
Evolution of Vehicle Routing Problem Heuristics
with Genetic Programming

Matija Gulić, Domagoj Jakobović
Protok d.o.o., Zagreb, Croatia, e-mail: matija.gulic.hr@gmail.com

University of Zagreb, Faculty of Electrical Engineering and Computing, e-mail: domagoj.jakobovic@fer.hr

Abstract—Increasingly complex variants of the vehicle routing
problem with time windows (VRPTW) are coming into focus,
alleviated with advances in the computing power. VRPTW is a
combination of the classical traveling salesman and bin packing
problems, with many real world applications in various fields –
from physical resource manipulation planning to virtual resource
management in the ever more popular cloud computing domain.
The basis for many VRPTW approaches is a heuristic which
builds a candidate solution that is subsequently improved by a
search or optimization procedure. The choice of the appropriate
heuristic may have a great impact on the resulting quality of the
obtained schedules. In this paper we use genetic programming to
evolve a suitable heuristic to build initial solutions for different
objectives and classes of VRPTW instances. The results show
great potential, since this method is applicable to different
problem classes and user-defined performance objectives.

Index Terms—vehicle routing problem with time windows,
genetic programming, heuristic scheduling

I. INTRODUCTION

Travel logistics have always been important to minimize
expenses and maintain a good quality of service. A good
formal representation of real-life transportation and service
delivery problems is the capacitated vehicle routing problem
with time windows (VRPTW). It is a problem of having to
minimize the distance that vehicles need to travel in order to
deliver a service with multiple realistic constraints regarding
space, time and capacity. It has been shown that solutions
for this problem could be applied to real-life domains and
significantly improve their efficiency – up to 30% in some
cases [1].

VRPTW is an NP-hard problem [2], so the aim is to find an
approximate solution of high-enough quality. There are many
solutions to the VRPTW and the most promising ones, such as
[3], [4], apply the so-called optimization decomposition tech-
nique to divide the search into separate constraint dimensions.
The method used in this paper also applies a decomposition
based on separate vehicles and then uses parallel local search
for optimization within each decomposed dimension.

However, for a decomposition approach to be successful,
a good initial solution is needed which the decomposition
algorithm could transform into a solution of an acceptable
quality. For this purpose usually simple and fast greedy
heuristics are used for creation of initial solutions that are
further improved by decomposition operators. Here a choice
must be made to select an appropriate heuristic, which may
be highly dependent on the given performance objective, as

different heuristics yield very large differences in the final
solution quality [5].

Instead of manually selecting (and sometimes guessing)
which heuristic would be suitable for initial solutions, we
propose to evolve (i.e. automatically generate) an appropriate
heuristic with the use of genetic programming (GP, [6]).
Genetic programming has the ability to evolve any form of
algorithm, simply by defining its building elements and a
measure of algorithm quality (the fitness function). With this
approach, we may create heuristics tailored to the problem
at hand, regardless of the given performance objective and
specific constraints [7][8]. The GP evolved heuristic does not
produce the final solution, but the initial solutions obtained
in this way may provide much better final solutions after a
decomposition phase, which is investigated in the results. This
paper is an extension of our previous project [5] where only
the decomposition approach was presented, without the use of
GP for the creation of initial solutions.

The rest of the paper is organized as follows. Section II gives
a formal problem statement and introduces the considered
model, as well as listing the related work in the field. The
method of creating the solution with GP generated heuristic
functions is described in Section III. Evaluation procedure and
numerical results are described in Section IV. Section V gives
possible future research directions and concludes the paper.

II. VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

The vehicle routing problem with time windows is an
extension of the well-known vehicle routing problem (VRP,
defined in [9]). The VRP is described as follows: “A set of n
customers must be serviced from a central office using vehicles
of equal given capacity”. Each customer must be served from
exactly one vehicle. Usually two objective criteria are used, the
primary to minimize the number of vehicles and the secondary
to minimize the total travel distance. An additional constraint
associated with the time windows extension is that every
customer must be serviced within a given time frame. If a
vehicle arrives earlier it must wait for the window opening
time (waitTime). If the vehicle arrives after the end of the
time window, the solution is not valid. Every customer has
the following parameters defined:

• readyTime - window opening time,
• dueDate - window closing time,
• serviceTime - time needed for the customer to be ser-

viced,

mailto:matija.gulic.hr@gmail.com
http://domagoj.jakobovic@fer.hr


• demand - customer capacity
• geographical data.

Other parameters, considered in this work, include:
• distance - geographical distance between two customers,
• timeDistance - time needed to travel from one customer

to another,
• windowTime - difference between dueDate and ready-

Time.
In the algorithm used here to solve the VRPTW, a single
objective criterion is defined with the goal to minimize the
total number of vehicles multiplied with 10000 and summed
with traveled distance in kilometers:

objective = (vehicle count ∗ 10000) + distance traveled (1)

Using such objective criterion primary focuses on gener-
ating solution with minimal vehicles number, and in case
of equal vehicles number than criterion considers traveled
distance. Generally, a smaller vehicle number implies a smaller
travel distance. Nevertheless, the proposed method of heuris-
tics generation may be used with any conceivable performance
objective.

A. Related Work

A lot of work has been invested in creating efficient solvers
for the vehicle routing problem. A constraint decomposition
approach, where a possible solution is optimized for each of
the constraints in turn and then combined, was proposed in
[10], [3]. The problem space is decomposed to spatial, time
and vehicle dimensions. As for the optimization techniques
inside the VRP domain [11], various algorithms are used. A
simulated-annealing like local search was proposed in [12].
In [13] a tabu search optimization is used. The naive ejection
chain method for local neighborhood searching is proposed in
[14] with a high potential for solution diversification and total
vehicle number reduction. Models for evolutionary methods
were presented in [15], [16]. Ant-colony optimization was
used in [17]. Proposed optimization approach is based on
a parallel local search algorithm once the solution space is
decomposed into small enough instances. A decomposition
technique which reduces the number of vehicles and can also
be executed in parallel was described in [5]; this approach is
used in this paper, but it requires a suitable initial solution to
be constructed beforehand.

Many solving procedures rely on a reasonably good initial
solution, which is then improved with metaheuristics, local
search algorithms, decomposition techniques and combina-
tions of those. The problem that researches face is the choice
of an appropriate method of creation of initial solutions (usu-
ally a simple greedy heuristic), which is highly dependent on
the given performance objective. To the best of our knowledge,
no previous work has employed genetic programming for
generation of greedy algorithms that would be used to build
the initial solution. This approach allows automatic creation
of different greedy heuristics that may be tailored to specific
objectives and classes of the problem.

III. INITIAL VRPTW SOLUTIONS WITH GENETIC
PROGRAMMING

A. Initial solution creation using a heuristic function
The VRPTW solving algorithm used in this paper is divided

in two major parts. Firstly, an initial solution is generated using
a fast greedy algorithm. Then the number of vehicles is re-
duced using parallel customer insertion, which is described in
greater detail in [5]. One of the most important advantages of
the implemented parallel method is easy patching of subresults
into a global result which fully meets the defined constraints.

To create an initial solution, a greedy algorithm is used
that creates a list of customers for each vehicle. The input
parameters are the initial customer, the vehicle capacity and a
list of unvisited customers (that still need to be visited). The
pseudocode of this phase of the algorithm follows:

Algorithm 1 Create initial solution
while unvisitedCustomer exists do

start newRoute;
set newRoute.first(home depot);
while true do

posibleCustomers <- unvisited valid customers;
if no valid customers then

break;
end if
nextCustomer <- select one posibleCustomer with

minimal OBJ value;
newRoute.add(nextCustomer);

end while
set newRoute.last(home depot);
add newRoute to result[route];

end while

In this phase, a list of customers to visit is built by taking
into consideration the criterion expressed with the OBJ value.
Here the greedy heuristic is used which provides the OBJ
value for every combination of current state and customer. The
heuristic is in fact reduced to a function that uses customer
information (such as distance, due date etc.) to identify the
next customer - the one with the lowest function value. In our
previous work [5] we experimented with several functions,
e.g.:

• fun1 = distance,
• fun2 = readyT ime,
• fun3 = x ∗distance+ y ∗waitT ime+ z ∗ (dueT ime−

visitedT ime).
In this case, we use genetic programming to evolve a suitable
function. The ’suitable’ function may be evolved for a single
test case (single set of customers) or the same function may
be evolved and then used with several new (unseen) test cases
- both approaches are investigated and presented in the results.

B. Genetic programming
Genetic programming [6] is an optimization and machine

learning technique that uses evolutionary concept to automat-
ically discover symbolic procedures (functions, programs) to



the problem at hand. The main idea behind GP is that the
solution to the problem may be represented as a (computer)
program, in most applications in the form of a tree (which
allows mapping to any procedural language). The elements of
the programs (tree nodes) must be predefined by the user and
must be sufficient to describe the solution to the problem (e.g.
mathematical and logical functions, variables, actions such as
move forward, turn left etc). The algorithm randomly generates
functions (potential solutions) and evaluates each function on
a predefined set of test cases (e.g. how well does the function
describes the data). Each potential solution thus receives its
quality estimate - the fitness value - which is then used in the
selection process.

The selection process imitates natural evolution where
weaker individuals (solutions) are eliminated, and better indi-
viduals survive. Additionally, better individuals also participate
in recombination, where two (or more) individuals are com-
bined to form a new solution. The algorithm also incorporates
a mutation mechanism, where a single individual is subject
to a change, with a relatively small probability. The process
continues, building new generations from old ones, until a
suitable termination criterion is reached. These criteria usually
include finding a solution of the desired quality or running
the algorithm for a predefined amount of time. The examples
of human-competitive results of genetic programming may be
found in [18].

C. Creating the solution with GP generated heuristics

In this paper the genetic programming is used to auto-
matically create a heuristic function used in initial solution
creation. The function is represented as a tree, where inner
nodes are operators and leaves are variables. The operator and
variable set must be manually defined; the operators used here
consist of arithmetic functions +, - and *, with subsequent
experiments with a square root function. The variables used
are the same values that represent a single VRPTW customer,
denoted with single letters for GP readability:

• distance to the next customer (denoted as ’a’),
• readyTime (’b’),
• dueDate (’c’),
• demand (’d’),
• visitedTime - time when services start for customer (’e’)

and
• waitTime (’f’).

This way the GP is able to create any of the manually created
greedy heuristics, and possibly find a few better ones. GP
creates a set of functions (individuals) in each generation, and
each of those must be evaluated. This is performed in the
following manner:

while there are individuals to evaluate do
build initial solution using the current individual;
decompose initial solution to obtain the final solution;
assign the final solution quality as the current individ-

ual’s fitness;
end while

After the whole generation is evaluated, genetic opera-
tors (crossover, mutation and selection) are performed, thus
producing the next generation of individuals (new candidate
functions). The whole process is repeated until a predefined
stopping criterion is met.

D. Decomposition

Once an initial solution is created, the result decomposition
is started which tries to reduce the total vehicle number. Each
result can be divided into independent vehicles, where each
vehicle has a list of customers that have to be visited. The
only way to reduce the number of vehicles is to reallocate
customers from a specific vehicle and thus remove that vehicle
from the solution. The reduction algorithm iterates over all
vehicles; for each vehicle all of its customers are assigned
to other vehicles. Other vehicles can accept a customer only
if the capacity and time constraints have been met. In case
other vehicles can accept all these customers, the total number
of vehicles is reduced by one and we say that reduction has
succeeded. The process is repeated until no more reductions
can be made. Specific details for this approach can be found
in [5].

IV. EXPERIMENTAL SETUP AND RESULTS

A. Implementation environment

Implementing the system which would be able to create
candidate functions using GP and validate those functions
required the use of two frameworks. For greedy functions
evolution the Evolutionary computation framework (ECF,[19])
was used. For evaluating greedy functions the VRPTW frame-
work (developed by authors) was used. Communication be-
tween ECF and VRPTW consists only of providing a string
formatted greedy function, and after that the VRPTW would
return a value which is the performance measure for generated
function.

B. Experimental Setup

The experiments were conducted on Gehring and
Homberger benchmark set [20] containing problems with 1000
customers. Benchmark set is divided into 6 groups (C1, C2,
R1, R2, RC1, RC2). Groups named Cx contain problems in
which geographical data is clustered, whereas those named Rx
have randomly generated geographical data and RCx contain
problems with a combination of both. Problems in groups x1
have a short scheduling horizon and allow only a small number
of customers per route. In contrast, groups x2 have a long
scheduling horizon and the number of customers per route
is significantly bigger. For all problems, the travel time and
distance is equal to the corresponding euclidean distance [21].
All problems have a central depot, as well as capacity and
time window constraints.

Starting parameters for GP include mutation rate of 0.3,
population of 30 individuals and stopping criterion as 20 gen-
erations without improvement. For greedy function elements
we used operators +,- and *, tree depth is varied from 2 to



4, and variables are distance (a), readyTime (b), dueDate (c),
demand (d), visitedTime (e) and waitTime (f).

In the first experiment all 60 problem instances were
combined in one set of test cases. In other words, we try
to find a single greedy function that would be used in initial
solution creation for every problem instance. The result of
combined instances is defined as sum of results from each
instance. Best known result for all combined instances is
3418 vehicles [22], whereas the evaluation of the described
method provided the result of 3763 vehicles (with the heuristic
function a + c + d + 2e − f ). In comparison, a hand-made
heuristic function used in the previous work [5] achieved the
result of 3781 vehicles.

Although slightly better than a hand-made heuristic, this
result suggests that it is very difficult to find a single function
that would yield good results on a larger set of problem
instances. This may be attributed to differing characteristics of
the problem set, as well as to a very large solution space, which
requires much computation effort to find a good solution.
Better results should be obtainable if the set of problem
instances is divided into smaller groups, containing only a
few (or even one) instances.

In the next phase, therefore, each of 6 groups from the
benchmark set is divided into a train set (containing 5 instances
for each group, with indexes 1,3,5,6,8) and a test set (contain-
ing the other 5 instances for each group, indexed 2,4,7,9,10).
For each training group a separate greedy function is evolved
with GP. Table I reports results generated using the evolved
greedy functions on the corresponding test set. The best known
total number vehicles for the 6 test sets is 1693, and with GP
evolved functions the result was 1822, which is a deviation of
7.6%. Using training and test sets significantly depends on the
benchmark set, and in this case in specific groups of problem
instances.

Finally, in the next experiment a separate heuristic function
is evolved for each of 60 instances. In this case, with maximum
specialization, the obtained vehicles sum from all instances is
equal to 3611, which is significantly better than a hand-made
solution of 3781, and corresponds to a deviation of 5.6% from
the best known solution. This indicates that the best approach
is to find a function that would be used with a single test
case; since this is rather time consuming, the influence of
GP parameters should be investigated to reduce the required
computation time.

C. Parameters of GP

After testing on combined multiple instances, our focus
changed to single instances in order to tune up parameters.
Among the most important ones are the stopping condition
and the population size, which are tested below. Three ran-
dom problem instances (C1_10_5, R2_10_5, RC1_10_5) were
chosen for further testing.

To estimate the required computational effort to reach an
acceptable solution quality, we try to discover an appropriate
termination condition for the GP evolution, without impairing
the quality of the final result. A practical termination condition

usually includes stopping the evolution after no improvement
has been made in a predefined number of generations, or
fitness evaluations. The termination criterion was initially fixed
to 50 generations without improvement. GP was then applied
to the above problem instances and the evolution is repeated 50
times. For these 50 runs, Fig. 1 represents the number of runs
in which the best result occured at a certain generation range.
It can be seen that the majority of occurrences of the best
solutions are within the first 30 generations; in the following
experiments the termination condition was therefore set to 30
generations without improvement.

Figure 1. Influence of termination criterion

The second investigated parameter is the adeqaute popula-
tion size; tables II, III and IV show minimum, average and
maximum results for 3 different population sizes (10, 25 and
50 individuals) tested 50 runs for each value. In addition to
the objective values, we also report the percentage of runs
in which the corresponding minimum value was found (in
brackets). The results are presented using the defined goal
function (1). The results suggest that using 25 individuals
provides a good enough average, so it would be preferable
to use population size of at least 25 individuals for Gehring
and Homberger test set.

Table II
POPULATION TESTS - C1_10_5

10 (individuals) 25 (individuals) 50 (individuals)
min 1000050 (10%) 1000050 (20%) 1000050 (38%)
avg 1001859 1000058 1000056
max 1050050 1000060 1000060

Table III
POPULATION TESTS - R2_10_5

10 (individuals) 25 (individuals) 50 (individuals)
min 200085 (2%) 200082 (2%) 190091 (2%)
avg 226673 221875 216279
max 240080 230087 230067

V. CONCLUSIONS AND FUTURE WORK

This paper presents an application of genetic programming
for generation of heuristic functions that guide the creation of



Table I
VEHICLES COUNT FOR 6 TRAINING AND 6 TEST SETS

Group Train (vehicles) Best known (vehicles) Test (vehicles) Best known (vehicles) Greedy function
C1 497 482 480 459 2a + c + 7e
C2 159 145 165 144 a * a + (2f + a) * f +e + c - d
R1 492 464 479 455 c + a
R2 104 95 105 95 3e - b - f + d

RC1 486 450 485 450 [(2a + c * c) * e - d + a + e] * c
RC2 114 92 108 90 c + e + a

Table IV
POPULATION TESTS - RC1_10_5

10 (individuals) 25 (individuals) 50 (individuals)
min 940064 (2%) 930068 (4%) 930065 (2%)
avg 955878 948072 944068
max 990093 960091 960063

initial solutions for the vehicle routing problem. Although the
paper presents only preliminary results, this approach shows
high potential. Simple and fast greedy functions obtained by
GP provide acceptable quality of initial results for further
refinement. The presented method can be used as a basis for
creating heuristic functions for various performance objectives
in the VRP domain, as well as for a diverse set of optimiza-
tion problems. Moreover, heuristic functions that are evolved
beforehand can be used in real-time VRPTW scenarios, where
changes in problem parameters may occur unexpectedly (e.g.
a time window is changed for a customer, or an additional
customer appears). In such cases, the existing search-based
algorithms may not be practical since they require a large
amount of processing.

Future work will primarily focus on definition and evalua-
tion of additional operators and variables for greedy function
creation. Experimenting with different variables could provide
significant improvements. Additionally, the quality of the final
solution is greatly influenced with the algorithm used in the
second phase, where some other metaheuristic can also be
applied. Finally, the proposed approach will be suited and
evalauted to meet real world problem demands.

REFERENCES

[1] T. Caric, “Improving of transport organization using heuristics methods,”
(Croatian) Ph. D thesis, University of Zagreb, Croatia, 2006.

[2] J. K. Lenstra and A. H. G. R. Kan, “Complexity of vehicle routing
and scheduling problems,” Networks, vol. 11, no. 2, pp. 221–227, Jun.
1981. [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1002/
net.3230110211/abstract

[3] R. Bent and P. Hentenryck, “A two-stage hybrid local search for the
vehicle routing problem with time windows,” Transportation Science,
vol. 38, no. 4, pp. 515–530, 2004.

[4] ——, “A two-stage hybrid algorithm for pickup and delivery vehicle
routing problems with time windows,” Computers & Operations Re-
search, vol. 33, no. 4, pp. 875–893, 2006.

[5] M. Gulic, D. Lucanin, and N. Skorin-Kapov, “A two-phase vehicle based
decomposition algorithm for large-scale capacitated vehicle routing with
time windows,” MIPRO, 2012 Proceedings of the 35th Internation
Convetion, pp. 1104–1108.

[6] J. R. Koza, “Genetic programming - on the programming of computers
by means of natural selection.”

[7] D. Jakobovic and K. Marasovic, “Evolving priority scheduling
heuristics with genetic programming,” Applied Soft Computing,
vol. 12, no. 9, pp. 2781–2789, Sep. 2012. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S1568494612001780

[8] D. Jakobovic, L. J. c, and L. Budin, “Genetic programming heuristics
for multiple machine scheduling,” Lecture Notes in Computer Science,
vol. 4445, pp. 321–330, 2007.

[9] M. Solomon, “Algorithms for the vehicle routing and scheduling prob-
lems with time window constraints,” Operations research, pp. 254–265,
1987.

[10] R. Bent and P. Hentenryck, “Spatial, temporal, and hybrid decomposi-
tions for large-scale vehicle routing with time windows,” Principles and
Practice of Constraint Programming-CP 2010, pp. 99–113, 2011.

[11] P. Toth and D. Vigo, The Vehicle Routing Problem. SIAM Monographs
on Discrete Mathematics ans Applications, SIAM, Philadelphia, 2002.

[12] H. Li and A. Lim, “Local search with annealing-like restarts to solve
the VRPTW,” European journal of operational research, vol. 150, no. 1,
pp. 115–127, 2003.

[13] E. Taillard, P. Badeau, M. Gendreau, F. Guertin, and J. Potvin, “A tabu
search heuristic for the vehicle routing problem with soft time windows,”
Transportation science, vol. 31, no. 2, pp. 170–186, 1997.

[14] L. Rousseau, M. Gendreau, and G. Pesant, “Using constraint-based
operators to solve the vehicle routing problem with time windows,”
Journal of Heuristics, vol. 8, no. 1, pp. 43–58, 2002.

[15] G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, and G. Dueck, “Record
breaking optimization results using the ruin and recreate principle,”
Journal of Computational Physics, vol. 159, no. 2, pp. 139–171, 2000.

[16] D. Mester and O. BrÃd’ysy, “Active guided evolution strategies for
large-scale vehicle routing problems with time windows,” Computers
& Operations Research, vol. 32, no. 6, pp. 1593–1614, 2005.

[17] L. Gambardella, E. Taillard, and G. Agazzi, “Macs-vrptw: A multiple
colony system for vehicle routing problems with time windows,” in New
ideas in optimization, 1999.

[18] J. R. Koza, “Human-competitive results produced by genetic
programming,” Genetic Programming and Evolvable Machines,
vol. 11, pp. 251–284, September 2010. [Online]. Available:
http://dx.doi.org/10.1007/s10710-010-9112-3

[19] ECF - Evolutionary Computation Framework, 2011. [Online]. Available:
http://gp.zemris.fer.hr/ecf

[20] “Extended SOLOMON’s VRPTW instances,” http://www.fernuni-
hagen.de/WINF/touren/inhalte/probinst.htm. [Online]. Available: http:
//www.fernuni-hagen.de/WINF/touren/inhalte/probinst.htm

[21] M. Deza and E. Deza, Encyclopedia of distances. Springer Verlag,
2009.

[22] “VRPTW,” http://www.sintef.no/Projectweb/TOP/Problems/VRPTW/.
[Online]. Available: http://www.sintef.no/Projectweb/TOP/Problems/
VRPTW/

http://onlinelibrary.wiley.com/doi/10.1002/net.3230110211/abstract
http://onlinelibrary.wiley.com/doi/10.1002/net.3230110211/abstract
http://linkinghub.elsevier.com/retrieve/pii/S1568494612001780
http://dx.doi.org/10.1007/s10710-010-9112-3
http://gp.zemris.fer.hr/ecf
http://www.fernuni-hagen.de/WINF/touren/inhalte/probinst.htm
http://www.fernuni-hagen.de/WINF/touren/inhalte/probinst.htm
http://www.sintef.no/Projectweb/TOP/Problems/VRPTW/
http://www.sintef.no/Projectweb/TOP/Problems/VRPTW/

	I Introduction
	II Vehicle Routing Problem with Time Windows
	II-A Related Work

	III Initial VRPTW Solutions with Genetic Programming
	III-A Initial solution creation using a heuristic function
	III-B Genetic programming
	III-C Creating the solution with GP generated heuristics
	III-D Decomposition

	IV Experimental Setup and Results
	IV-A Implementation environment
	IV-B Experimental Setup
	IV-C Parameters of GP

	V Conclusions and Future Work
	References

