
1

Identifying Code of Individual Features in
Client-side Web Applications

Josip Maras, Maja Štula, Member, IEEE
Jan Carlson, and Ivica Crnković, Member, IEEE

Abstract —Web applications are one of today’s fastest growing software systems. Structurally, they are composed of two parts:
the server-side, used for data-access and business logic, and the client-side used as a user-interface. In recent years, with
developers building complex interfaces, the client-side is playing an increasingly important role. Unfortunately, the techniques
and tools used to support development are not as advanced as in other disciplines. From the user’s perspective, the client-side
offers a number of features that are relatively easy to distinguish. However, the same cannot be said for their implementation
details. This makes the understanding, maintenance, and reuse of code difficult. The goal of the work presented in this paper is
to improve reusability, maintainability and performance of client-side web applications by identifying the code that implements a
particular feature. We have evaluated the approach based on three different experiments: extracting features, extracting library
functionalities, and page optimization. The evaluation shows that the method is able to identify the implementation details of
individual features, and that by extracting the identified code, a considerable reduction in code size and increase in performance
can be achieved.

Index Terms —Web applications, Feature location, Program Slicing, Code extraction

✦

1 INTRODUCTION

THE web application domain is one of the fastest-
growing and most wide-spread application do-

mains. Web applications are used in almost every facet
of our lives: at work, as part of our social experience,
or for e-commerce. From a structural perspective, web
applications consist of two equally important parts:
the server-side, realized as a procedural application
implementing data-access and business logic and the
client-side, realized as an event-driven application
that acts as a user interface (UI). The client-side of
a web application is developed with a combination of
three languages based on entirely different paradigms:
i) HTML, a markup language, for defining structure
and content; ii) CSS, a style sheet language, for pre-
sentational aspects, and; iii) JavaScript, a scripting
language, for the behavior. Alongside code, a web
application includes resources such as images, videos
and fonts. The interplay of these elements produces
the result displayed in the browser.

In recent years, the client-side is playing an in-
creasingly important role. By utilizing fast, modern
browsers and advanced scripting techniques, devel-
opers are building highly interactive applications that
can compete with standard desktop applications in
terms of user-experience and responsiveness. This
has led to the increased complexity of web appli-

J. Maras and M. Štula, Faculty of Electrical Engineering, Mechanical
Engineering, and Naval Architecture, University of Split, Croatia.
E-mail: josip.maras@fesb.hr, maja.stula@fesb.hr
J. Carlson and I. Crnković, Mälardalen University, Västerås, Sweden.
E-mail: jan.carlson@mdh.se, ivica.crnkovic@mdh.se
Manuscript received XX, 2012; revised YY,2012.

cations. Unfortunately, techniques and tools used to
support development are not as advanced as in some
other, more traditional software engineering disci-
plines. This is especially true of tools and methods
for development, analysis, and reuse.

From the user’s perspective, an application has
a number of different features. A feature is imple-
mented by a subset of the whole application’s code
and resources. However, identifying the exact subset
is a challenging task: code responsible for the desired
feature is often intermixed with irrelevant code, there
is no trivial mapping between the source code and
the application displayed in the browser. The ability
to pinpoint the code and resources used for individual
features facilitates the understanding, maintenance
and reuse of that code.

The main contribution of this paper is a method
for identifying and extracting code and resources that
implement individual features in a client-side web ap-
plication. In order to locate the implementation code,
we have to be able to track dependencies between
different parts of the application. To address this,
we introduce a client-side dependency graph, show
how it is constructed, and how it can be used to
identify the code and the resources that implement
a feature. In addition, we apply the approach in three
different cases: extracting features, extracting library
functionality, and page optimization. The evaluation
of the results shows that the method is able to identify
the implementation details of individual features, and
that by extracting the identified code, considerable
savings in terms of code size, and increased perfor-
mance can be achieved.

2

The paper is organized as follows: Section 2 de-
scribes the motivation and the background, and Sec-
tions 3 – 5 describe the overall approach to the iden-
tification process, define the dependency graph, and
show how it is related to each step of the identification
process. Section 6 describes the tool that implements
the whole process, and Section 7 presents the evalu-
ation. Finally, Sections 8 and 9 present related work
and the conclusion.

2 BACKGROUND

In this section we motivate the usefulness of the
approach and present a view on the client-side web
application. We also give an introduction to the in-
ner workings of client-side web applications and in-
troduce feature location and program slicing – two
techniques fundamental for our approach.

2.1 Motivation

The ability to exactly identify the source code and
resources of a particular feature can be used to sup-
port a number of software engineering activities, such
as program understanding, debugging, feature extrac-
tion and page optimization. While program under-
standing and debugging are important activities re-
gardless of the application domain, feature extraction
and page optimization are activities specific to the
web application domain.

Fig. 1. Example web application: 1 - the news cycler
UI control, 2 - buttons, 3 - image, 4 - captions.

Feature extraction – Consider a web application with
a simple news slider – a part of the web application
UI (marked with a dashed square in Figure 1) that
allows the user to switch between a number of news
items, where each item is represented by a large image
(marked with 3), a caption and a link to the full
news text (marked with 4); and where each change
is accompanied by an animation. This is a fairly
common feature and can be found in a large number
of web applications. The feature manifests when a
user clicks on a button (marked with 2 in Figure 1),
which initiates a change of news items. The main

image, the title and the link are faded out, and when
the current elements completely disappear, the source
of the image, the text of the title, and the link are
changed with the data from the new news item. Next,
the elements with the new data are slowly faded
in. Once this effect is finished, the button with the
index of the previous news item is visually marked as
deselected, and the clicked button is visually marked
as selected.

Consider a web developer trying to extract the
news slider feature from the example application. This
feature manifests at runtime when the user clicks on
a button with the following changes to the UI: fading
out of images, text, and links; changing their data;
fading them in; and visually deselecting and selecting
buttons. In order to extract the code and resources
that implement the feature, the developer has to
identify code and resources responsible for each of
those changes. This is a difficult and time-consuming
task: the developer has to go through several files con-
taining different implementation languages (HTML,
JavaScript, CSS) based on different paradigms, and
exactly identify the code and resources defining each
of the changes.

Page optimization – In client-side web applications,
all code is transfered to and executed on the client.
Large code bases lead to slower and less respon-
sive web applications, which in turn increases the
likelihood of users abandoning the application [17].
By identifying code that implements each application
feature, we can identify code that is included in the
application, but that does not contribute to any feature
(dead code). By removing dead code, considerable
savings in terms of page loading time, and increased
performance can be achieved. This is especially true
for web applications that use wide-spread client-side
libraries (around 53% of all web applications [13]),
since in order to increase their potential, library de-
velopers often include a wide range of features.

2.2 Client-side Web application conceptual model

In this section we present a conceptual model of
client-side web applications (Figure 2) that will be
used to define a mapping between a feature and the
implementing code. A client-side application can be
viewed as a collection of visually and behaviorally
distinct UI elements (or UI controls). A UI control,
even though it does not exist as a separate, stan-
dalone, easily identifiable entity in code, is defined
with a certain structure, the presentational aspects of
that structure, and its behavior.

Features – An application offers a number of fea-
tures. The meaning of the term feature depends on
the context. For example, the IEEE defines the term
as [26]: a distinguishing characteristic of a system item
(includes both functional and nonfunctional attributes
such as performance and reusability), while in the

3

���������	

�	
����
������	
���
��

��

���������

�
��	������� ���

�������

��

�

�����
����������
��

�����

��

����	
�� ��

� ���
��
���������
���
�� ����

������
�

��� �
� �

��
����

Fig. 2. Client-side web application conceptual model.

program understanding community a software fea-
ture is taken to be a specific functionality provided
by the software that is accessible by and visible to the
developers [21] [14] [24]. In our work we use the term
feature, in accordance with [14], as an abstract descrip-
tion of a system’s expected behavior that manifests
itself at run-time, when the user provides the system
with adequate input.

Scenarios – Since client-side web applications are UI
applications, a user who wants to invoke a certain
feature of the system has to provide the application
with adequate input – a sequence of user actions. Such
sequences of user inputs that trigger actions of a sys-
tem with observable results are called scenarios [14].

Since client-side applications are UI applications to
the server-side, a feature manifests through a number
of structural changes on the client-side and/or com-
munications with the server-side. Since a UI control
encapsulates structure and the behavior on that struc-
ture, we define that a single feature is implemented
by at least one UI control (Figure 2). A UI control can,
in general, implement any number of features.

Example. In the example application (Section 2), the
feature of cycling between news items is implemented
by a UI control (Figure 1, mark 1). When the user
performs a scenario consisting of a single input: click-
ing on a button, the feature manifests with a series of
changes to the structure of that UI control.

In the next subsections we will go into more details
about the inner workings of client-side web applica-
tions that are necessary to understand the process of
identifying code and resources of individual features.
We will also give a short introduction to feature
location and program slicing, techniques that are an
integral part of our approach.

2.3 Web application primer

A client-side web application is an HTML page that
includes JavaScript code, CSS code, and various re-
sources (e.g. images and fonts). The HTML code
defines the structure, JavaScript code the behavior,
and CSS code the presentation. The interplay of these
elements produces the result displayed in the browser.

JavaScript is a weakly typed, imperative, object-
oriented scripting language with prototype based in-
heritance. It has no type declarations and has only
run-time checking of calls and field accesses. Func-
tions are first-class objects and can be manipulated
and passed around like other objects. JavaScript is
a dynamic language: everything can be modified at
runtime, from fields and methods of an object to its
prototype. The language also offers an eval function
which can execute an arbitrary string of JavaScript
code.

CSS is a declarative language used to specify the
presentational aspects of HTML elements. The CSS
code is composed of CSS rules, each rule consisting of
a CSS selector and a set of property-value pairs. A CSS
selector is used to specify to which HTML elements
the given property-value pairs will be applied.

Client-side web applications are event-driven UI
applications and a majority of their code is executed
as a response to user-generated events. Their life-cycle
can be divided into two phases: i) page initialization
and ii) event-handling. The purpose of the page ini-
tialization phase is to build the UI of the web page.
The browser achieves this by parsing the HTML code
and building a representation of the HTML docu-
ment – the Document Object Model (DOM). When
parsing the HTML code the DOM is constructed one
HTML element at a time. There are two special types
of HTML elements that the browser can encounter:
i) style and link elements that include CSS code and
ii) script elements that include JavaScript code.

When the browser reaches a style or a link element,
it parses the CSS code and constructs a set of presen-
tational rules; and when it reaches a script element,
the browser suspends the DOM building and enters
the JavaScript interpretation. One important purpose
of the interpreted code is to register event-handlers,
which define how events are handled during the sec-
ond phase of the execution. Once the code is executed,
the process resumes the DOM building phase.

After the last element is parsed and the UI is
built, the application enters the event-handling phase,
where code is executed in response to events. All UI
updates are done by JavaScript modifications of the
DOM, which can go as far as completely reshaping the
DOM or even modifying the code of the application.

At any time, the client-side application can initiate
communication with the server-side without inter-
fering with the display of the current page. This
approach to client-side development is often termed
AJAX (Asynchronous JavaScript and XML; but de-
spite the name the communication does not need to
be asynchronous, nor does XML have to be used).

2.4 Feature Location

The goal of our approach is to locate the implemen-
tation details of a particular feature. This process is

4

known as feature (or concept) location [18][19]. The
most common types of analyses, used by feature loca-
tion processes, include textual analysis, static analysis,
and dynamic analysis (and their combinations). Tex-
tual approaches analyze the source code text based on
the idea that identifiers and comments encode domain
knowledge, and that a feature may be implemented
using a similar set of words throughout the system.
Static analysis examines structural information such
as control or data flow dependencies, for all possible
program inputs, often overestimating the code related
to a feature [21]. Dynamic analysis, on the other hand,
relies on examining the execution of an application,
and it is often used for feature location when features
can be invoked and observed during runtime. Feature
location using dynamic analysis generally relies on
execution trace analysis, and feature-specific scenarios
are developed that invoke only the desired feature.
Then, the scenarios are exercised and execution traces
that record information about the code that was
invoked are collected. Dynamic analysis for feature
location is often used [14] [20] since most features can
be mapped to execution scenarios. However, there are
some limitations associated with dynamic analysis –
the scenarios used to collect traces may not invoke all
of the code that is relevant to the feature, meaning
that some of the feature’s implementation may not be
located [21].

In the client-side domain, features are implemented
through the interplay of HTML, CSS, and JavaScript
code. This means that, in addition to all difficulties
inherent in the feature location process, the client-
side feature location also has to take into account the
dependencies that exist between different parts of web
application code.

2.5 Program Slicing

Program slicing [5] is a method that starting from a
subset of a program’s behavior, reduces that program
to a minimal form which still produces that behavior.
A program slice consists of the parts of a program that
affect the values computed at a point of interest – the
slicing criterion. A program can be sliced statically [5],
for all possible program inputs, or dynamically [6],
for specific program inputs. A static slicing criterion
is usually specified by a program point and a set of
variables, while a dynamic slicing criterion is typically
composed of an input, the occurrence of program
statement, and a set of variables. Slicing can be a very
powerful technique, but it requires starting slicing
criteria, and there may be no easy way to identify
slicing criteria that correspond to a user-described
feature.

In the client-side domain, slicing has certain
specifics: i) it has to be performed across three dif-
ferent languages (HTML, CSS, and JavaScript); and
ii) since client-side applications are UI applications,

the slicing does not have to be performed only to keep
parts of a program that affect the values computed at
a point of interest – slicing can also be used to keep
only parts of the application’s UI.

3 THE IDENTIFICATION PROCESS

The goal of our approach is to identify code and
resources that implement a client-side feature invoked
by a scenario. Since a feature is something abstract
that manifests at runtime triggered by a scenario, and
is implemented by a number of UI controls – in order
to identify the implementation of a feature, we have
to identify the implementation details of UI controls
participating in the scenario.

When executing a scenario, a feature is manifested
as a sequence of: i) UI modifications to the structure of
the implementing UI controls, and/or ii) server-side
communications from the structure of the implement-
ing UI controls. These structural changes and server-
side communications represent UI control behavior
in a particular scenario and we refer to them as
feature manifestations. A feature manifestation matches
an evaluation of a JavaScript expression executed
when demonstrating a scenario, an evaluation that
either modifies the structure of the page or communi-
cates with the server-side. Feature manifestations, in
essence, cause the manifestation of a feature.

One of the key insights that we use in this process
is: in order to identify the whole code that implements
a feature in a scenario, we have to identify both the
feature manifestations and the code responsible for
each feature manifestation (in essence, we have to
perform dynamic slicing for each feature manifesta-
tion). Since a feature manifests when a user performs
a certain scenario, feature manifestations can only
be known dynamically – we base the approach on
the analysis of the execution trace recorded while
executing scenarios.

The main advantages of the approach are: i) it does
not require any formal specification of the feature
(something that is rarely done in web application
development) – the user can easily specify exact
feature behavior; and ii) it enables us to dynami-
cally track code dependencies (something that can
not be accurately done statically for a language as
dynamic as JavaScript). The downsides are: i) the
approach is primarily suited for functional features
with observable behaviors (non-functional features,
such as robustness, security, or maintainability do not
have determinable feature manifestations); and ii) the
accuracy and the completeness of the captured feature
is dependent on the quality of the scenarios.

Scenarios are an integral part of our approach and
in the current process they have to be set up manually
by a user. We assume that the user understands the
behavior of the target feature (i.e. is aware of different
sets of input that trigger feature variation), and knows

5

which features are invoked by a scenario. This may re-
quire knowledge of the internal details of the system.
This is in line with the assumptions presented in [14].
However, the scenarios could potentially be generated
with a test case generation process (e.g [22], [23], [35]).

In order to identify the implementation of a cer-
tain feature, we have to track dependencies between
different parts of the application. For this reason, we
have defined a Client-side Dependency Graph, which
is the main artifact used in the process. The overall
process is shown in Figure 3 and consists of two
phases: Interpretation and Graph Marking.

����������	�
��

����	�� �	��
��

����	�
�

����� ��	��

���������

���������

�����
�
�� ����

	�� ���������

���	���
�	�
��

����

����������

��	��

 ��	�
��

!	�
����	�
���

Fig. 3. Identifying code and resources of a feature
based on a scenario.

Phase 1 – Interpretation – receives as input the whole
web application code, an event trace of the scenario
that causes the manifestation of the desired feature,
and a set of UI control selectors. A UI selector is either
a CSS selector1 or an XPath expression2 that specifies
root HTML elements of the UI controls that imple-
ment the feature. The goal of this phase is to build the
client-side dependency graph, and the process does
that by interpreting the whole application with the
event trace as a guideline. During the interpretation
phase, as code is being executed, matching nodes with
all their dependencies are created and inserted into
the graph. When the interpretation process reaches
a point in the application execution (i.e. evaluates a
code expression) that represents a feature manifestation,
that point is stored.

In Phase 2 – Graph marking – by traversing the

1. http://www.w3.org/TR/CSS2/selector.html
2. http://www.w3.org/TR/xpath/

dependency graph for every HTML node of every
specified UI control and for every feature manifesta-
tion, all code and resources that directly or indirectly
contribute to the demonstrated feature are marked.
In essence, the graph-marking phase performs dy-
namic program slicing using the HTML nodes of the
specified UI controls and feature manifestations as
slicing criteria. If we merge all computed slices –
serialize the marked code and download resources
from those marked nodes, we end up with a subset of
the original application which is still able to reproduce
the scenario – the implementation of a feature, for this
particular scenario, is identified and extracted.

User’s perspective

In order to facilitate the feature identification process
we have developed a plugin for the Firefox browser
that enables the user to select the UI controls in the
web application and record the events demonstrated
by the user. Next, the plugin determines the UI con-
trol selectors of the selected UI controls, accesses the
client-side code of the web application and starts the
whole process. In the end the user receives the code
and resources of the feature demonstrated by the
scenario and implemented by the selected UI controls.

Technical perspective

The Firefox plugin used to select UI controls and
record user demonstrated events contains a modified
JavaScript interpreter3 that, in addition to evaluat-
ing JavaScript expressions, tracks the relationships
between expression values and code constructs. The
interpreter is executed within the web browser and
has access to all browser features (e.g. obtaining DOM
element properties, relating CSS rules and matching
HTML nodes). The JavaScript interpreter executes
code according to standard rules of JavaScript inter-
pretation, which means that at any point of execution,
it is aware of the complete application state. This
enables us to track data and control dependencies
during the evaluation of web application code and
precisely determine when an expression that mani-
fests the behavior is evaluated.

3.1 Example

In the following sections we will illustrate the iden-
tification process with a running example shown in
Listing 1.

This very simple web application has two features:
i) it enables the user to mark an image as a favorite
and sends that decision to the server; and ii) displays
the message returned from the server (note that they
could also be considered as a single feature, but in this
example, for the sake of presentation, we will consider
them as separate). Both features are triggered by the

3. https://github.com/jomaras/Firecrow

6

/*01*/<html>
/*02*/ <head>
/*03*/ <style>
/*04*/ .fav{background-image: url("fS.png");}
/*05*/ .noFav{background-image: url("nS.png");}
/*06*/ #star { width: 32px; height: 32px;}
/*07*/ </style>
/*08*/ </head>
/*09*/ <body>
/*10*/ <div class="imageRaterContainer">
/*11*/

/*12*/ <div id="star" class="noFav">Note</div>
/*13*/ </div>
/*14*/ <div id="notif"></div>
/*15*/<script>
/*16*/ var star=document.getElementById("star")
/*17*/ var notif=document.getElementById("notif")
/*18*/ star.onclick = function () {
/*19*/ var dec = star.className == "noFav"

? "fav" : "noFav";
/*20*/ star.className = dec;
/*21*/ var req = new XMLHttpRequest();
/*22*/ req.open("GET", "d.php?d="+dec, false);
/*23*/ req.send();
/*24*/ notif.textContent = req.responseText;
/*25*/};
/*26*/</script>
/*27*/</body>
/*28*/</html>

Listing 1. Example application

scenario in which the user, by clicking on the star (div
element with the id ”star”), toggles the image as a
favorite. On each click, a request is sent to the server
with the information about the state of the star.

The UI of the application is composed of two con-
tainers: the first (imageRaterContainer) is used as a con-
tainer for the image element and the star element and
defines the structure related to the first feature; the
second (notif) is used for displaying status messages
returned from the server and defines the structure
related to the second feature.

From the point of view of the application’s be-
havior, there are three crucial JavaScript expressions
in Listing 1: lines 20, 23, and 24; expressions that
directly modify the DOM of the page (lines 20 and
24) or communicate with the server side (line 23).
From the feature point of view: expressions in lines 20
and 23 contribute to the behavior of the first feature,
and the expression in line 24 to the behavior of the
second feature. Our approach is, in essence, dealing
with the identification of such feature manifestation
expressions, determining whether or not they are
important from the perspective of the selected feature,
and then performing dynamic program slicing with
those expressions as slicing criteria. In order to be
able to perform dynamic program slicing, we have to
have a way of capturing dependencies. This is usually
done with a dependency graph. For this reason, in
the next section, we define a client-side dependency
graph that is capable of capturing dependencies in a
multi-language, multi-paradigm environment that is
the client-side of the web application.

4 THE DEPENDENCY GRAPH

The client-side is composed of four different parts:
CSS, HTML, JavaScript, and resources that are in-
tertwined and must be studied as a part of the
same whole. Because of this, we define the client-
side dependency graph as consisting of four types
of nodes: HTML nodes, CSS nodes, JavaScript nodes,
and resource nodes; and three types of edges: struc-
tural dependency edges, data flow edges, and control
flow edges. Also, since the client-side of the web
application is extremely dynamic (e.g. new HTML
elements are regularly created by JavaScript code and
inserted into the DOM of the application, but also
new JavaScript and CSS code can be dynamically
created with JavaScript code), for each node type we
also differentiate between static (directly present in
the source code) and dynamic nodes (dynamically
constructed with JavaScript code).

	�� 	��

���������� �	
�
�	� 	���
�	�

�
���
���� �� ���������� 	� ��

��
�
��
���� � ������

��

�� �

��
� � ����� ��
� ��	� �

��
�

����
����	� � ���

������� �� �

��
�
� ����� ��
� ��	�

���	���� �

	�
�	�
�����
�	��	� ��
������� 	����

	� 	�

		�� 		��

	� 	�

	� 	�

	� 	�

Fig. 4. Edges in the client side dependency graph

Figure 4 shows the definition of different edge
types. A straight, solid arrow represents structural
dependencies, a straight, dashed arrow data depen-
dencies, and a curved, dotted arrow control depen-
dencies; h denotes HTML nodes, j JavaScript nodes,
c CSS nodes, r resource nodes, and n denotes a node
of arbitrary type. Because of the inherent hierarchical
organization of HTML documents, the HTML layout
translates very naturally to a graph representation.
Except for the top one, each element has exactly one
parent element, and can have zero or more child
elements. The parent-child relation is the basis for
forming dependency edges between h-nodes. A di-
rected structural dependency edge between two h-
nodes represents a parent-child relationship from a
child to the parent. HTML elements can include dif-
ferent resources (e.g. images, videos, sounds) so there
can exist structural dependency edges between an r-
node and an h-node.

CSS rules are represented with c-nodes. All CSS

7

code is contained within an HTML element, so each c-
node has a structural dependency towards the parent
h-node. Also, since a CSS style can be created with
JavaScript code, there can exist a data dependency
between a c-node and a j-node. CSS styles often
reference resources such as images (e.g. defining the
background of an HTML element), so there are data
dependencies between c-nodes and r-nodes. Since
the main goal of a CSS style is to define styling
parameters for HTML elements, there can exist a data
dependency between an h-node and a c-node.

JavaScript code constructs that occur in the program
are represented with j-nodes (a simplified Abstract
Syntax Tree). All JavaScript code is contained in an
HTML element, so each j-node has a structural de-
pendency towards the parent h-node. Two j-nodes
can also have structural dependencies between them-
selves denoting that one construct is contained within
the other (e.g. a relationship between a function and
a statement contained in its body). Data dependency
edges can be formed between j-nodes and all other
types of nodes: a data dependency from one j-node to
another denotes that the former is using the values set
in the latter; an edge from a j-node to an h-node, that
JavaScript code is reading data; while an edge from
the h-node to the j-node means that JavaScript code is
writing data to the HTML element. An edge from a j-
node to a c-node means that JavaScript code is reading
data from CSS code. A j-node can also have a control
dependency towards another j-node (e.g. statements
in an if-statement towards the if-statement condition).

Example. Figure 5 shows the full dependency graph
built while interpreting the web application code
presented in Listing 1 based on the execution trace
recorded while demonstrating a scenario that will be
described in Section 5.1. Circles represent h-nodes,
squares c-nodes, trapezoids r-nodes, and rectangles
j-nodes. The numbers near each node represent the
id of the node; solid lines represent structural de-
pendencies, straight, dashed lines represent data de-
pendencies, and curved dotted lines represent control
dependencies.

In the following section we will describe how the
graph is created and traversed to identify the imple-
mentation code of a feature in a scenario.

5 IDENTIFICATION PROCESS – DETAILED
DESCRIPTION

The process of identifying feature code consists of
two phases, and is centered around the client-side
dependency graph (Algorithm 1).

As input, Algorithm 1 receives the whole code of
the web application, the event trace representing the
scenario, and a set of selectors for HTML elements
that define the UI controls which implement the
feature (CSS selectors or XPath expressions). In the
first two lines, two global variables – an empty graph

Algorithm 1 Code Identification

1: function IDENTIFYCODE(code, eventTrace, selectors)
2: global dGraph← empty graph
3: global fManfs← []
4: interpret (code, eventTrace, selectors)
5: markGraph(selectors)
6: end function

(dGraph) and an empty array fManfs are initialized.
The purpose of the fManfs array is to hold the in-
formation about all feature manifestation points that
were encountered while interpreting the application.
The feature manifestation points and the h-nodes that
define UI controls (specified with selectors) are the
basis for traversing the graph in the graph marking
phase (markGraph). We start the more detailed descrip-
tion in the next section, by explaining how the event
execution trace is obtained.

5.1 Obtaining event traces

Due to the dynamicity of client-side applications the
process is based on the analysis of the event trace
recorded while demonstrating scenarios designed to
invoke certain application features. The event-trace
specifies the flow of the application, and while the
user demonstrates the scenario, all raised events are
logged. In general, the event trace captures all relevant
information about executed events (e.g. mouse posi-
tions, key presses, the values of input elements). From
a technical perspective, we obtain the event trace with
a plugin to the Firefox browser which communicates
with the JavaScript interpreter. Using this information,
it is possible to determine the function called as an
event handler, the event handling arguments, and the
control-flow of the application.

Example. The developer wants to identify code and
resources that are responsible for the implementation
of the first feature (marking the image as favorite and
sending the decision to the server). The developer se-
lects the structure of the feature (imageRaterContainer)
and demonstrates the following scenario: clicks on
the empty star, causing it to change into a full star
and send a message to the server. Listing 2 shows the
event trace in JSON [12], generated by the specified
scenario on the example application from Listing 1.
In this case, Listing 2 shows a trace with a single
triggered event – a click on an HTML element whose
position in the page structure at the time of event
handling is defined with an XPath expression (the div
element with the id “star”). By using the information
about the node the event was raised on (thisValue,
originalTarget, currentTarget), the event parameters (e.g.
clientX, clientY), and the starting code line of the event
handler function (line), it is possible to determine the
event handling function, and in turn establish the
control-flow of the application.

8

Fig. 5. Dependency graph of the web application from Listing 1.

{[{
"filePath": "example.html",
"line": 19,
"currentTime": 1346312751631,
"thisValue": "/html/body/div/div",
"args": {
"target": "/html/body/div/div",
"originalTarget": "/html/body/div/div",
"currentTarget": "/html/body/div/div",
"explicitOriginalTarget": "/html/body/div/

div",
"rangeParent": "/html/body/div",
"clientX": 124, "clientY": 242,
"screenX": 1490, "screenY": 24,
"type": "click",
"inputStates": []

}}]}

Listing 2. Example event trace

5.2 Interpretation

After the event trace has been recorded, the process
starts the first phase – interpretation (Algorithm 2). As
an input, this phase receives the web application code,
the recorded event trace, and the selectors for nodes
chosen for extraction. From a technical perspective,
we have developed a custom JavaScript interpreter
based on the process by which the browser executes

the web page. Besides evaluating web application
code, the interpreter is capable of keeping track of
information necessary to establish dependencies be-
tween different parts of the application. The inter-
pretation algorithm has two phases: page initialization
(lines 2–4) and event-handling (lines 5–7).

Algorithm 2 Interpretation

1: function INTERPRET(code, eventTrace, selectors)
2: astNode← getRoot(getAST(code))
3: hNode← createHNode(astNode, dGraph)
4: buildSubtree(hNode, astNode, selectors)
5: for all event in eventTrace do
6: interpretJs(getHandler(event), getNode(event),

selectors)
7: end for
8: end function

5.2.1 Initialization phase
According to Algorithm 2, first the source code of
the application is parsed and a simplified AST tree
is built (encompassing code from all three languages
– HTML, CSS, and JavaScript). Next, a static h-node
is created for the root of the AST and added to the
dependency graph (lines 2 and 3). The initialization

9

phase is then continued in a recursive buildSubtree
function (Algorithm 3).

Subtree building

In the subtree building phase for each encountered
HTML child element, a corresponding static h-node
is created (line 3). If the HTML element is a media
element (image, video, etc.), an r-node is created along
with the dependency from the h-node to the r-node
(lines 6–8). When a CSS HTML element is reached,
for each CSS rule a static c-node with a structural
dependency to the containing h-node is created (lines
9–17). If a CSS rule references a resource, matching r-
nodes are created along with the dependencies from
the c-node to the r-nodes (lines 13–16). Every time an
h-node is created and inserted into the graph, current
CSS rules are checked and data dependencies from
the h-nodes to matching c-nodes are created (line 5). If
the HTML element is none of the previously handled
elements, the function is called recursively (line 21).

Algorithm 3 Subtree building

1: function BUILDSUBTREE(hNode, astNode, selectors)
2: for all astChld in getChildren(astNode) do
3: hChldNd← createHNode(astChld)
4: addSDep(hChldNd, hNode)
5: traverseCssRulesAndCreateDeps(hNode)
6: if isMediaElement(astChld) then
7: rNd← createRNd(media(astChld))
8: addDDep(hChldNd, rNd)
9: else if isCssElement(astChld) then

10: for all rule in astChld do
11: cNode← createCNode(rule)
12: addSDep(cNode, hChldNd)
13: if containsResource(rule) then
14: rNds← createRNds(media(rule))
15: addDDep(cNode, rNds)
16: end if
17: end for
18: else if isScriptElement(astChld) then
19: interpretJs(astChld, hChldNd, selectors)
20: else/*is any other HTML element*/
21: buildSubtree(hChldNd, astChld, selectors)
22: end if
23: end for
24: end function

Complexity. In total, the buildSubtree function will be
executed once per HTML node. In line 9, Algorithm 3,
if the HTML element contains CSS rules, the loop in
line 10 is executed once per contained CSS rule. In
line 19, the function invokes the interpretJs function,
whose execution directly depends on the number of
execution steps in a particular scenario. In total, the
complexity of the algorithm can be approximated as:
O(|h| + |c| + |s|), where h is the set of HTML nodes,
c a set of CSS rules, and s a sequence of evaluated
expressions in a scenario.

Example. Figure 5 shows the graph built while
processing the code in Listing 3 according to the
scenario from Section 5.1. The algorithm starts by

/*01*/<html>
/*02*/ <head>
/*03*/ <style>
/*04*/ .fav{background-image: url("fS.png");}
/*05*/ .noFav{background-image: url("nS.png");}
/*06*/ #star { width: 32px; height: 32px;}
/*07*/ </style>
/*08*/ </head>
/*09*/ <body>
/*10*/ <div class="imageRaterContainer">
/*11*/

/*12*/ <div id="star" class="noFav">Note</div>
/*13*/ </div>
/*14*/ <div id="notif"></div>
/*15*/<script>...

Listing 3. An excerpt of the page HTML and CSS code
from Listing 1

creating three h-nodes: 1-html, 2-head, and 3-style node,
with corresponding structural dependencies (e.g. 2-
head→1-html). Since the style node includes CSS code,
the process starts creating c-nodes – three static c-
nodes (4-.fav, 6-.noFav, and 8-#star) are created based
on three CSS rules, and each c-node has a static
structural dependency towards the parent style node.
Nodes 4-.fav, and 6-.noFav reference resources, so two
r-nodes (5-fs.png and 7-nS.png) are created along with
data-dependencies from the c-nodes to the newly cre-
ated r-nodes. Next, the graph building is continued,
and the process creates the h-nodes with indexes
9–11 and 13–16, as well as the necessary structural
dependencies (e.g. 9-body → 1-html); and one r-node
(12-K.png). Since the creation of each h-node initiates
the search for a matching CSS rule, when the 14-div
node is created, data dependencies from that node
to the 8-#star and 6-.noFav c-nodes are created (the
HTML node matches those two CSS selectors).

Interpreting JavaScript code

When the process encounters an HTML element con-
taining JavaScript code, it switches to the creation of j-
nodes (Algorithm 3, line 19), and enters the JavaScript
interpretation mode, as shown in Algorithm 4. In
this phase, j-nodes are created as each JavaScript
expression is evaluated for the first time – the “getJN-
odeAddSDep” function (line 4, Algorithm 4) either
returns an existing, or creates a new node along with
a static structural dependency to the parent h-node.
Next, depending on the position of the evaluated node
in the source code, necessary control dependencies
are created from the current node (lines 6–12, e.g. an
expression in the body of an if statement depends on
the condition of the if statement).

If the evaluated expression is handling an event,
a control dependency is created towards the node
which has performed the event registration (line 14).
When exiting an execution context (function or pro-
gram exit), control dependencies to all executed con-
dition statements (e.g. if-conditions, loop-conditions)

10

Algorithm 4 Interpreting JavaScript

1: function INTERPRETJS(code, hNode, selectors)
2: programAST← getAST(code)
3: while astNd← getNextNode(programAST) do
4: jNd← getJNodeAddSDep(astNd, hNode)
5: evalRes← evalute(astNd)
6: if isInLoopOrBranchStatement(astNd) then
7: addCDep(jNd, getCondExprNode(evalRes))
8: else if isInCatchStatement(astNd) then
9: addCDep(jNd, getErrThrowNode(evalRes))

10: else if isInFunction(astNd) then
11: addCDep(jNd, getCallExpNode(evalRes))
12: end if
13: if isHandleEvent(evalRes) then
14: addCDep(jNd, getEvntRegNode(evalRes))
15: else if isExitingContext(evalRes) then
16: addCDeps(jNd, getCondsInCntxt(), ’ExitCnt’)
17: end if
18: if isAccessingIdentifiers(evalRes) then
19: addDDep(jNd, getLastAssignNds(evalRes))
20: end if
21: if isReadingArrayObject(evalRes) then
22: addDDep(jNd, getAllModifNds(evalRes))
23: end if
24: if isCreatingJsCode(evalRes) then
25: parseAddedCodeCreateASTNodes(evalRes)
26: else if isCreatingHtmlNodes(evalRes) then
27: dHNds← createDHNodes(evalRes)
28: addDDep(dHNds, jNd)
29: traverseCssRulesAndCreateDeps(dHNds)
30: else if isCreatingCssNode(evalRes) then
31: dCNode← createDCNode(evalRes)
32: addDDep(dCNode, jNd)
33: traverseCssRulesAndCreateDeps()
34: else if isModifyingDOM(evalRes) then
35: modifNds← getModifNodes(evalRes)
36: addDDep(modifNds, jNd))
37: traverseCssRulesAndCreateDeps(modifNds)
38: if matchSelectors(modifNds) then
39: push(fManfs, point(jNd, lastDIndex(jNd)))
40: end if
41: else if isSendingAjaxRequest(evalRes) then
42: addCDep(jNd, getOpnConnNode(evalRes))
43: push(fManfs, point(
44: jNd, lastDIndex(jNd), ’isAjaxSend’))
45: else if isAccessingAjaxResponse(evalRes) then
46: addCDep(jNd, getSndRqNode(evalRes))
47: end if
48: labelCurrDependencies(getEvalPos(evalRes))
49: end while
50: end function

are also created (line 16). If the evaluated expres-
sion reads identifiers (e.g. objects, properties, and
functions), then a data dependency from the current
node to the node matching the last assignment of the
identifier is created (line 19). Currently, we are not
slicing arrays, so if the accessed object is an array,
data-dependencies from the current node to all nodes
that match the last assignments of each array item
are also created (line 22). Also, some of the evaluated
code expressions (e.g. a call to the createElement
method of the document object or an assignment to
the innerHTML property of an HTML element) can
create dynamic nodes (lines 24–33), and in that case

/*15*/<script>
/*16*/ var star=document.getElementById("star")
/*17*/ var notif=document.getElementById("notif")
/*18*/ star.onclick = function () { ... }

Listing 4. An excerpt of the JavaScript initialization
code from Listing 1

a data-dependency is created from the dynamic node
to the currently evaluated JavaScript node. JavaScript
code often modifies the DOM of the page, so dynamic
structural dependencies between the modified nodes
and the currently evaluated j-node are also created
(lines 35–40, Algorithm 4).

We consider that a server-side communication is
a part of a feature implemented by a UI control if
that communication is, in any way, dependent on
HTML elements that define the UI control. Since in
the interpretation phase the dependencies are not yet
followed, each communication is treated as a potential
feature manifestation point (line 43, Algorithm 4),
but with a flag that marks it as such. Finally, all
dependencies created while evaluating an expression
(lines 4–47) are labeled with the current evaluation po-
sition (to differentiate between dependencies created
on different function calls, loop executions, etc.).

Complexity. The number of loop iterations directly
depends on the number of evaluated expressions in a
scenario – one iteration for each evaluated expression.
The complexity of the algorithm is O(|s|), where s is
a sequence of evaluated expressions in a scenario.

Example. The processing of code in Listing 4 has
reached line 15 and is entering the JavaScript in-
terpretation mode – a variable declaration node 17-
varDecl is created. On the right-hand side there is
a method call on the document object (which is a
special object provided by the browser, acting as an
interface to the DOM). The method invocation returns
an object mapped to the HTML element with the id
“star” (14-div), so a data dependency from the call
expression to the h-node is created. Also, since the
call expression is the initialization part of the variable
declaration expression, a data dependency from the
variable declaration to the call expression is created
(17-varDecl → 18-callExp). Nodes 20 – 22, along with
their data dependencies are similarly created. Next,
an assignment expression node (23-assExp) is created.
The right-hand side creates a function expression, and
the left-hand side a member expression. The member
expression accesses the object referenced with the
identifier “star”, and has a data dependency towards
the 17-varDecl variable declaration. The object whose
property is being set is an HTML object, and the
“onclick” property is a property used to set an event-
handler – a data dependency from the matching h-
node to this assignment expression is created (14-div
→ 23-assExp). Since there is no more JavaScript code
for sequential execution, the process exits the inter-

11

pretation mode. Also, all h-nodes have been created
and the page initialization phase is finished.

5.2.2 Event handling

Once the whole code file has been traversed, and all
contained JavaScript code executed in a sequential
fashion, the process enters the event-handling phase
(Algorithm 2, lines 5–7). Information about each event
is read from the execution trace, and the dependency
from the j-node matching the event handling function
to the j-node matching the event-registering expres-
sion is created. Similarly to the initialization phase,
JavaScript code is processed using Algorithm 4.

Example. In the demonstrated scenario, the only
raised event was the click on the div element rep-
resenting the star. The process reads the event trace
and finds that the function in line 18, Listing 1,
was executed as a click event-handler on an HTML
element with id “star” (14-div). This creates a control
dependency from the function expression construct
towards the node matching the event-registering con-
struct (24-funcExp → 18-assExp). Next, the function
body is interpreted.

/*18*/ star.onclick = function () {
/*19*/ var dec = star.className == "noFav"

? "fav" : "noFav";
/*20*/ star.className = dec;
/*21*/ var req = new XMLHttpRequest();
/*22*/ req.open("GET", "d.php?d="+dec, false);
/*23*/ req.send();
/*24*/ notif.textContent = req.responseText;
/*25*/};

Listing 5. An excerpt of the event-handling JavaScript
code from Listing 1

In line 19, Listing 5, a variable declaration node is
created (26-varDecl). On the right-hand side there is
a conditional expression, so a conditional expression
node is created (27-condExpr) along with a data de-
pendency from the variable declaration to the con-
ditional expression node. A conditional expression
causes the creation of the equality expression, which
in turn causes the creation of a member expres-
sion node (star.className) with a data dependency
towards the variable declaration (29-memberExp→ 17-
varDecl). Since, in this scenario, the condition evalu-
ates to true, the process only creates j-nodes related
to the first condition (31-StringLiteral), and since the
execution of 31-StringLiteral depends on the value
of 28-equalityExpression, a control dependency 31-
StringLiteral → 28-equalityExpr is also created.

The evaluation of the 32-assExpr causes the creation
of 33-memberExp and 34-identifier, with data depen-
dencies towards variable declarations (33-memberExp
→ 17-varDecl, 34-identifier → 26-varDecl). Since the
“star” identifier (33-memberExpr) refers to an HTML
element (14-div), this means that this assignment ex-
pression is, by writing to one of the properties (“class-

Name”) of an HTML element, modifying the DOM
(changing the UI). The modified element matches the
selector, and the current position (j-node matching
the evaluated expression and the last created depen-
dency) is added to the array of feature manifestation
points (line 39, Algorithm 4). The process continues
in a similar way up to the execution of line 23,
Listing 5, where an HttpRequest is sent. According
to Algorithm 4, line 43, the currently evaluated node,
along with its last dependency, will be stored in the
array of feature manifestation points as a potential
feature manifestation point.

5.3 Graph Marking

So far, in the interpretation phase, we have identified
points in the execution where the feature is mani-
fested, but to identify all responsible code, we have
to track all direct and indirect dependencies of those
feature manifestation points – this part of the process
is handled by the graph marking phase.

Algorithm 5 Graph Marking

1: function GRAPHMARKING(selectors)
2: exitContextPoints← empty array
3: for all fManf in fManfs do
4: mNd← getNode(fManf)
5: d← getDependency(fManf)
6: if isAjax(bhvDep) then
7: if depsOnImprtntNd(mNd, d, selectors) then
8: markGraph(mNd, d)
9: end if

10: else
11: markGraph(mNd, d)
12: end if
13: end for
14: for all hNode in dGraph do
15: if matchesSelector(hNode, selectors) then
16: for all d in getDependencies(hNode) do
17: markGraph(hNode, d)
18: end for
19: end if
20: end for
21: for all exitContextPoint in exitContextPoints do
22: dep← getDependency(exitContextPoint)
23: if isIncluded(getTargetNode(dep)) then
24: markGraph(getNode(dep), dep)
25: end if
26: end for
27: end function

28: function MARKGRAPH(node, dep, exitContextPoints)
29: markAsIncluded(node)
30: for all curDep in getPriorDepends(node, dep) do
31: if isExitContextDep(curDep) then
32: add(exitContextPoints, point(node, curDep))
33: else
34: markAsTraversed(curDep)
35: markGraph(getTargetNode(curDep), curDep)
36: end if
37: end for
38: end function

As is described in Algorithm 5, the dependency
graph is traversed for all feature manifestation points

12

(lines 3–13), and for all h-nodes (lines 14–20) that
match the input selectors. The markGraph function
describes the process of traversing the graph in order
to mark all code nodes that influence the feature
manifestation points. The key point in the algorithm is
the selection of the dependencies that will be followed
(getPriorDepends function). In the interpretation phase,
all dependencies have been labeled with evaluation
position ids, and the getPriorDepends selects all pre-
vious non-traversed dependencies according to the
evaluation position. Notice that any encountered ’Ex-
itContext’ dependencies are stored in a separate array,
and are traversed at the end of the whole process
only if at least one child expression of the target’s
parent node is included. In order to better explain the
rationale behind this decision we present the code in
Listing 6.

/*01*/var a = {
/*02*/ b:4,
/*03*/ calcSum: function() {
/*04*/ this.num = 0;
/*05*/ if(this.b) { this.num += this.b; }
/*06*/ }
/*07*/};
/*08*/a.calcSum();
/*09*/a1 = a.num;
/*10*/a.b = null;
/*11*/a.calcSum();
/*12*/a2 = a.num;

Listing 6. Example for merging results for multiple
traversals

For code shown in Listing 6, the values of variables
a1 and a2 are 4 and 0 respectively. If we run the
identification processes separately, the results would
be that the necessary code expressions for a1 are
contained in lines 1–9, and for a2 in lines 1, 3, 4, 11–12.
By executing only the necessary lines, the values of a1
and a2 would still be 4 and 0. If we wanted to identify
the code that affects both a1 and a2, the straight
forward way would be to join the code expressions
responsible for the value of a1 and a2 (the result is
the whole code except for assExpr@10). However, this
is not correct – in that case, the value of a2 would
be 4 instead of 0 (the value of b property of object
a, even thought it does not directly contribute to the
value of a2, influences the control-flow of the calcSum
function called from callExp@11). For this reason, on
each context exit (exiting functions or programs) we
create dependencies between the calling construct and
every condition that was executed in that context
(line 16, Algorithm 4: there exist ’ExitContext’ control
dependencies callExpr@8→ ifCond@5, and callExpr@11
→ ifCond@5). Now, by repeating the identification
process, for a1 we again get expressions in lines 1–9,
but for a2 we get expressions in lines 1–5 and 10–12,
and joining these expressions gives the correct result.
However, notice that if we are only interested in a2 we
would end up with more code than is actually needed

(expressions in lines 2, 5, and 10 are not necessary
for the standalone value of a2). Because of this, as
the marking algorithm is executed, all ’ExitContext’
dependencies are stored and traversed at the end of
the whole process only if another graph traversal has
already included the condition statement (lines 23–25,
Algorithm 5).

Complexity. Let G = 〈n, e〉 be a dependency graph
built in the interpretation phase; where n is a set of
nodes and e a set of edges; and let s be a sequence
of evaluated expressions in a scenario. The execution
of the algorithm depends on the three for loops. For
the first loop, the length of fManfs is upper bound
by |s| – there can not be more feature manifestations
than evaluated expressions; and every execution of
the depsOnImprtntNd function can at most go through
the whole graph (every edge can be traversed at most
once) – the number of executions is upper bound
by |e|. The second loop is executed for each HTML
node in every specified UI control, so the number
of iterations is upper bound by |n|. The third loop
is executed for each exitContextPoint, and since exit-
ContextPoints are created on each context exit, their
number is always bound by |s|. The markGraph func-
tion, which is called in each loop, can at most (across
all invocations) visit all edges of the graph – has an
upper bound of |e|. So the upper bound of the graph
marking algorithm is: O(|s||e|2+ |n||e|). However, it is
important to note that, in a typical case, the number of
feature manifestation and exitContextPoints is, even
though upper bound by |s|, much less than |s|.

Example. For the example in Listing 1, two feature
manifestation points were identified: one for the exe-
cution of 32-assExpr that modifies the part of the UI,
and one for 44-callExpr, labeled as an ajax behavior
point. First, the 32-assExpr is marked as important,
and its dependencies traversed: the 33-memberExpr
with a dependency to 17-varDecl is also marked as
important, along with the node matching the initial-
ization call expression (document.getElementById(’star’)
– 18-callExpr) where the current value of the identifier
was set. Since the call expression is dependent on
the 14-div, it is also marked as important. This also
causes the marking of h-nodes: 10-div, 9-body, 1-body
due to structural dependencies, c-nodes: 6-.noFav, 8-
#star (which causes the marking of 3-style and 2-head),
and r-nodes: 5-fS.png, 7-ns.png. Since 14-div is also
dependent on 23-assExpr@ all of its dependencies are
also included. Similarly, for the node matching the
right-hand side of the assignment expression in line
20 (34-identifier), all dependencies are also traversed
and marked.

Next, the second feature manifestation point is pro-
cessed. Since it is an ’AjaxSend’ feature manifestation
point, first its dependencies are followed in order to
determine if it is in any way dependent on any im-
portant part of the UI. Since it is indirectly dependent
on 14-div, the graph is traversed, and all expressions

13

/*01*/<html>
/*02*/ <head>
/*03*/ <style>
/*04*/ .fav{background-image: url("fS.png");}
/*05*/ .noFav{background-image: url("nS.png");}
/*06*/ #star { width: 32px; height: 32px;}
/*07*/ </style>
/*08*/ </head>
/*09*/ <body>
/*10*/ <div class="imageRaterContainer">
/*11*/

/*12*/ <div id="star" class="noFav">Note</div>
/*13*/ </div>
/*14*/
/*15*/<script>
/*16*/ var star=document.getElementById("star");
/*17*/
/*18*/ star.onclick = function () {
/*19*/ var dec = star.className == "noFav"

? "fav" : null;
/*20*/ star.className = dec;
/*21*/ var req = new XMLHttpRequest();
/*22*/ req.open("GET", "d.php?d="+dec, false);
/*23*/ req.send();
/*24*/
/*25*/};
/*26*/</script>
/*27*/</body>
/*28*/</html>

Listing 7. Example application extracted code

in lines 21–23 are marked as included. The algorithm
then goes through all h-nodes that define the selected
UI controls and traverses their dependencies. In this
example, this does not include any more expressions,
since everything important was already included in
previous traversals.

With this, the process has identified all code ex-
pressions responsible for the implementation details
of a feature demonstrated by the scenario. In essence,
the process has identified that the first behavior
(selecting the image as favorite) is mapped to the
execution of the assignment expression in line 20,
and the second behavior (sending the decision to the
server) is mapped to the call expression in line 23. By
traversing the dependencies of those two expressions,
the process identifies code responsible for the whole
feature. By generating code from the nodes marked
as important, we get the code shown in Listing 7.

Compared to the code from Listing 1, the identifica-
tion process has identified the HTML element defined
in line 14, the variable declaration in line 17, and
the assignment expression in line 24 as code that is
not necessary for the target feature. Notice how the
second expression in the conditional expression in line
19 (“noFav”) is replaced by null, simply because it
was not executed in the demonstrated scenario. In
order to remedy this, the developer would have to
change the scenario by demonstrating another click
on the star element (executing the second expression).

6 TOOL SUPPORT

The whole process is currently supported by the
Firecrow tool4, which is an extension for the Firebug5

web debugger. Apart from implementing the algo-
rithms described in this paper, the tool also supports
code extraction, simple reuse, and page optimization.
Currently, the tool can be used from the Firefox web
browser, but it can be ported to any browser that
provides communication with a JavaScript debugger.
Only the event trace recording is browser dependent;
dependency graph construction and feature code
identification are functionalities that are provided by a
custom-made JavaScript library that can be used from
any browser on any operating system. Figure 6 shows
the UI of the Firecrow tool.

Fig. 6. Firecrow tool UI – Mark 1 shows the analyzed
page, Mark 2 – the panel for selecting UI controls, and
Mark 3 – Firecrow configuration window

7 EVALUATION

We have performed the evaluation with two goals:
i) to show that the process is able to identify code
that implements a feature which manifests when a
user demonstrates a scenario; and ii) to establish the
gains that can be achieved by using our method
when compared to a baseline obtained by profiling
code. After extracting the identified code into a stand-
alone web application, we consider the identification
process successful if we observe the same functional
and visual results when executing a scenario in that
stand-alone web application as we do in the context of
the original application. In order to establish the gains
that can be achieved with our method, we compare
the lines of code (LOC) and the number of execution
steps (EXE) of the extracted code (E-LOC, E-EXE) with
the profiled code (P-LOC, P-EXE) which serves as
a baseline. Profiling is a straightforward extraction
approach – the idea is to keep all lines executed in
a scenario, while maintaining syntactical correctness.

4. https://github.com/jomaras/Firecrow
5. http://getfirebug.com

14

The code extracted in this way is still capable of
replicating the scenario. The difference in LOC rep-
resents code size gains, while the difference in EXEs
represents performance gains – the same behavior is
realized with fewer execution steps (program counter
increments).

We have performed three sets of experiments: i) ex-
tracting client-side features, ii) extracting library func-
tionalities, and iii) page optimization. In all cases,
scenarios are defined as tests, and we consider the
process successful if the tests can be successfully
executed both in the original application, and in the
new application composed out of the extracted code.

In addition to the metrics based on LOC and EXEs,
we also present the analysis time (the time it takes
to interpret the application, build the dependency
graph, and generate the extracted code6). In the
page-optimization subsection, we also include page
loading-time (LT) and extracted page loading-time (E-
LT), which show the gains in the page loading time
when removing code that was not necessary from the
application’s point of view.

The data presented in this evaluation was gathered
by a tool developed as a Firefox extension – all
tracing data are Firefox-specific, and results could be
different in another browser. All applications, and the
tests describing the scenarios can be downloaded from
www.fesb.hr/˜jomaras/download/FIdEvaluation.zip.

7.1 Extracting Features

In the first experiment, extracting features, our goal
was to show that the process is capable of extracting
features that are implemented with HTML, CSS, and
JavaScript code, features that manifest with UI modi-
fications of UI controls. For each test application, we
have manually identified its features, the implement-
ing UI controls of those features, and have specified
the scenarios that capture the feature behavior. Each
scenario is represented as a Selenium7 test. Selenium
IDE is a plugin for the Firefox browser which enables
automated testing of web applications. A user records
a series of actions, and defines UI properties that have
to be satisfied in order for the test to be successful.
We consider that a feature is successfully extracted if
the same Selenium tests can be successfully executed
both in the original application and in the application
composed out of the extracted code.

The result of the process is a web page that contains
only the implementing UI controls, with all necessary
code and resources required for the implementation
of a feature.

The experiment was performed on ten medium-
sized web applications (each application contains
around 11 000 lines of HTML, CSS and JavaScript

6. Tests run on Intel Core i7@1.73 GHz, 4 GB RAM
7. http://docs.seleniumhq.org/

code). All evaluated applications use the jQuery li-
brary, the most wide-spread library for client-side
scripting. jQuery is a complex library, with about 9,000
LOC, and provides functionality for simplifying work
with multiple browsers, selecting DOM elements, an-
imations, etc.

The results of the experiment are shown in Table 1
– out of 10 web applications, we were able to identify
and extract 13 features. The table shows that, on
average, the extracted feature requires only around
50% of executed code (E/P LOC), and that the same
feature behavior can be achieved with 38% fewer
executions (E/P EXE).

7.2 Extracting Library Functionalities

For the second experiment we wanted to validate
the correctness of the extraction process against a set
of externally defined behaviors. For this purpose we
decided to use unit-tests specified by the developers
themselves. While it is true that there does not have
to be a one-to-one mapping between features and
unit-tests, and that the purpose of the tests is to
reveal errors and not necessarily specify features, in
this experiment we consider unit-tests as externally
defined behavior specification that we use to gain
information about whether the extraction process is
correct. We performed the experiment on three open-
source JavaScript libraries: Gauss8 – a library for
statistics, analytics, and sets; Medialize9 – a library
for working with URLs, and Sylvester10 – a vector
and matrix library.

/* Start Code Excerpt */
’Minimum’: {

topic: set.min(),
’1’: function(topic) {
assert.equal(topic, 1);

}
}

/* End Code Excerpt */

/* Converted to: */
var a1 = set.min() == 1; //feature manifestation

Listing 8. Converting unit-tests in the Gauss library

Since the goal of the evaluation is to extract code
responsible for each functionality represented by a
unit-test, and to obtain results that show the efficiency
of the extraction process, we did not want to include
any non-library code. For this reason, in each unit-test,
all code expressions related to unit-test libraries were
replaced by functionally equivalent expressions which
were then used as a basis for the feature identification
process. For the example given in Listing 8, the unit-
test ’Minimum’ is designed to test whether the variable

8. https://github.com/stackd/gauss
9. https://github.com/medialize/URI.js
10. https://github.com/jcoglan/sylvester

15

TABLE 1
Experimental results for feature extraction. F-ID – Feature ID, T – Total, P – Profiled, E – Extracted,

LOC – Lines of Code, EXE – Executions, Time – Extraction time in seconds

Page F-ID Scenario description

mailboxing.com 1 Wait for automatic screen-shot cycling; Click each point-button once
mailboxing.com 2 Wait for automatic change of comment title and content
mailboxing.com 3 Click left arrow three times, click right arrow three times; Click each point-button
makalumedia.com/aerospace 4 Click the more button 10 times
makalumedia.com/aerospace 5 From left to right click each circle-button once; Click first circle button
disposable.hipstamatic.com 6 From top to bottom click each list-item once; Click first list-item
sipp.cc 7 Hover and click on iPhone container; Click right arrow twice; Click left arrow twice
blip.me/broadcast 8 Wait for automatic cycling between different items
idt.mdh.se/pride 9 Click second bullet; Click first bullet
instagalleryapp.com 10 Click each thumbnail once
fourandthree.com 11 Click each tab button once
irisapp.cc 12 Wait for automatic cycling between between slides; Click each slide-link once
indubitablee.com 13 Wait for automatic page cycling; Click each button; Click right arrow, left arrow

Page F-ID T-LOC P-LOC E-LOC P-EXE E-EXE P/T LOC E/P LOC E/P EXE Time

mailboxing.com 1 11464 4221 1952 140113 102979 36% 46% 73% 55
mailboxing.com 2 11464 3626 1933 194325 87510 31.6% 53.3% 45% 180
mailboxing.com 3 11464 4385 2185 181796 136277 38.2% 49.8% 76% 98
makalumedia.com/aerospace 4 11171 3220 1211 192599 101255 28.2% 37.6% 52.5% 79
makalumedia.com/aerospace 5 11171 3156 1217 140567 76935 28.2% 38.5% 54.7% 48
disposable.hipstamatic.com 6 9914 2334 827 86088 38036 23.5% 35.4% 44.1% 29
sipp.cc 7 10368 2911 1615 107054 70892 28% 50.6% 66.2% 31
blip.me/broadcast 8 11141 2999 1472 137596 99555 26.9% 73.6% 72.3% 39
idt.mdh.se/pride 9 10621 3981 2537 114283 58479 37% 64% 51% 73
instagalleryapp.com 10 9609 2687 1083 64583 35072 27.9% 40.3% 54.3% 19
fourandthree.com 11 9624 2434 1070 34040 17200 25.2% 43.9% 50.5% 11
irisapp.cc 12 9903 3258 1810 176179 139802 32.8% 55.5% 79.3% 43
indubitablee.com 13 9981 3441 2011 193200 159600 34.4% 58.4% 82.6% 2701

TABLE 2
The summary of the results on extracting features from three test libraries. LOC - Lines of Code, EXE -

Execution steps.

Gauss: 678 LOC, 31/33 scenarios successful Medialize: 1580 LOC, 30/30 scenarios successful

Min Mean Median Max Min Mean Median Max
T-LOC 691 693.2 693 700 1595 1617.2 1611 1656
P-LOC 126 162.7 156 218 224 443.9 434.5 625
E-LOC 27 56.1 53 91 28 206.4 205.5 340
P-EXE 155 2771 1372 8950 840 5032.1 2718 30227
E-EXE 53 1498.4 1036 5260 98 2598.9 1461 13042
Time 1 2.27 1 18 1 3.02 2 13

P/T LOC 18.2% 23.5% 22.5% 31.1% 14.0% 27.4% 27.0% 38.3%
E/P LOC 21.4% 33.7% 32.9% 46.2% 10.1% 45.7% 47.0% 64.8%
E/T LOC 3.9% 7.8% 7.7% 13.0% 1.8% 12.7% 12.8% 20.9%
E/P EXE 25.7% 63.7% 71.7% 95.2% 3.1% 54.1% 54.6% 81.8%

Sylvester: 2347 LOC, 83/83 scenarios successful All: 147/149 scenarios successful

Min Mean Median Max Min Mean Median Max
T-LOC 2362 2370.4 2370 2386 691 1836.5 2364 2386
P-LOC 501 585.8 563 837 126 461 527.5 837
E-LOC 35 135.4 90 467 27 132.1 87.5 467
P-EXE 3433 6819.9 4796 31114 155 5537.4 4562 31114
E-EXE 85 3470.2 1412 26537 53 2845.5 1384 26537
Time 3 7.38 5 98 1 5.31 4 98

P/T LOC 21.2% 24.7% 23.8% 35.2% 14.0% 25.0% 23.9% 38.3%
E/P LOC 7% 21.7% 17.1% 55.8% 7.0% 29.4% 28.7% 64.8%
E/T LOC 1.5% 5.7% 3.8% 19.6% 1.5% 7.7% 6.3% 20.9%
E/P EXE 2.5% 37.5% 32.1% 87.9% 2.5% 46.8% 46.1% 95.2%

16

topic (whose value is set by calling the method min on
the set variable) is equal to 1. A functionally similar
test would be to just check whether the set.min()
equals 1. In that way we avoid the inclusion of the
unit-test framework, but still capture the essence of
the test.

Table 2 shows a summary of the results; for each
library it presents mean, median, min and max values
for the metrics described at the beginning of the
section. In total, we have used 149 unit-tests, and in all
but two cases the extracted code was able to pass the
unit tests again (discussed at the end of the subsection
– Failing Tests).

As can be seen in the bottom right corner of Table 2,
a unit-test on average executes around 25% of total
library code (Profiled/Total LOC). However, some of
the executed code is not necessary from the perspec-
tive of the unit-test, and by using the extraction pro-
cess we get that, on average, only 29.4% (E/P LOC)
of the executed code is necessary to pass the unit-test
(only 7% of total library code, E/T LOC is required to
pass a unit-test). In terms of overall execution steps we
can see that, on average, it is possible to replicate the
feature with 46% of execution steps (E/P EXE), mostly
by not including initializations that do not affect the
end result. It is important to note that savings are
greatest for unit-tests that test simple methods, where
the overall number of execution steps performed in
the method is significantly smaller than the number of
executions generated in the initialization phase (notice
how the savings are lower in the cases where the
execution spends considerably less execution time in
the initialization phase – in the most complex unit-test
of the Gauss library the execution savings are only
around 4.8%).

We also present the time it takes to execute the
whole extraction process – on average, it takes a
couple of seconds to identify the implementation code
(maximum of 98 seconds for the most complex test).

This experiment illustrates how libraries come with
a considerable overhead, if the application uses only
a small percentage of library code.

Failing Tests
Out of 149 executed tests there are two cases where
the method was not able to extract code that success-
fully passes the unit-test. Both tests are unit-tests of
the same library and fail by executing code in the
same function. A simplified version of the code is
given in Listing 9.

After the execution of the program the value of b1
will be an array: [2, 3], and the value of a1: 2. If the
identification process is centered on the value of a1 in
line 15, the result would be the inclusion of all code
expressions except the initialization of the array from
line 2 (a1 depends on the array from line 5). At the
core of the problem is our decision not to slice arrays
(slicing arrays would cause more problems with array

/*01*/function fun(array) {
/*02*/ var resultArray = [];
/*03*/ for(var i = 0; i < array.length; i++) {
/*04*/ if(array[i] % 2 == 0) {
/*05*/ resultArray = [];
/*06*/ resultArray.push(array[i]);
/*07*/ }
/*08*/ else
/*09*/ resultArray.push(array[i]);
/*10*/ }
/*11*/ return resultArray;
/*12*/}
/*13*/var b1 = fun([1,2,3]);
/*14*/var a1 = b1[0];
/*15*/a1;

Listing 9. A simplified excerpt from a failing unit-test

indexes, loops). In this case, the algorithm includes
the first item (’1’) of the array from line 13 (even
though the value of a1 does not depend on it) because
other items from the array are required – when re-
executing the unit test in the context of extracted code,
an error occurs (resultArray is not initialized, the first
value in the array is 1, and the control goes to line
9 and adds an item to a not-initialized array). Even
though this is, in these two cases, an easily detectable
and fixable problem, we acknowledge the possibility
that more serious errors could occur. This is not a
problem of the identification process (the process has
correctly identified all dependencies), but the problem
associated with extracting the identified code and
using it in a stand-alone fashion.

7.3 Page Optimization

For the third experiment, page optimization, the goal
was to show that the process is capable of identifying
code of all features offered by the application. In the
experiments the process identifies and removes code
that does not contribute to any behavior. In order to
do this, we have to know all application behaviors.
For this reason, we have chosen 8 demo web appli-
cations that describe their behavior, and 2 standard
web applications where it was easy to identify all
application behaviors. Similar to the feature extraction
experiment, based on the application behaviors, we
have defined Selenium tests, and we consider that the
extraction is successful if the extracted code is able to
pass the predefined tests the original application has
passed.

Table 3 shows the URL’s of the selected pages, the
scenarios that cause the manifestation of the behav-
iors, and all data gathered during the experiment.
In all test applications the extracted code was able
to pass the Selenium tests. The table shows that
the optimized page generates 38%–100% executions
(savings from 0%–62%), resulting in 0%–83% gains (1 -
E/P LT) in page loading time. The savings are greatest
in applications that use client-side libraries, while they
are almost non-existent in small demo applications

17

TABLE 3
Experimental results for page optimization. T – Total, P – Profiled, E – Extracted, LOC – Lines of Code,

EXE – Executions, Time – Extraction time in seconds, LT – Loading Time

Page URL Scenario description

codeBubble jqueryfordesigners.com/demo/coda-bubble.html Mouse over container; Mouse out container, wait for effects

fancyCheckbox
webdesign.maratz.com/lab/fancy-checkboxes-and-
radio-buttons/demo.html

Click twice each checkbox; Click each radio-button

humanTypist github.com/kennym/jQuery.humanTypist Wait for the typing animation to finish
idtPride idt.mdh.se/pride/ Click second, first button, second button; wait for effects
password jamesrwhite.co.uk/testing/ password hash/ Type a password: pa55w0d
tinySlider sandbox.scriptiny.com/tinyslider2/ Auto-cycle all; Click left; Click right; Click each thumbnail
tabs jqueryfordesigners.com/demo/tabs.html Click on each tab;
fourandthree fourandthree.com/ Click on each button
suckerFish be.twixt.us/jquery/suckerFish.php Mouse hover over each container

jSlideshow
line25.com/wp-content/uploads/2011/jquery-
slideshow/demo/index.html

Click on each button once

Page T-LOC P-LOC E-LOC P-EXE E-EXE P/T LOC E/P LOC E/P EXE LT E-LT E/P LT Time

codaBubble 9611 2838 1383 39598 19488 30% 49% 49% 204 79 39% 27
fancyCheckbox 117 117 108 1491 1235 100% 92% 83% 36 36 100% 2.7
humanTypist 9480 2017 605 31629 12016 21% 30% 38% 204 34 17% 23.2
idtPride 10621 3981 2537 114283 58479 37% 64% 51% 285 165 58% 73.9
password 149 149 149 7047 7047 100% 100% 100% 10 10 100% 3
tinyslider 260 254 248 20704 20690 98% 98% 100% 27 27 100% 134.5
tabs 9514 2520 1234 36599 19525 26% 49% 53% 200 65 32% 24.9
fourandthree 10564 3664 2393 30523 15513 35% 65% 51% 247 200 81% 26.6
suckerFish 9663 2623 1352 75952 36152 27% 52% 48% 205 75 37% 81.8
jSlideshow 9859 3273 1944 101472 66917 33% 59% 66% 232 116 50% 52.08

(where there is no dead code).
It is important to note that the goal of the evaluation

was to show that the method is capable of identifying
code responsible for a behavior, and not to determine
how much unnecessary code is usually included in
web applications. However, the results indicate that
web applications contain more code than is actually
needed for their behavior, and that considerable sav-
ings could be achieved by applying this extraction
method.

7.4 Threats to validity

There are several issues that might occur when at-
tempting to generalize the experiment results. One
concern is whether the selected applications are rep-
resentative of real-world web applications. We tried
to tackle this concern by performing experiments on
a wide range of applications: from JavaScript libraries
which have up to 2,000 lines of code through full
web pages built from around 11,000 lines of code,
that make use of the most wide-spread client-side
JavaScript library – jQuery. Even in this case, in order
to be able to generalize the results (e.g. that web ap-
plications contain more code than is actually needed
by their behavior), the experiments would have to be
performed on a much larger set of web applications.
We consider this as part of future work.

Another important threat to validity is whether or
not our method is capable of extracting all of the
code that implements a feature. Since our method is
based on dynamic analysis of web application code

in a particular scenario, we are aware that the quality
of the scenarios is vital to the correct identification
of feature code. This is why we are not claiming that
our method is capable of identifying the full code of a
feature, but the code of the feature manifested by the
specified scenarios. However, in order to tackle this
problem we have developed a method for automatic
generation of feature scenarios [35] that systematically
explores the event and value space of the application.
The details of the method are outside the scope of this
paper.

8 RELATED WORK

Our work is closely related to program slicing, defined
by Weiser [5] as a method that, starting from a subset
of a program’s behavior, reduces that program to
a minimal form which still produces that behavior.
In its original form, a program is sliced statically,
for all possible program inputs. Further research has
led to the development of dynamic slicing [6] in
which a program slice is composed of statements
that influence the value of a variable occurrence for
specific program inputs – only the dependencies that
occur in a specific execution of a program are studied.
Program slicing is usually based on some form of
Dependency Graph – a graph that shows dependen-
cies between code constructs. Depending on the area
of application, it can have different forms: a Flow
Graph in original Weiser’s form, a Program Depen-
dence Graph (PDG) [7] where it shows both data and
control dependencies for each expression, or a System

18

Dependence Graph (SDG) [8] which extends the PDG
to support procedure calls rather than only monolithic
programs. The SDG has also been later expanded in
order to support object-oriented programs [16]. None
of these graphs are wholly suitable for capturing de-
pendencies in a multi-language dynamic environment
that is the client-side of the web application.

In the web domain Tonella and Ricca [9] define
web application slicing as a process which results in
a portion of a web application which still exhibits the
same behavior as the initial web application in terms
of information of interest to the user. They present a
technique for web application slicing in the presence
of dynamic code generation by building an SDG for
server-side web applications. Even though the server-
side and the client-side applications are parts of the
same whole, they are based on different development
paradigms, and cannot be treated equally.

Our work is also related to feature location – a
technique for identifying source code locations that
correspond to specific functionality. One of the ear-
liest feature location techniques is software recon-
naissance [20]. As input, the technique receives two
sets of scenarios: one set triggering the target feature,
and the other set not triggering it. By analyzing
their execution traces the technique can identify the
program elements that only appear in the traces that
invoke the feature. In [14], Eisenbarth and Koschke
show a semi-automatic technique that reconstructs the
mapping between computational units and features
that are triggered by the user and exhibit an ob-
servable behavior. Their method is based on building
a concept lattice, which is analyzed by the analyst.
Compared to these two methods, our method takes
into account the specifics of technologies used in
client-side web development, and supports automatic
discovery of feature manifestation points, which we
then use to identify code that implements the feature
in a particular scenario.

There are also approaches that facilitate the un-
derstanding of dynamic web page behavior: Script
InSight [10], FireCrystal [11], FireDetective [29], and
ReAjax [30]. Script InSight helps to relate the elements
in the browser with the lower-level JavaScript syntax.
It uses the information gathered during the script’s ex-
ecution to build a dynamic, context-sensitive, control-
flow model that summaries tracing information. Fire-
Crystal facilitates the understanding of interactive
behaviors in dynamic web pages by recording inter-
actions and logging information about DOM changes,
user input events, and JavaScript executions. After
the recording phase, the user can use an execution
time-line to see the code that is of interest for the
particular behavior. FireDetective [29] facilitates the
understanding of client-server interactions in AJAX
application by visualizing the execution traces, and
combining client- and server-side information to link
different execution traces. ReAjax [30] is a reverse-

engineering tool that uses dynamical analysis to infer
a finite state machine of the application’s GUI, where
each state represents an instance of the single-page
DOM, and a transition the event that causes the
DOM change. While all of these approaches facili-
tate the understanding of dynamic web application
behaviors, compared to our approach, they work on a
higher level of granularity (executed functions, DOM
changes) – they make no attempt to track dependen-
cies between different code expressions. Dependency
tracking, by using the client-side dependency graph,
enables us to determine the code expressions that
contribute to a behavior on a finer and more exact
level compared to using only profiling.

In the domain of optimizing web application code
there is also a Doloto tool [31]. Doloto takes as input
the existing client-side code, traces application work-
loads, and outputs a rewritten version that performs
dynamic loading of function code. The processed
application initially transfers only the portion of the
code necessary for its initialization, and the rest of
the code is replaced by short stubs, while the actual
implementation is transfered lazily in the background,
at latest on-demand. Since the goal of Doloto is to
optimize the download of web application code, they
make no attempt to identify feature code. Doloto’s
and our approach can be viewed as complementary
– our method can be used to remove dead code, and
Doloto can be used to dynamically load only the live
code.

There are also a number of works on static [33] [34],
and combined static and dynamic analysis [32]. How-
ever, our goal is to identify feature code that can later
be extracted in a stand-alone fashion. This requires
high precision analysis that cannot be achieved with
the presented analysis techniques.

This work is a continuation and extension of our
previous work [15]. Compared to that paper, we have
made the following extensions: i) we have defined a
conceptual model of the client-side that we use to
reason about the relationships between features, the
underlying page structure, and scenarios; ii) through-
out the process we have added support for server-side
communication, by including server-side communica-
tions as potential feature manifestation points; iii) we
have provided a more detailed description of the
algorithms for graph construction and graph mark-
ing; iv) we have strengthened the evaluation by per-
forming additional experiments on three open-source
libraries, and have performed the feature extraction
and page optimization experiments on a larger set
of web applications; v) for the whole approach, on
almost all levels, we have provided significantly more
details that facilitate the understanding of the whole
process.

19

9 CONCLUSION

In this work we have shown how to identify code
responsible for the implementation of a certain client-
side feature in web applications. We have demon-
strated how, even in this highly dynamic, multi-
paradigm, multi-language environment, dependen-
cies can be tracked by constructing a client-side de-
pendency graph, and how, by using that graph, the
code responsible for a certain feature can be identified.
We have evaluated the approach by performing three
sets of experiments on a range of web applications,
and have reached two conclusions: i) the method can
correctly identify stand-alone behaviors by analyzing
web application event traces; and ii) considerable sav-
ings in terms of number of executions, page loading
time, and code size can be achieved while still being
able to reproduce the demonstrated behavior.

The client-side dependency graph represents all
dependencies in the application and it can be utilized
in a number of different applications, e.g. for code un-
derstanding, dependency analysis, or clone detection.
For future work, we plan to investigate some of these
options.

The client-side and the server-side application are
parts of the same whole and we plan to extend the
process to support the analysis of server-side code and
resources.

REFERENCES

[1] C. Kapser and M. W. Godfrey, “Cloning Considered Harm-
ful” Considered Harmful, Working Conference on Reverse Engi-
neering, pages 19–28, http://dx.doi.org/10.1109/WCRE.2006.1,
IEEE Computer Society, 2006.

[2] R. Holmes, Pragmatic Software Reuse, University of Calgary,
Canada, 2008

[3] J. Brandt, P. J. Guo, J. Lewenstein, and S. R. Klemmer, Oppor-
tunistic programming: How rapid ideation and prototyping occur in
practice, Workshop on End-user software engineering, pages 1–
5, ACM, 2008

[4] World Wide Web Consortium (W3C), XMLHttpRequest,
http://www.w3.org/TR/XMLHttpRequest/
June 2012,

[5] M. Weiser, Program slicing, International Conference on Soft-
ware engineering, pages 439–449, IEEE, 1981

[6] H. Agrawal, and J. R. Horgan, Dynamic program slicing, Confer-
ence on Programming language design and implementation,
PLDI ’90, pages 246–256, ACM, 1990

[7] S. Horwitz, J. Prins, and T. Reps, Integrating noninterfering
versions of programs, ACM Trans. Program. Lang. Syst., volume
11, issue 3, pages 345–387, July, 1989

[8] S. Horwitz, T. Reps and D. Binkley, Interprocedural slicing using
dependence graphs, SIGPLAN Not., volume 23, issue 7, June,
1988, pages 35–46

[9] P. Tonella, and F. Ricca, Web Application Slicing in Presence of
Dynamic Code Generation, Automated Software Engg., volume
12, number 2, 2005, pages 259–288

[10] P. Li and E. Wohlstadter, Script InSight: Using Models to Explore
JavaScript Code from the Browser View, International Conference
on Web Engineering, 2009, pages 260–274

[11] S. Oney, B. Myers, FireCrystal: Understanding interactive behav-
iors in dynamic web pages, Symposium on Visual Languages and
Human-Centric Computing, pages 105–108, 2009

[12] JSON, http://www.json.org/, 01.09.2012.
[13] W3Tech, http://w3techs.com/technologies/overview/

javascript library/all, 04.09.2012.

[14] T. Eisenbarth, and R. Koschke, Locating Features in Source Code,
IEEE Transactions on Software Engineering, VOL. 29, NO. 3,
march 2003

[15] J. Maras, J. Carlson, I. Crnkovic, Extracting Client-side Web
Application Code, World Wide Web Conference 2012, Lyon

[16] L. Larsen, M. J. Harrold, Slicing object-oriented software, Inter-
national conference on Software engineering, ICSE ’96

[17] S. Galbraith, Quantifying the Relationship between Website
Download Time and Abandonment by Users, http://www.simple-
talk.com/dotnet/.net-tools/the-cost-of-poor-website-
performance/, 06.09.2012.

[18] T. J. Biggerstaff, B. G. Mitbander, and D. Webster, The concept
assignment problem in program understanding, Proceedings of the
15th international conference on Software Engineering, 1993,
pages 482–498

[19] V. Rajlich, and N. Wilde, The Role of Concepts in Program
Comprehension, Proceedings of IEEE International Workshop on
Program Comprehension (IWPC’02), pages 271-278, 2002

[20] N. Wilde and M. Scully, Software Reconnaissance: Mapping
Program Features to Code, Journal of Software Maintenance:
Research and Practice, vol. 7, 1995, page. 49-62.

[21] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, Feature
location in source code: a taxonomy and survey, Journal of Software
Maintenance and Evolution: Research and Practice, 2011

[22] S. Artzi, J. Dolby, S.H. Jensen, A. Møller, and F. Tip, A
framework for automated testing of javascript web applications,
Proceedings of the 33rd International Conference on Software
Engineering, pages 571–580, 2011

[23] , P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and
D. Song, A symbolic execution framework for javascript, Security
and Privacy (SP), 2010 IEEE Symposium on, pages 513–528,
2010

[24] D. Poshyvanyk, Y. G. Gueheneuc, A. Marcus, G. Antoniol, and
V. Rajlich, Feature Location Using Probabilistic Ranking of Methods
Based on Execution Scenarios and Information Retrieval, Software
Engineering, IEEE Transactions on, Vol. 33, No. 6, pages 420-432

[25] J. Coffey, L. White, N. Wilde, and S. Simmons, Locating Soft-
ware Features in a SOA Composite Application, In Web Services
(ECOWS), 2010 IEEE 8th European Conference on, pages 99–
106

[26] IEEE Standard for Software and System Test Documentation,
IEEE Std 829-2008 , vol., no., pp.1,118, July 18 2008, doi:
10.1109/IEEESTD.2008.4578383

[27] A. Mesbah, A. van Deursen, D. Roest, Invariant-Based Auto-
matic Testing of Modern Web Applications, Software Engineering,
IEEE Transactions on 38.1 (2012), pages 35-53

[28] A. Marchetto, P. Tonella, Using search-based algorithms for Ajax
event sequence generation during testing, Empirical Software En-
gineering 16.1, 2011, pages 103-140

[29] N. Matthijssen, A. Zaidman, M.A. Storey, I. Bull, A. van
Deursen, Connecting Traces: Understanding Client-Server Interac-
tions in Ajax Applications, Program Comprehension (ICPC), 2010
IEEE 18th International Conference on. IEEE, 2010

[30] A. Marchetto, P. Tonella, and F.Ricca, ReAjax: a reverse engineer-
ing tool for Ajax web applications, Software, IET 6.1, 2012, pages
33-49.

[31] B. Livshits, E. Kiciman, Doloto: Code Splitting for Network-Bound
Web 2.0 Applications, Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software engineer-
ing. ACM, 2008, pages 350-360

[32] S. Wei and B.G. Ryder, A practical blended analysis for dynamic
features in javascript, Technical Report TR-12-18, Department of
Computer Science, Virginia Tech, 2012

[33] M. Madsen, B. Livshits and M. Fanning Practical static analysis
of Javascript applications in the presence of frameworks and libraries,
Tech. Rep. MSR-TR-2012-66, Microsoft Research, July 2012)

[34] S.H Jensen, M. Madsen, and A. Møller Modeling the HTML
DOM and browser API in static analysis of JavaScript web applica-
tions, ESEC/FSE, 2011

[35] J. Maras, M. Štula, and J. Carlson Generating Feature Usage Sce-
narios in Client-side Web Applications, International Conference
on Web Engineering, ICWE 2013

20

Josip Maras is a Ph.D student at the Faculty
of Electrical Engineering, Mechanical Engi-
neering and Naval Architecture, University of
Split. He has received his masters degree in
computer science in 2009. His research in-
terests include program analysis, web appli-
cations, and software engineering in general.

Maja Štula is associated professor of com-
puter science at the Faculty of Electrical
Engineering, Mechanical Engineering and
Naval Architecture, University of Split. She
received a BS in electrical engineering in
1996, a MSc in 2001 and a PhD in 2005
all from the Faculty of Electrical Engineer-
ing, Mechanical Engineering and Naval Ar-
chitecture, University of Split. Her research
interests include multi-agent systems, fuzzy
cognitive maps, semantic web, and the appli-

cation of intelligent technologies.

Jan Carlson is a senior lecturer at the
School of Innovation, Design and Engineer-
ing, Mälardalen University, Sweden. He re-
ceived his M.Sc. degree in Computer Sci-
ence from Linköping University in 2000, and
his doctoral degree from Mälardalen Univer-
sity in 2007. His research interests include
component models for embedded systems,
event pattern detection, formal methods and
logic programming.

Ivica Crnkovi ć received the Ph.D. Degree
(91) in computer science, and before that the
M.Sc. (81) in computer science and M.Sc.
in theoretical physics (84) all from the Uni-
versity of Zagreb, Croatia. After 15 years
of work in industry, he moved to academia
1999. He is a professor of software engi-
neering and chair of Software Engineering
Division at Mälardalen University, Sweden,
and a professor at Faculty of Electrical En-
gineering, University of Osijek, Croatia. He

is a co-author of two books, and the co-author of more than 100
refereed publications on software engineering topics. His research
interests include component-based software engineering, software
architecture, software conguration management, software develop-
ment environments and tools, and software engineering in general.

