
Investigation of coevolutionary approach in gene
regulatory network inference

Danko Komlen∗, Domagoj Jakobović†
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Abstract—Inference of gene regulatory networks is currently
an active field of research in system biology. Evolutionary
computation algorithms are lately applied for finding the optimal
parameters of models. This paper presents a comparison of
four evolutionary algorithms (DE, GA, PSO and the hybrid
Hooke-Jeeves GA) used with a linear time-variant gene network
model. The paper also investigates the efficiency of cooperative
coevolution approach to cope with the increased complexity
of networks with large number of genes. Experiments were
performed on two artificially generated and one real microarray
data set. The results are twofold: the efficiency comparison may
serve as a guideline for future research, and the application of
coevolution proved to be successful for most algorithms.

I. INTRODUCTION

Each cell in a living organism has the same genome1.
Complex mechanisms at molecular level that interpret that
information are responsible for their differentiation and func-
tionality.

A key role in such mechanisms are transcription factors
that bind themselves to parts of DNA [1]. They can activate
or suppress activity of a particular gene. Complex systems
emerge because transcription factors are products of genes
and can be regulated by other transcription factors (Fig. 1).
Feedback loops are also possible.

Figure 1. A simplified transcription factor network [2]

Research of these complex systems requires a way to
measure the activity of individual genes within the cell. Such
a procedure is called gene expression profiling and there
are several different technologies available. One of the most

1inherited information encoded in DNA

common is DNA microarray technology [3], where levels of
mRNA2 for multiple genes are monitored in parallel.

Gene regulatory network (GRN) is an abstraction that
allows understanding of these complex dynamic systems and
provides an explanation for the expression of genes that are
observed. Constructing a gene regulatory network involves
finding a solution to a complex set of conditions, which is
usually approximated by an appropriate optimization model.
Descriptions of models for inferring GRN networks that are
used in the paper are given in Section II.

Evolutionary computation (EC) algorithms have been suc-
cessfully applied for finding the optimal or near-optimal
parameters of models. This paper presents a comparison of
various evolutionary algorithms used to infer the parameters
of a GRN model. The comparison is based on two artificially
generated data sets that were introduced in paper [4] and a
real microarray data set that was also used in paper [5].

The efficiency of evolutionary algorithms may be further
increased with the concept of coevolution, which is applied
to all the algorithms in this work. This approach could be
particularly useful for networks with a large number of genes,
and consequently a large number of parameters. The results
reflect the efficiency of each algorithm and the effect of applied
coevolution, which may provide useful guidelines for future
research.

The remainder of this paper is organized as follows: Section
II outlines the GRN models, and Section III briefly covers the
coevolutionary approach. Section IV details the optimization
of GRN model parameters and Section V presents the results.
Conclusions and future work are given in Section VI.

II. GENE REGULATORY NETWORK MODELS

A. S-systems

GRN networks describe biomolecular interactions that are
non-linear and can be expressed by the general system of
differential equations:

dxi(t)

dt
= fi[x1(t), ..., xN (t)], (1)

for i = 1,...,N , where N is number of genes, xi gene
expression level and fi a function that describes the influence
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of all genes on gene i. For example, if a gene j activates gene
i, then fi increases with xj and the other way around if a gene
j inhibits gene i.

Determination of functions fi that would define a successful
model is an ill-placed problem. For this reason, we use
different approximations of these functions.

S-systems are a special type of systems of differential equa-
tions where the function fi is approximated by the following
expression [6]:

dxi(t)

dt
= αi

N∏
j=1

xj
gi,j − βi

N∏
j=1

xj
hi,j (2)

Such a model is defined by a total of 2N2+2N parameters.

B. Linear time-variant model

The paper [7] presents a linear time-varying model (LTV)
where the following approximation is used for fi:

dxi(t)

dt
=

N∑
j=1

Wi,j(t)xj(t), (3)

where Wi,j(t) is a matrix of gene interactions (the control
matrix). Its values depend on the current time t, which allows
describing the nonlinearities in the system. Matrix values are
calculated as the sum of the first two members of the Fourier
series:

Wi,j(t) = αi,jsin(ωit+ φi,j) + βi,j . (4)

The coefficient Wi,j determines the strength of the influence
of gene j on the regulation of gene i. A positive value indicates
that the gene j activates gene i, the negative that it inhibits
the gene, and zero indicates that the gene j does not affect
the transcription of the gene i.

This model was also used in [8] with a slightly different
approach. The authors used a discrete form of the model
so that the values of genes expressions (xi) were calculated
directly by applying the sigmoid function to regulation input:

xi(t+ 1) =
1

1 + e(−Zi(t))
. (5)

The regulation input Zi(t) denotes the influence of all genes
on the gene i, and is defined as:

Zi(t) =

N∑
j=1

Wi,j(t)xj(t). (6)

III. COOPERATIVE COEVOLUTIONARY ALGORITHMS

The term coevolution is most commonly used in context of
biology and scientific fields devoted to the study of complex
ecosystems. It is a biological change of an object that is caused
by changing of another object that is interacting with it. Coevo-
lutionary algorithms (CA) apply the concept of coevolution on
metaheuristic optimization methods. Algorithms are divided
into cooperative CA and competitive CA, each applicable to
a specific kind of problems.

Basic classification of coevolutionary algorithms according
to [9] is:

• one population competitive coevolution (1PC),
• two population competitive coevolution (2PC),
• N-population cooperative coevolution (NPC).
NPC coevolution, applied in this work, is used for problems

with large solution space and where it is possible to make
a decomposition into smaller subproblems. Each of the N
subproblems is solved by a separate population. The fitness
of the individual is calculated by the success of the entire
solution, which includes itself and the best individuals from
each of the other N-1 populations.

Coevolutionary algorithms can be realized sequentially and
in parallel. For algorithms that operate over each popula-
tion, various optimization algorithms (metaheuristics) could
be used.

IV. GRN INFERENCE PROBLEM

Each GRN network model contains a set of parameters that
define it. After selecting the type of model, the next step is
to determine the values of parameters. This is a continuous
optimization problem where the objective is to minimize the
error between the data obtained by model simulation and
experimental data (MAD measurements).

A. Problem description

For the modeling of GRN network, a linear time-varying
model was used described in the [8], where the gene ex-
pressions were calculated by expression 5. Parameter set for
the network of N genes consists of the following 3N2 + N
parameters:

{αi,j , βi,j , φi,j , ωi|i, j ∈ {1, ..., N}}. (7)

The fitness function is defined as

f = −
M∑
k=1

Tk∑
t=1

N∑
i=1

(
Xk,i,mod(t)−Xk,i,measured(t)

Xk,i,measured(t)

)2

,

(8)
where M is the number of data sets, tk the num-

ber of measurements in the k-th set, and Xk,i,mod(t) and
Xk,i,measured(t) are expression levels of the gene in time t as
a result from the model and experimental results, respectively.

Each individual in EC algorithm contains a specific set
of parameter values. Also, for each parameter type boundary
values are predefined.

B. Application of coevolutionary algorithm

The number of parameters of the linear time-varying model
grows quadratically depending on the number of genes in the
data set. For this reason, evolutionary algorithms are searching
a large solution space and the execution time increases. This
kind of problem is appropriate for cooperative coevolution
with the condition that division of the problem into smaller
subproblems can be defined. Two different ways of divisions
used will be described next.



The first problem division approach is the use of N popu-
lations, where individual from population i contains 3N + 1
parameters: {i,j , βi,j , φi,j , ωi|j ∈ {1, ..., N}}. Thus, each pop-
ulation optimizes parameters for a particular gene. During the
evaluation, the best individuals from other populations create
the total solution with all the parameters that are evaluated
over the given data set (Fig. 2).

Figure 2. The first approach for problem division in NPC coevolution

The second approach, used in [10], shares model parameters
in the same way by use of N populations. However, when
evaluating the parameters for a particular gene, the following
modified expression for the regulation input is used:

Zi(t) =

N∑
j=1

Wi,j(t)Yj(t)

Yj(t) =

{
xj(t), j = i

x̂j(t), otherwise

(9)

where x̂j(t) is the expression of j-th gene at time t obtained
by simulation of the model whose parameters are taken from
the best individuals from the previous generation. So, at the
end of each iteration the model is simulated using the best
individuals and thus generates x̂i(t) for each gene, which is
then used in calculating the regulation inputs for the next
generation (Fig. 3).

C. Test sets

A test set refers to a set of one or more data sets, which
are used for testing the algorithms. Their overview is given in
table I.

Data sets Tominaga2 and Tominaga5 are artificially obtained
using S-systems that were presented in the paper [4] and are
often used for measurement of algorithms performance. Data
set Tominaga2 is shown in figure 4. The x axis indicates time;
the time intervals between the two measurements can vary,
but for LTV model only their ordinal number (T ) is relevant.

Figure 3. The second approach for problem division in NPC coevolution

Table I
TEST SETS OVERVIEW

Name Gene Measurement Data sets Data sets
count (N) count (T) count (K) type

IS-param 5 20 1 Tominaga5
IS-t2 2 11 1 Tominaga2
IS-t5 5 11 10 Tominaga5
IS-yeast6 6 18 1 Spellman d.s.

The y axis indicates the gene expression levels and contains
values between 0 and 1.

Test set IS-yeast6 contains experimental measurements of
two cell cycles of the Saccharomyces cerevisiae organism, and
the data was taken from Spellman data set 3.

Figure 4. Tominaga2 data set

D. Overview of related work

The problem of modeling GRN network is one of the actual
problems in systems biology field of research. Application

3available in the Kegg database (http://www.genome.jp/kegg/)



of evolutionary computation to optimize the parameters of
the model is only one possible approach. Table II gives the
representation of used algorithms, models, fitness functions
and data sets from several papers related to application of
evolutionary algorithms for GRN model inference.

The paper [5] gives comparison of the different evolutionary
algorithms in modeling GRN network with an S-system. Seven
algorithms were compared: GA, MOGA (multiobjective GA),
GA + ES, GA + ANN (GA with artificial neural networks),
PEACE1 [6] GLSDC [11] and DE. GA + ANN and DE
proved to be the best on real world GRN networks. Tests
were carried out on artificially generated networks and real
DNA microarray data (Spellman data set).

Table II
OVERVIEW OF THE RELATED WORK

Paper Evolutionary Model Data sets
title algorithm type (size)
[8] SA-DE LTV Generated (5),

E. Coli (6)
[10] coev-GLSDC SS Generated (5,30),

Theromophilus (25)
[5] GA, DE, GA+ANN, SS Generated (10-50),

MOGA, PACE1, Spellman d.s.
GLSDC, GA+ES

[12] GA-simplex diff. equ. Rice (1)

The paper [8] used a linear time-varying model with dif-
ferential evolution algorithm and self-tuning parameters. Tests
were performed on Tominaga5, E.coli SOS and cAMP data
sets with additional 5% and 10% noise. The algorithm has
achieved satisfactory results after a relatively short running
time.

In [10] a cooperative coevolution was used in combination
with GLSDC algorithm on Tominaga5, S-system with 30
genes with 10% noise and Thermus thermophilus HB8 MAD
data sets. The approach was successful in overcoming the
problem of dimensionality with a larger number of genes. The
results obtained for a set Tominaga5 are roughly 2 · 10−3,
and approach proved more successful than the usual problem
decompositions.

V. ALGORITHM EVALUATION

The first series of experiments served to determine the
efficiency of each of the applied algorithms: genetic algorithm
(GA), differential evolution (DE), particle swarm optimization
(PSO) and a hybrid algorithm based on GA and Hooke-Jeeves
local search (HIB). For every evaluated algorithm we need to
specify:

1) algorithm parameters,
2) model parameter intervals,
3) test set,
4) stop condition.
Algorithm parameters used for evaluation were determined

with param-IS test set, while the other sets were used for
comparison of performance. Stopping condition and the model

parameter intervals have been specified separately for each of
the tests.

A. Algorithm parameters search

Each of the four tested algorithms has its own set of
parameters that determine its behavior for a given test set.
Optimal parameters were determined over the IS-param test
set with best solution stagnation and a time limit as a stopping
condition, and 10 repetitions for each parameter value.

The algorithm would stop if the fitness of the best individual
in 100 iterations has not increased by at least 0.01 or if the
time limit of 3 minutes has been reached. The value of a
parameter that would give the best average value of fitness of
best individuals from each of the trials, would then be taken
as optimal. For testing, independence of the parameters has
been assumed and the parameters were determined one after
another. At each test, the optimal values of the previously
determined parameters were used. Initial and final optimal
parameter values are given in tables (III - VI). Parameters
are determined from left to right as they appear in the tables.

For population size (n) used values were 50, 100, 150, 200
and 250. Crossover probability (pc) in the genetic algorithm
and hybrid Hooke-Jeeves GA assumed values 0.5, 0.6, 0.7,
0.8, 0.9, and mutation probability (pm) was 0.02, 0.04, 0.06,
0.08, 0.1 and 0.12. For differential evolution three types of
differentiation were tested (introduced in paper [13]) with
uniform and exponential crossover. For values of the parameter
F the following values were used: 0.5, 1, 1.5, 2 and 2.5. In
particle swarm optimization the size of the neighborhood was
2, 4, 8, 16, 32, and parameters C1 and C2 assumed values 0.5,
1, 1.5, 2, 2.5 and 3.

After the estimation of each algorithm’s parameters, two
coevolutionary problem division approaches (see Sec. IV-B)
were investigated, as well as the number of iterations for the
base algorithm that is executed over each subpopulation in a
cooperative environment. The second approach proved to be
superior (Table VII shows the average error), and results for
the number of iterations are shown in Table VIII.

Table III
GA ALGORITHM PARAMETERS

n pc pm
initial 200 0.8 0.05
optimal 250 0.8 0.06

Table IV
DE ALGORITHM PARAMETERS

n differentiation crossover F pc
initial 200 DE/best/1 uniform 0.5 0.9
optimal 200 DE/best/1 uniform 0.5 0.7

B. Evaluation results

The aim of the second series of experiments is the com-
parison of all the algorithms and their coevolutionary versions



Table V
PSO ALGORITHM PARAMETERS

n k C1 C2

initial 200 2 2 2
optimal 250 8 0.5 1

Table VI
HIB ALGORITHM PARAMETERS

n pc pm ∆x0 ε
initial 50 0.8 0.05 1 10−6

optimal 50 0.7 0.1 - -

Table VII
COMPARISON OF COEVOLUTION PROBLEM DIVISION APPROACHES

DE GA HIB PSO
first approach -1.1254 -0.076895 -4.1002 -6.0824
second approach -0.099778 -0.025158 -0.21125 -0.023291

Table VIII
NUMBER OF ITERATIONS FOR COEVOLUTIONARY ALGORITHM

DE GA HIB PSO
initial 5 5 5 5
optimal 2 10 2 5

on different data sets. In all the following tests a stopping
condition of maximum 3 · 106 evaluations and a time limit of
10 minutes was used. Each test has been repeated 50 times.

Figure 5. Average fitness for IS-param test set

1) Test set IS-param: Figure 5 shows the average value
of the best solutions of all 50 repetitions, depending on the
number of evaluations for the IS-param test set. PSO algorithm
gives best solutions on average, and hybrid algorithm found
the best overall solution with an error of 0.0022.

For further comparison of the results a boxplot graph type
was used [14]. The graph shows the median, upper and lower
quartile and a minimum and maximum value that is within the
interval size of 1.5 IQR (interquartile range, the difference
between the upper and lower quartiles). Outliers are marked
with circles.

Figure 6. Result comparison for IS-param test set without coevolution

Figure 7. Result comparison for IS-param test set with coevolution

Fig. 6 shows that GA and PSO have the smallest and DE
the greatest discrepancies in the results.

Coevolution results show improvements in all algorithms
except the PSO 4. The best solution is found with the DE
algorithm with error of 2, 122 · 10−7, which is a significant
improvement. Also from the Fig. 7 it is noticeable that the
solution quality of DE is rather uniform, as opposed to tests
without coevolution.

2) Test set IS-t2: The best average error and the best
solution for the IS-t2 test set was achieved by the hybrid
algorithm (Fig. 8). As in the previous case improvement with
the use of coevolution is visible in all algorithms except for
PSO (Fig. 9). Improvements are somewhat lower than in the
previous set, which can be attributed to a small number of
model parameters, where algorithms without coevolution give
good results in the first place.

3) Test set IS-t5: IS-t5 test set has the most data sets and
from this point of view is more difficult compared to other
sets. On average, the best solution was obtained by PSO
algorithm, and the best overall solution was found by the DE
algorithm. Fig. 10 shows that error for the hybrid algorithm has

4when comparing algorithms with and without coevolution the average error
was observed



Figure 8. Average fitness for IS-t2 test set

Figure 9. Result comparison for IS-t2 test set

the slowest decline, from which it can be assumed that with
increasing number of evaluations it could have better results.
With the application of coevolution all algorithms except PSO
were improved (Fig. 11).

Figure 10. Average fitness for IS-t5 test set

4) Test set IS-yeast6: The best results in the last test set
were obtained by PSO, and the evolution rate is shown in
Fig. 12). It is interesting that the application of coevolution
in this test set also improves all algorithms except the PSO.
One possible explanation of this behavior is that the PSO
does not adapt to constant changes in the solution space.
In coevolution the fitness of each individual is calculated in

Figure 11. Result comparison for IS-t5 test set

relation to the other populations, which are also changing.
The PSO algorithm contains additional information about the
particle momentum, which could have a negative impact at the
next iteration after the other populations change.

Figure 12. Average fitness for IS-yeast6 test set

Figure 13. Result comparison for IS-yeast6 test set

C. Statistical analysis on applied coevolution

The impact of the application of the coevolution is further
evaluated using T-test for the solutions obtained with and
without coevolution. This type of test gives the probability
that two samples originated from the same population with



the same mean. For each algorithm 50 solutions obtained
without and 50 obtained with the use of coevolution were
compared for each of the test sets, and the results are shown
in Table IX. It is evident that most of the values are very
small, indicating that the application of coevolution produces
statistically significant differences. In PSO algorithm, however,
the difference comes at the expense of coevolution. The values
for the hybrid algorithm for two test sets are slightly larger
and it is generally difficult to conclude whether in this case
coevolution is a benefit.

Table IX
T-TEST RESULTS ON APPLIED COEVOLUTION

DE GA HIB PSO
IS-param < 10−6 < 10−6 2.342 ·10−5 < 10−6

IS-t2 < 10−6 0.011 0.132 < 10−6

IS-t5 0.053 2.902 · 10−4 0.106 < 10−6

IS-yeast6 < 10−6 < 10−6 2.87 · 10−5 < 10−6

VI. CONCLUSION

Modeling of gene regulatory networks is currently an active
area of research in the field of systems biology. Creating suc-
cessful models provides greater insight into cellular processes
and improves the possibility of their predictions. Evolutionary
computation algorithms allow search for optimal parameters
of the model and, according to recent contributions, give
promising results.

It is difficult to pinpoint the algorithm that would obtain the
best results for every data set, so a viable approach suggests
the use of multiple algorithms. The hybrid algorithm provided
a more stable convergence, although requiring a larger number
of evaluations. Coevolution was also proved beneficial, as it
has caused improvements for all algorithms (except PSO) in
each test set. We believe that the additional data structures the
PSO maintains with every individual may be the main cause
of its deterioration with the use of coevolution.

Possible further research includes assessing additional types
of algorithms and model types, testing larger data sets and
conducting experiments in the presence of noise.
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