulation

In numerical study we simulate LMM (1) wit#=5, M=10, T=1000 anK[K 2, 3, 4.
Each source is generated according to Al) andluis&d according to probability

density function of mixed state random variabl&, [39]:
P(Sw) =P (S ) +(1-0) 0 (S ) f (Sn) OM=1,.. MOt =1,..T (11)

whered(sy) is an indicator function and (sn)=1-dSw) is its complementary function,
p={P(s, = O)}tT:l . Hence{P(s, >0)=1- p}thl' We have generated sources with
probability of being zer@=0.9. The nonzero state 8 is distributed according to

f(sw). We have chosen exponential distributib(ss,, ) = (3/ ) exp(-s,,/#) to model

http://mc.manuscriptcentral.com/cem
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sparse distribution of the nonzero states suchthieatnost probable outcomes were
equal tox=0.1 andu=0.01° For these outcomes figures 1 and 2 respectively sh

values of normalized correlation coefficients

Com = S+ S /IS |/ S| » OM=1,...M (12)

mm

between true and separated sources versus MoriterGanndex. Sources were
separated by the NMU algorithm [7], the NMF_LO altjon [8] and proposed NPT-
NMU algorithm. Since for the NPT-NMU algorithm onn took roughly two hours,
only 10 Monte Carlo runs were executed for eachution scenario. Left column
shows minimal value of the correlation coefficiattained by each of the algorithms
while right column shows average value of the datien coefficients for ten sources.
The true values favl andK were reported to the NMF_LO algorithm and true edior
M was reported to the NMU algorithm. The NPT-NMU altfon assumed thafl=T.
The NMF_LO algorithm was run with the following paneter setup: reverse sparse
nonnegative least square (rsNNLS) sparse codealggrhating nonnnegative least
square (ANLS) for dictionary update stage. Cargfspection of results presented in
figures 1 and 2 suggests that NPT-NMU algorithnidgdetter accuracy than NMU
algorithm in 30% of the runs, while NMU is bettard0% of the runs. While average
performance of the NMF_LO algorithm is the begields the worse value of the

minimal correlation coefficient.

3.2. M S measurements

> Even though the exponential distribution has suppothe [Ox) interval settingz=0.1 implies that
with probability 0.9999546 realizations will bentained in [0, 1] interval. Fou=0.01 realizations will
be contained in [0, 1] interval with a probabilitat is close to 1 with an error of 3xD*. Thus, this
justifies a choice of exponential distribution todel sparse distribution of amplitudgg on interval
[0,1].
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3.2.1. Chemicals

A library composed of mass spectra of ten amindsaciamely Ala, Asn, Asp, GIn,
Glu, Leu, Lys, Phe, Pro and V&{-C,0), was constructed. All amino acids and
solvents were commercially available. Stock sohsgiof these amino acids (1 mg/mL)
were prepared in 10% methanol. Working solution$@@ng/mL) were prepared by
diluting the stock solutions with 10% methanol.d-imixtures X;-Xs) were prepared

by mixing different volumes of amino acid stockwgans according to Table S-1 given
in Supplemental Information. Mass spectra of aealytere recorded by injection of 5
pl of amino acid working solutions and mass speaftfave mixtures were obtained by
injection of 15 pl of mixture solutions prepareddescribed above, to the ion source.
Mass spectra of analyt€5-C;o and mixtures{;-Xs are given in Supplemental

Information (Figures S-1 and S-2).

3.2.2. Mass spectroscopy measurements

Electrospray ionization-mass spectrometry (ESI-Mi@asurements operating in a
positive ion mode were performed on a HPLC-MS érigliadrupole instrument
equipped with an autosampler (Agilent Technologiedp Alto, CA, USA). The
desolvation gas temperature was 3C0with flow rate of 6.0 L/min. The fragmentor
voltage was 135 V and capillary voltage was 4.0 M\ébile phase was 0.1% formic
acid in 50% methanol and a flow rate of mobile ghaas 0.2 ml/min. Mass spectra as
total ion current spectra were recordednia segment of 10-300. All data acquisition

and processing was performed using Agilent Massétstftware.

3.2.3. Setting up an experiment

http://mc.manuscriptcentral.com/cem
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Naturally occurring.-amino acids Ala, Asn, Asp, GIn, Glu, Leu, Lys, PReo and Val,
Figure 3, were chosen for the construction of nspestra library and preparation of
five mixtures used in validation of the proposedhmnd. Using amino acids as testing
compounds is rationalized as follows: (a) theyrastabolites often followed in
metabolomic studies, [40, 41], (b) their mass pedflls into relatively narrown/z
window thus mimicking complexity (overlapping) exjped to be found in spectra of
real biological samples and (c) owing to the fragtagon often taking place in the MS
ion source, mass spectra of amino acids are ewrieith numerous fragment ions
making separation problem even more challengingsd\pectra of componeris-Cio
are given in Figure S-1 in Supporting Informatiogether with the assignment of the
most abundant fragment ions. Inspection of masstigpelearly shows that some
fragment ions are present in spectra of differemygonents. For example, the fragment
ion atm/z 84 share componen®;, Cs andC-, while that atrVz 116 component€,, C;
andCgy. Moreover, difference in mass spectra of comp@@n(Gin) andC; (Lys) is
only in the intensity of fragment ionsormalized cross-correlation coefficients of
components are shown in Table §#2en in Supporting InformatiorAs seen from
mass spectra, many of the@y(@ndCs, CsandC-, C3; andCg, C, andC; as well agC,
andCy) are significantly correlated, while correlatioetlveenC, andCy is 0.9539.
Thus, blind extraction of these analytes from smafhber of given mixtures is a (very)
hard problem. It is also important to emphasizé thass spectra of mixtures were
obtained by direct injection of sample to the ionrge (one minute runyvithout

chromatographic separation prior to MS analysis.
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4. RESULTSAND DISCUSSION

Sparseness constrained matrix factorization methods as those used in our previous
work [30] and the NMU method [7] failed to extrastalytes from mixtures. That is
explained by significant correlation (overlappitgtween the analytes. The NMF_LO
method [8] when applied to LMM (1) yielded decesgults in extracting components
from five mixtures. Correlation structure discusgsedubsection 3.2.3 suggested that
optimal value foK could be 4, 5 or 6. Thus, NMF_LO was cross-validdte values of
KI{3,4,5,4. Note, however, that in truly experimental scemaorrelation structure of
analytes is unknown and selection of optitalould require extensive cross-
validation. Table S-3 shows the best results,im$eof maximal normalized correlation
coefficients between extracted components and casmgs in the library, obtained by
applying the NMU and NMF_LO algorithms on mixtuggestra according to the LMM
(1). Arguably, the best result by NMF_LO is ob&drforK=5. Since recorded mass
spectra were composed of 290/ points, extraction of analytes according to model
(8) has been reduced to NMU-, respectively NMF_h#xed factorization of the
2901x2901 matrix in mapped space. Before mapping thengimatrixX was scaled

N,
nt

by argtma>{||x,t||l}::l as well as byarg 2na>{xm} 11 . Gaussian kernel with*{0.1,1,

10} has been used. Proposed NPT-NMU method managedraxt ten analytes with a
reasonable accuracy from even two mixtures onlg ddcuracy improves by increasing
the number of mixtures. In Table 1 selected resuktsshown in terms of maximal
normalized correlation coefficient (12) obtainedtbg proposed NPT-NMU method as
well as by NMF_LO, while more comprehensive resaitsreported in Table S-4 in the

Supporting Information. In took roughly two hounsdescribed software environment
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to perform decomposition of each particular comtiamaof mixture spectra. It was
especially demanding to cross-validate number eflapping component® in model
(8), and that is required by the NMF_LO algoritheince value of) depends on how
fast power terms of the original sources decay tdwaro. The "best" result was
obtained forQ=50, but that is significantly worse than obtaingdte NMF_LO based
factorization of (1) foK=5. On the other side the NPT-NMU method yieldec¢imu
better result than NMF_LO method. Although quatiffcomponents extracted by the
NPT-NMU and NMF_LO methods was not perfect theyenassigned uniquely to the
true ones in the library. This aspect is of pradtimportance in different areas such as
disease diagnosis, food quality control, environtalerelated studies that depend on
library matching. Mass spectra of analytes extdhbiethe proposed NPT-NMU
method from five mixtures are shown in Figure $tSupporting Information. To take
into account scaling indeterminacy extracted aealytere scaled to 0-100 range

(dividing each extracted analyte by its maximaleahnd multiplying by 100).

5. CONCLUSION

Problems such as metabolic profiling of biologisaimples aim to extract many
dependent (overlapping) analytes from small nunobenulticomponent mixtures mass
spectra. That results in underdetermined nonnegatind source separation problem
(UNBSS) with dependent sources for which an algorits proposed. It performs
nonlinear mixture-wise mapping of observed data ieproducible kernel Hilbert space
(RKHS) of functions and sparseness constrainedegative matrix factorization

(NMF) in RKHS. For sparse signals such as thosewntered in mass spectroscopy the

method yields, with significant probability, impred accuracy relative to the case when
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the same NMF algorithm is performed on the origifdBSS problem. On demanding
numerical and experimental problems the algoritemanstrated capability to extract
ten dependent analytes from two to five mixturdser€by, extracted components were
assigned uniquely to the true ones in the libréhat is practically important for

biomarker identification studies.
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Figure Captions

Figure 1. Normalized correlation coefficient vs. M@ Carlo run index between true

and extracted sources by algorithms: NMF_LO (sqg)aidMU (stars) and NPT-NMU
(circles). Left: minimal (worst) value; (right) mea&alue for ten sources. From top to
bottom - number of overlapping sourd€s2, 3, and 4. Most probable value of the

nonzero state, generated according to exponemsiaibadition, equal to 0.1.

Figure 2. Normalized correlation coefficient vs. M@ Carlo run index between true

and extracted sources by algorithms: NMF_LO (sg)aiMU (stars) and NPT-NMU
(circles). Left: minimal (worst) value; (right) mea&alue for ten sources. From top to
bottom - number of overlapping sourd€s2, 3, and 4. Most probable value of the

nonzero state, generated according to exponemsiaibdition, equal to 0.01.

Figure 3. Structures of compone@sCio.
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Table Captions

Algorithm 1.The NPT-NMF (preferably NMU) algorithm.

©CoO~NOUTA,WNPE

Required:

14 XORYT . If AL) is not satisfied perform scaling

N, T

16 X - X/argtma){“X-t”l}tT:lor X - X/arg {na){xnt}n’;:ll

. Perform mapping/(X) in (7)/(8).

20 2. Optionally, apply "de-noising" by soft- or hard esholding operato
21 entry-wise on(X) in (8) witht=10".

23 3. Apply selected NI\ﬂF algorithm tX in (1) and¢(X) in (8) to estimate|
24 respectivelySandS.

25 4. Compare estimate® and S with the reference components in the
library to obtain the final estimate 8f 1

=
©
=

=
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Table 1. Maximal normalized correlation coefficiebietween analytgs; to Cio and
components extracted by the proposed NPT-NMU metGotlumns from left to right:
correlation coefficients; combinations of mixtupgestra. The star ** denotes analytes in
the library associated with the same extracted corapt. As expected highly correlated

analytesC, andC; were associated with the same extracted component.

X110 Xs X11t0Xs X(1,3.4,5) X(1,2.3) X(3.4)
NMF_LO NPT-NMU NPT-NMU NPT-NMU NPT-NMU
Ci1 0.7269 0.8792 0.8486 0.7194 0.6232
C22 0.9567 0.9370 0.8484 0.8855 0.8479
C33 0.7448 0.9160 0.9142 0.6495 0.6889
Caa 0.8595 0.9816 0.9008 0.7474 0.7308
Css 0.5616 0.6994 0.6107 0.5863 0.6461
Ce.6 0.9922 0.9844 0.9160 0.7958 0.9386
Cr7 0.7117 0.9684 0.8993 0.7830 0.7621
Css 0.6401 0.9869 0.9826 0.9671 0.9318
Co9 0.9924 0.9194 0.8746 0.9413 0.7998
C10,10 0.9880 0.9398 0.9359 0.9826 0.8085
Kernel Does not 1.0 1.0 1.0 0.1
variance apply
Sealed by | max{X,, ) max{Xudnly | max{X,Jil | max X, b | male )
"Denoising" Does not Hard Hard Hard Hard
apply thresholding | thresholding | thresholding | thresholding
1=10" =107 =107 =107
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42 Summary abstract. A method for underdetermined blind separation ofnemative dependent

sources is proposed. The method performs nonlimégiure-wise mapping of observed data
and sparseness constrained nonnegative matrix riigation (NMF) in high-dimensional
49 mapped space. Proposed method can be applied wigting NMF algorithms to extract
51 analytes from mass spectra of multicomponent méeduin biomarker related studies of

53 biological samples.
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