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Abstract 
    An alpha field is the field that can be described 
by two dimensionless field parameters α and α'. A 
quantum alpha field is the alpha field in which 
quantum effects can be occurred. In classical 
mechanics, a nanorobot has, at every moment, an 
exact position and an exact momentum, following 
the Newton’s laws of motion. In quantum 
mechanics, nanorobots do not have exactly 
determined properties and when they are 
measured, the result is randomly drawn from a 
probability distribution. The classical approaches to 
control of nanorobot motion in the multipotential 
field have been presented in the authors previous 
papers. In this paper we continue to investigate the 
related control algorithms for a nanorobot motion in 
a quantum alpha field. In that sense the nanorobot 
dynamics has been described by the Schrödinger 
equation in an alpha field that predicts what the 
probability distributions are. Meanwhile, it cannot 
fundamentally predict the exact result of each 
measurement. Thus, the problem is: how to control 
of a nanorobot motion in the case when quantum 
effects are occurred. Some approaches are 
discussed in this paper. 
 
 
1. INTRODUCTION 

As it is the well known, the nanorobotics is the 
multidisciplinary field that deals with the controlled 
manipulation with atomic and molecular-sized 
objects and therefore sometimes is called 
molecular robotics [1]. The state of the art in 
nanorobotics has been presented in reference [2]. 
The classical approaches to control of nanorobot 
motion in the multipotential field have been 
presented in the authors previous papers [2,3,4,5]. 
A relativistic Hamiltonian of the nanorobot motion in 
a multipotential field that includes external artificial 
control potential field has been derived and 
presented in [2]. Starting with the generalized 
relativistic Hamiltonian in an alpha field [3] the non-
relativistic approximation of that Hamiltonian and 
the canonical differential equations of the 
nanorobot motion in a multipotential field has been 

derived in [4]. In that sense, the concept of the 
external linearization has been introduced in [5]. In 
this paper we continue to investigate the related 
control algorithms for a nanorobot motion in a 
quantum alpha field. As it is well known, in classical 
mechanics, a nanorobot has, at every moment, an 
exact position and an exact momentum, following 
the Newton’s laws of motion. On the other side, in 
quantum mechanics, nanorobots do not have 
exactly determined properties and when they are 
measured, the result is randomly drawn from a 
probability distribution. In that sense the nanorobot 
dynamics has been described by the Schrödinger 
equation in an alpha field that predicts what the 
probability distributions are. Meanwhile, it cannot 
fundamentally predict the exact result of each 
measurement. Thus, the problem is: how to control 
of a nanorobot motion in the case when quantum 
effects are occurred. Some approaches are 
discussed in this paper.  
     Generally, the Schrödinger equation has been 
presented in the references [6-11]. The properties 
of the quantum mechanics are discussed in [12-
15]. A gradient based approach to feedback control 
of quantum systems is presented in [16]. Control of 
observables in the finite level quantum systems is 
shown in [17]. Some properties of nonlinear 
systems are pointed out in [18]. The behavior of 
nanorobots as an analogous of the quantum 
harmonic oscillator has been described in [19]. 
Some versions of applications of fuzzy control 
algorithms to control of quantum systems have 
been proposed in [20-22]. Application of 
probabilistic self-stabilization algorithm to robot’s 
control is presented in [23]. The quantum 
computation and quantum information are 
discussed in [24]. The coherent control for a 
class of annihilation operator linear quantum 
systems is proposed in [25]. This control can be 
applied to the quantum systems that can be 
described by complex quantum stochastic 
differential equations in terms of annihilation 
operators only. For this class of quantum systems, 
the related control problem can be solved in terms 
of a pair of complex algebraic Riccati equations. In 
addition, the question of physical realizability of the 
resulting quantum controllers is related to a 
bounded real property. The finite controllability of 
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infinite dimensional quantum systems has been 
discussed in [26]. The quantum dissipative systems 
and feedback control design by interconnection are 
presented in [27]. Finally, the transfer function 
approaches to quantum control with presentations 
of dynamics of quantum feedback control and 
control concepts and applications are proposed in 
[28,29].  
     In this paper it has been proposed the control 
algorithm of the nanorobot motion in a quantum 
alpha field. This control algorithm is based on the 
inner quantum states of the nanorobot presented in 
[21] and on the gradient control approach that is 
discussed in [16]. The inner quantum states of the 
nanorobot are modeled by qubits. 
     The organization of this paper is as follows. The 
second section presents the derivation of the 
Schrödinger quantum wave equation in an alpha 
field. In the third section it has been proposed the 
control algorithm of the nanorobot motion in a 
quantum alpha field. Finally, the conclusion of the 
paper with some comments and the reference list 
are presented in the fourth and fifth sections, 
respectively.  

 
2. DERIVATION OF SCHRÖDINGER QUANTUM 

WAVE EQUATION IN AN ALPHA FIELD   
     As it is well known, the Schrödinger equation 
[6,7,8,9] can be derived by using the Hamiltonian 

operator . This operator characterizes the total 
energy of any given wavefunction and takes 
different forms depending on the situation. Thus, 
including the Hamiltonian operator one can obtain 
the most general form of the time dependent 
Schrödinger equation [10]: 

∧
H

iћ .
t

∧∂
ψ = ψ

∂
H                                                       (1)  

Here Ψ is the wavefunction, ħ is the well known 
reduced Planck’s constant and i-is an imaginary 
unit. This equation gives a description of a system 
evolving with time. In the case of Schrödinger 
equation for a single particle that is moving in an 
electric field, but without a magnetic field, the 
Hamiltonian operator has the form: 

2
2

0

2 2 2
2

2 2 2

ћ V(r, t),
2m

.
x y z

∧
= − ∇ +

⎛ ⎞∂ ∂ ∂
∇ = + +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

H
                                    (2)  

Here is a nanorobot mass, V(r,t) is a nanorobot 

potential energy at position r and time t and
0m

2∇ is 
the Laplacian operator. Thus, combining the 
relations (1) and (2) one obtains the time 

dependent Schrödinger equation for the mentioned 
situation: 

2
2

0

ћiћ (r, t) V(r, t) (r, t).
t 2m

⎡ ⎤∂
ψ = − ∇ + ψ⎢∂ ⎣ ⎦

⎥             (3)  

Here Ψ is the wavefunction that in this context is 
called the position-space wavefunction. This is a 
linear partial differential equation and therefore the 
superposition principle can be applied. It is also a 
diffusion equation.  
     The term Schrödinger equation can refer to both 
the general equation (1), and to the specific version 
(3) and variations thereof. The general equation (1) 
is indeed quite general. It is used throughout the 
quantum mechanics for everything, like for 
application of the Dirac equation to quantum field 
theory, by employing the various expressions of the 
Hamiltonian. In that sense, the Schrödinger 
equation (1) can be applied to an alpha field by 
employing general relativistic Hamiltonian αH , 
derived for that field in the reference [3]: 

2 0
0

1/ 2 1/ 22 2

2 2 2

iћ , f ( ),
t

Hm ( ')c v
Hm 'c ,

2

v v ( ')c vH 1 '
c c c

∧ ∧
α αα α α

α

− −

α

∂
ψ = ψ =

∂
κ α − α

= αα +

⎛ ⎞ ⎛ ⎞κ α − α
= − = αα − +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

H H H

H

.

(4)  

Here α and α' are field parameters, H is relativistic 
parameter, vα and v are a nanorobot velocities in 
an alpha field and in a vacuum,  is observation 
parameter and c is a speed of the light in vacuum 
[2,3,4,5]. Further, the nonrelativistic version (3) is a 
simplified approximation to reality. This is quite 
accurate in many situations, but very inaccurate in 
the region of the relativistic quantum mechanics. 
The time independent Schrödinger equation is 
describing stationary states of the system. It can be 
only used when the related Hamiltonian is not 
dependent on time: 

κ

E
∧
.ψ = ψH                                                            (5)  

This relation is the equation states and can be 
interpreted as follows. When the Hamiltonian 
operator acts on the wavefunction Ψ, the result 
might be proportional to the same wavefunction Ψ. 
If this is happened, then Ψ is a stationary state, 
and the proportionality constant E is the energy of 
the state Ψ. In the terminology of linear algebra the 
relation (5) is an eigenvalue equation. As an 
example one can use the nonrelativistic time 
independent Schrödinger equation for a single 
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nanorobot in an electric field, but without a 
magnetic field: 

2
2

0

ћE (r) (r) V(r) (r).
2m

ψ = − ∇ ψ + ψ                        (6)  

     If certain properties of a system are measured, 
then the Schrödinger equation predicts that the 
result may be quantized. This means that only 
specific discrete values can occur. As an example 
one can use the energy quantization, where the 
energy of an electron in atom is always one of the 
quantized energy levels that is discovered by 
atomic spectroscopy. The next example is the 
quantization of an angular momentum. Although 
this was an assumption in the earlier Bohr model of 
the atom, it is also prediction of the Schrödinger 
equation. It should be pointed out that not every 
measurement gives a quantized result in quantum 
mechanics. This can be happened by 
measurement of position, momentum and in 
special situation energy, where we can have any 
value across a continuous range.  
     The general solutions of the Schrödinger 
equation can be understood from the following 
discussion. The plane wave is definitely a solution 
because this was used by Schrödinger in order to 
construct the equation. Further, due to linearity 
principle any linear combination of plane waves is 
also a solution of the equation. Thus, in the case of 
discrete k, the sum is a superposition of plane 
waves [11]: 

( n ni k r t
n

n 1
(r, t) A e .

∞
⋅ −ω

=
ψ = ∑ )                                       (7)  

Here A is a plane wave amplitude, is an angular 
frequency and k is a wave vector. On the other 
side, in the case of continuous k, the sum becomes 
an integral that is the Fourier transform of a 
momentum space wavefunction [12]: 

ω

 ( )
( )i k r t 3

3

3
x y z

1(r, t) (k)e d k,
2

d k dk dk dk .

⋅ −ωψ = Φ
π

=

∫
                     (8)  

Here d3k is the differential volume element in k- 
space, and the integrals are taken over all k- 
space. Further, the momentum wavefunction Φ(k) 
arises in the integrand since the position and 
momentum space wavefunctions are Fourier 
transforms of each other. Because these satisfy the 
Schrödinger equation, the solutions to the 
Schrödinger equation, for a given situation, will be 
the plane waves used to obtain it. Also any 
wavefunctions, which satisfy the Schrödinger 
equation prescribed by the system, including the 

relevant boundary conditions, will be the solutions 
to the Schrödinger equation. Thus, the Schrödinger 
equation is true for any non relativistic situation. 
Further, one can say that the Schrödinger equation 
is a differential equation of wave-particle duality. 
This means that particles can behave like waves 
because their corresponding wavefunctions satisfy 
the Schrödinger equation. 
     In the case of one spatial dimension of time 
independent and non relativistic Schrödinger 
equation for one nanorobot we can apply the 
following relations [11]: 

 

2 2

2
0
2 2

2
0

iE t /ћ 2 2

ћ d V(x)
2m dx

ћ dE V(x) ,
2m dx

(x, t) (x)e , (x) dx.

∧

−

= − + →

ψ = − ψ + ψ

ψ = ψ ψ = ⎜ψ ⎜∫

H

              (9)  

The solution in (9) is restricted in the sense that it 
must not grow at infinity. In the case of a bound 
state, it should have a finite L2- norm. If it is a part 
of a continuum, then it should have a slowly 
diverging norm. 
     In the case of three spatial dimensions of time 
independent and non relativistic Schrödinger 
equation for one nanorobot we can apply the 
relations: 

2
2

0
2

2

0
iE t / ћ

ћ V(r)
2m

ћE V
2m

(r)e , r (x, y,z).

∧

−

(r) ,

= − ∇ + →

ψ = − ∇ ψ + ψ

ψ = ψ =

H

                             (10)  

Here r(x,y.z) is the position of the nanorobot. 
     In the case of one spatial dimension of time 
dependent and non relativistic Schrödinger 
equation for one nanorobot we can apply the 
following relations [11]: 

2 2

2
0

2 2

2
0

ћ V(x, t),
2m dx

ћiћ V(x, t) , (x, t).
t 2m x

∧ ∂
= − + →

∂ ∂
ψ = − ψ + ψ ψ = ψ

∂ ∂

H
  (11)   

In the case of three spatial dimensions of time 
dependent and non relativistic Schrödinger 
equation for one nanorobot we can apply the 
relations: 

2
2

0
2

2

0

ћ V(r, t),
2m

ћiћ V(r, t) , (r, t).
t 2m

∧
= − ∇ + →

∂
ψ = − ∇ ψ + ψ ψ = ψ

∂

H
      (12) 
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     For solution of the Schrödinger equations, 
generally, one can use the following techniques: 
perturbation theory, the variational method, 
quantum Monte Carlo methods, density functional 
theory and WKB approximation and semi-classical 
expansion. For the special cases it also can be 
used the list of quantum-mechanical systems with 
analytical solutions and Hartree-Fock method as 
well as post Hartree-Fock methods.  
     One of the important properties of the 
Schrödinger equation is linearity. Thus, if two wave 
functions and are solutions, then so is any 
linear combination of the two. This property allows 
superposition of quantum states to be solutions of 
the Schrödinger equation. Further, if two wave-
functions and are solutions to the time 
independent equation with the same energy E, 
then so is any linear combination: 

1ψ 2ψ

1ψ 2ψ

1 2 1 2 1 2(a b ) a b E(a b ).
∧ ∧ ∧

ψ + ψ = ψ + ψ = ψ + ψH H H    
                                                                          (13)  
Here  and a b are any complex numbers. If we 
have two different solutions with the same energy, 
then it is called degenerate solutions [12]. The time 
independent eigenvalue problem can be restricted 
to real valued wave function. In the time dependent 
equation the complex conjugate waves satisfy 
time-reversal symmetry. This means, if is 

one solution, then so is

(x, t)ψ
(x, t)ψ − , and these 

waves are moving in the opposite directions in 
time.  
     Further, the Schrödinger equation is consistent 
with probability conservation. This is because it can 
directly derive the continuity equation for probability 
[15]: 

2

0

(r, t) j 0, (r, t) (r, t),
t
1 ˆ ˆj ( p p ).
2m

∗

∗ ∗

∂
ρ + ∇⋅ = ρ = ⎜ψ⎜ = ψ ψ

∂

= ψ ψ −ψ ψ
      (14)   

Hereρ is the probability density per unit 

volume, is the probability current (flow per unit 

area), is the first order momentum operator and 
denotes complex conjugate.  

j
p̂

∗
     The next property of the Schrödinger equation is 
the positive energy. Thus, if the potential is 
bounded from below, meaning there is a minimum 
value of potential energy, then the eigenfunctions 
of the Schrödinger equation have energy which is 
also bounded from below. This property of positive 
definiteness of energy allows the analytic 
continuation of the Schrödinger equation to be 
identified as a stochastic process, which can be 

represented by a path integral. Further, it can be 
prove that the solutions to the Schrödinger 
equation are not Galilean invariant. Also the 
solutions to the Schrödinger equation are not 
Lorentz invariant and therefore are not consistent 
with the special relativity. In order to extend 
Schrödinger’s formalism to include relativity, the 
physical picture must be transformed. Thus, the 
Klein-Gordon equation [13] and the Dirac equation 
[14] are built from the relativistic mass-energy 
relation. Therefore, these equations are relativistic 
invariant and replace the Schrödinger equation in 
relativistic quantum mechanics. 
 
3. CONTROL OF NANOROBOT MOTION IN A 

QUANTUM ALPHA FIELD 
     Generally, there exist two approaches to control 
of quantum systems [16]. The first one is open loop 
control. The second approach is feedback control, 
which is based on the measurement processes. In 
this paper the feedback control, or closed loop 
control, has been discussed. In order to employ the 
nonrelativistic Schrödinger equation for description 
of the quantum system in an alpha field, the 
relativistic Hamiltonian (4) should be transformed 
into the nonrelativistic approximation. The first step 
is the transformation of the Hamiltonian into the 
nonlinear (quadratic) form [3]: 

2
2 2

0 o2

2 2
2

02

P m c , P Hm v
c

P m c .
c

α

α

− = αα′ = →

− =
αα′αα′

H

H
                  (15)  

The second step is the substitution of field 
parameters α and α' [3]: 

( )

2
0

2
0

e2 2
0 0

2
0 e

1 1 U1
m cU1

m c

P PUP P ,
m c m c

m c U .

α α
α

α
α α

⎛ ⎞
= ≅ − →⎜ ⎟⎜ ⎟⎛ ⎞αα′ ⎝ ⎠+⎜ ⎟⎜ ⎟
⎝ ⎠
⎛ ⎞ ⎛

≅ − = ≅ −⎜ ⎟ ⎜⎜ ⎟ ⎜αα′ αα′⎝ ⎠ ⎝

≅ → ≅ − =
αα′

H HH

HH H

U ,

α

⎞
⎟⎟
⎠

H

  

                                                                          (16)  
Here andeP eαH are the extended momentum and 
the extended Hamiltonian and U is the total 
potential energy of a nanorobot in an alpha field. 
Including (16) into the relation (15) we obtain the 
Hamiltonian in the following form: 

2
2 2
0 2

0

2 2 2
0 e

PUc m c P U,
m c

c m c P U.

α

α

⎛ ⎞
= + − + →⎜ ⎟⎜ ⎟

⎝ ⎠

= + +

H

H

            (17)  
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The next step is the transformation of (17) into the 
nonrelativistic approximation: 

1/ 22
2

0 e
0

2 2
0 e

0

1c m c P U,
2m c

1m c P U.
2m

α

α

⎡ ⎤⎛ ⎞⎢ ⎥≅ + +⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

≅ + +

H

H

→
              (18)  

The final step is the exclusion of the rest mass 
energy m0c2, what leads to the Hamiltonian that is 
consisting of kinetic and potential energy, only:  

2
e e 2

0 0

1 PUP U, P P , P m v
2m m cα

⎛ ⎞
≅ + = − =⎜ ⎟⎜ ⎟

⎝ ⎠
H 0 .   (19)  

Now, the control algorithm should be developed for 
the quantum system described by nonrelativistic 
Schrödinger equation: 

2
e

0

iћ , f (
t

1 P U.
2m

∧ ∧
α αα α

α

∂
ψ = ψ =

∂

≅ +

H H H

H

),α

                     (20)  

Here m0 is the nanorobot mass. The Schrödinger 
equation from (20) describes the quantum system 
in an alpha field without control. This is just a plant 
that should be controlled. In the case of the closed 
loop, or feedback, control system the dynamics of 
the controlled quantum system is described by the 
Schrödinger equation of the form [16]: 

[ ] n
ciћ (t) u(t) (t), (t) C .α α α αψ = + ψ ψ ∈& H H      (21)  

Here is taken as the control Hamiltonian and 
is external control input. Further, the desired 

states of the nanorobot motion on its trajectory 
should satisfy the following Schrödinger equation: 

cH
u(t)

n
diћ (t) (t), (t) C .α α αψ = ψ ψ ∈& �H                       (22)  

Here is the desired Hamiltonian that describes 
the desired dynamics of the nanorobot motion. 
Comparing (21) and (22) one can find the identity: 

dH

( )
c d

c d

u(t) ,
u(t) .

α

α

+ = →

= −

H H H
H H H

                                   (23)  

From the last equation in (23) one should construct 
the control Hamiltonian . In order to obtain the 
stability for the quantum system (21) during the 
nanorobot motion one should introduce the related 
Lyapunov function. Following the approaches given 
in [16] and [17] one can employ the following 
Lyapunov function: 

cH

( )2dV( ) Z Z .+
α α αψ = ψ ψ −                                   (24)  

Here + is standing for the transposition and 
complex conjugation, Z is the observable of the 
quantum system that is associated to the energy of 
the nanorobot and Zd is the desirable energy value. 
The term Z+α αψ ψ describes the observed mean 
energy of the nanorobot at time instant t. It follows 
the first derivative of the Lyapunov function (24) 
with respect to time:  

dV( ) 2 Z Z Z Z .+ + +
α α α α α α α⎡ ⎤ ⎡ ⎤ψ = ψ ψ − ψ ψ + ψ ψ⎣ ⎦ ⎣ ⎦

& & &    (25)  

The first time derivative can be obtained from 
(21) in the form:  

αψ&

[ ] n
c

i(t) u(t) (t), (t) C .
ћα α α αψ = − + ψ ψ ∈& H H   (26)  

Applying (26) to the relation (25) one obtains the 
following equation: 

( )
( )
d

c c

2iV( ) Z Z
ћ

Z Z .

+
α α α

+
α α α

ψ = ψ ψ − ⋅

α⋅ψ −

&

H H H H{ Z - Z +u(t) }ψ

+ +

           (27)  

Now, one can use the quantum system observable 
Z in the form that satisfies the following condition: 

Z .α α α α α α αψ ψ = ψ ψ → =H H HZ Z              (28)  

Taking into account (28), the relation (27) is 
transformed into the new one: 

( ) ( )d c c
2iV( ) Z Z Z Z .
ћ

+ +
α α α α αψ = ψ ψ − ψ − ψ& H H{u(t) }   

                                                                          (29)  
Following a gradient based approach [16], one can 
choose the control variable u(t) in the form. 

uu(t) k V( )α= ∇ ψ&{ }.                                            (30)  

Here k is a proportional constant of the control 
algorithm in (30). The velocity gradient of the 
Lyapunov function (29) with respect to the control 
variable u(t) has the form: 

( ) ( )u d c
2iV( ) Z Z Z Z .
ћ

+ +
cα α α α α∇ ψ = ψ ψ − ψ − ψ& H H{ }  

                                                                          (31)  
Applying (31) to the relation (30) one obtains the 
control variable u(t) in the final form:  

( ) ( )d c c
2iu(t) k Z Z Z Z .
ћ

+ +
α α α α= ψ ψ − ψ − ψH H   (32) 

After substitution of the control variable (32) into 
the relation (29) we obtain the first derivative of the 
Lyapunov function in the closed loop quantum 
system:  
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( ) ( )22 2 24V( ) k Z Z Z Z ,+ +
αψ = − ψ ψ − ψ − ψ& H Hd c c2ћ

V( ) 0 if k 0.

α α α α

αψ ≤ ≥&

                                                                          (33)  
From the relation (33) one can see that the first 
derivative of Lyapunov function is non-positive if 
the proportional constant k is non-negative. This 
condition ensures the stability for the quantum 
system (21). In this case La Sale’s principle [18] 
shows convergence not to equilibrium but to an 
area round this equilibrium. This is known as 
invariant set. Thus, following the previous 
consideration, any solution of the system, αψ , 
remains in the invariant set: 

M V( ) 0α α= ψ

     The objective of the quantum control (32) is to 
move a nanorobot 

ra

Here the orientations of the arrows on the plane 
are associated w

ψ =&{ : }.                                        (34)  

from an initial eigenstate 
0αψ (which is associated with a certain energy 

level) to a different eigenstates along the nanorobot 
t jectory, associated with the desirable energy 
levels. Also this quantum control should assure 
tracking of the desirable quantum states of the 
nanorobot motion within acceptable accuracy 
levels. In order to do it one should define the 
desirable nanorobot states along its trajectory of 
the motion. Since quantum effects can bi occurred 
during a nanorobot motion, the definition of the 
desirable nanorobot states should be in the 
quantum mechanics manner. Following the 
references [21,23], the desirable nanorobot states 
will be defined in the form of qubits. For the 
simplicity, it is assumed that a nanorobot is moving 
on a plane and has a set of inner states. On the 
mentioned sets one should apply the related 
actions, following the desired states along the 
trajectory of the nanorobot motion. Now, one can 
suppose that a nanorobot may be in one of the 
following inner states on a plane [21,23]: 

↑ ↓ → ←S = { , , , }.                                              (35)  

ith the possible direction of the 
nanorobot motion. The related actions of the 
nanorobot motion are: step forward, step 
backward, turn left, turn right and stay still. The 
actions step forward and step backward are 
restricted by certain fixed distance. The inner 
states are modeled by qubits in the following forms: 

1 0
S: , ,

0 1
⎛ ⎞ ⎛ ⎞

∈ ↑ = ↓ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

i 1 2s = s = s

1/ 2 1/ 2
, .

1/ 2 1/ 2

⎛ ⎞ ⎛ ⎞
→ = ← =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

3 4= s = s
    (36)  

The turn actions of the nanorobot are governed by 
the direct Hadamard and reverse Hadamard 
operators [24]: 

1 1 1 11 1, .
1 1 1 12 2

−⎛ ⎞ ⎛
= =⎜ ⎟ ⎜−⎝ ⎠ ⎝

rΗ Η
⎞
⎟
⎠

             (37)  

Using the direct Hadamard operator one can have 
the following states transformations:  

, ,

.

= =

=
1 3 3 1

2 4 4 2

s s s s

s s s s

Η Η

Η , Η =
                         (38)  

On the other hand, by using of the reverse 
Hadamard operator one can have the reverse 
states transformations:  

, ,
                     (39)  

, .

= =

= =

1 4 4 1

2 3 3 2

s s s s

s s s s

r r

r r

Η Η

Η Η

It is very important to point out that the state 

( )Ta,b=s and the state ( )( )T1 a,b− = −s are not 
distinguishable, as conventionally assumed. This 
means that the “positive” and “n
states correspond to the same o
nanorobot. 

between the tes and its orienta

egative” quantum 
rientation of the 

     Now, one can introduce the correspondence 
 nanorobot sta tion on 

the plane: 

( )
( )

T0 0

T0

nord, 0 360 : 1,0 ,

south,

− = =

−

1s

T
0 1 1east, 270 : , ,⎛ ⎞

T
0

180 : 0,1 ,

2 2

1 1west, 90 : , .
2 2

=

− =
⎝ ⎠

⎛ ⎞
− = −⎜ ⎟

⎝ ⎠
4

s

s

In the process of planning the nanorobot motion 
the related trajectory should be p
desired nanorobot states. As an example, let the 
nanorobot trajectory has the following form: 

3

1,0

s s

s

←⋅⋅ ⋅ ⋅ ⋅ ⋅←

• ↑

Here s1,0 is the initial nanorobot state showing the 
northern orientation of the nanorobot. The final 
nanorobot state is denoted by s4,f and is showing 

⎜ ⎟

2

3s                  (40)  

resented by the 

                           

2 1

4,f 3

1

s s
s s

s
s

↓ ↑
•← →

↑
→

                  (41) 

4 4
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the western orientation of the nanorobot. In order to 
change nanorobot states along the trajectory, as it 
is shown by (41), one should apply the following 

s: 

 (42)  

 step forward, a direct 
Hadamard operator H1,3 (turning on the 
right), one step forward, a direct Hadamard 
operator H3,1 (turning on the left), one
forward, a reverse Hadamard operator H 1,4 
(turning on the left), stay in s4, six steps 

2,4f

     M a
we hav
the nan
inaccura
motions
nanorob
trajecto
desirabl
within a
control 
this qu
desired

 
paper. 

US

sho

ve een
urred, the definition of the desirable 

is done in the form of qubits 

Hadamard operation

1,0 3 3 1 1 3

3 1 1 4 4

4 2 2 4,f

s to s , s to s , s to s ,

s to s , s to s , stay in s ,
s to s , s to s .

= = =

= =

= =

1,3 3,1 1,3

r
3,1 1,4

4,2 2,4

Η Η Η

Η Η
Η Η

According to the planned (desired) trajectory (41), 
the nanorobot should perform the following actions 
starting from its initial state s1,0: 

- a step forward, a direct Hadamard operator 
H1,3 (turning on the right), one step forward, 
a direct Hadamard operator H3,1 (turning on 
the left), one

 step 
r

forward, a direct Hadamard operator H4.2 
(turning on the left), one step forward, a 
direct Hadamard operator H  (turning on 
the right), one step forward, stop. 

e nwhile, in the realistic case in an alpha field 
e the influences of the multipotential field to 
orobot motion. As the consequence the 
te turns and/or the forward (backward) 
 are occurred. Thus, in that case a 
ot will not follow exactly the planed 

ry. In order to assure tracking of the 
e quantum states of the nanorobot motion 
cceptable accuracy levels, the quantum 
(32) should be applied. For realization of 
antum control one should determine the 
 Hamiltonian dH as the function of the 

desired states of the nanorobot motion (36) and 
related Hadamard operators (37), (38) and (39): 

d S, ).∈H i= f (s rΗ,Η                                         (43)  
Including dH  from (43) into the second relation in 
(23), one can construct the control Hamiltonian cH . 
Further, starting with dH  from (43), one should 
determine the desirable energy value Zd that is 
associated to the nanorobot motion. Now knowing 

cH , Zd and the observable of the quantum system 
Z, the quantum nan bot control (32) can be 
realized. The synthesis procedure for determination 
of dH , cH and Z

oro

d will be presented in the next

4. CONCL ION 
    The objective of the quantum control is to move 
a nanorobot from its initial eigenstate (associated 
to a certain energy level) to different eigenstates 

associated with the desirable energy levels on the 
trajectory in an alpha. Also this quantum control 

uld assure tracking of the quantum states on 
the desired nanorobot trajectory within acceptable 
accuracy levels. In order to do it, the desirable 
nanorobot states along its trajectory of the motion 
ha b  defined. Since the quantum effects can 
bi occ
nanorobot states 
[21,23]. 
     In order to employ the nonrelativistic 
Schrödinger equation the relativistic Hamiltonian 
has been transformed into the nonrelativistic and 
nonlinear (quadratic) form [3]. Using this 
Hamiltonian, the dynamics of the quantum system 
has been described by nonrelativistic Schrödinger 
equation. This equation is employed in the 
synthesis procedures of the control algorithm for a 
nanorobot motion in an alpha field. Following the 
gradient based approach [16], the related control 
algorithm valid in an alpha field has been 
employed. This algorithm is based on the 
Lyapunov function that ensures the stability for the 
quantum system with the convergence not to the 
equilibrium but to an area round this equilibrium, 
within acceptable accuracy levels. The synthesis of 
the control Hamiltonian cH will be presented in the 
next paper. 
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