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Abstract. Three versions of an algorithm for balancing three matrices simultaneously are pro-
posed. The balancing is performed by premultiplication and postmultiplication with positive definite
diagonal matrices, in order to reduce the magnitude range of all elements in the involved matrices.
Some numerically stable algorithms, when applied to matrices with a wide range in the magnitude
of elements, can produce results with a large error. As an application we present several problems
from control theory. A reduction to the m-Hessenberg–triangular–triangular form is efficiently used
for computing the frequency response G(σ) = C(σE − A)−1B + D of a descriptor system. The re-
duction algorithm can produce inaccurate results for badly scaled matrices. Numerical experiments
confirmed that balancing matrices A, B and E before the m-Hessenberg–triangular–triangular reduc-
tion can produce an accurate frequency response matrix. Balancing three matrices can also improve
the solution of the pole assignment problem for descriptor linear systems via state feedback, and the
determination of the controllable part of the system. Other applications are: the quadratic eigen-
value problem λ2Ax+ λEx+Bx = 0, solution of the algebraic linear system (σ2A+ σB + C)x = b
for several values of the parameter σ, and any other problems involving three matrices of same di-
mensions. These problems are not covered by the paper, but they can be balanced with a simplified
version of the proposed algorithm.
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1. Introduction. A numerically stable algorithm, when applied to matrices
with a wide range in the magnitude of elements, can nevertheless produce a result
with a large error. The standard attempt to reduce the magnitude range of elements
of a matrix A is to scale its rows and columns, by multiplication with positive definite
diagonal matrices. Such a technique is used prior to solving a linear system Ax = b
in [7]. As emphasized in the introduction of [9], in the absence of any other infor-
mation, a satisfactory scaling is one in which the absolute errors in the elements are
all about the same size. This choice of scaling strategy makes the condition number
meaningful. In case when only rounding errors are introduced, the error in an element
is proportional to its size and the scaling forces all elements of A to be about the same
size. This process is called balancing. Furthermore, the balanced system can produce
a more accurate result. The same problem is observed when solving the standard
eigenvalue problem Ax = λx, where inaccuracies in eigenvalues and eigenvectors are
reduced by a diagonal similarity transformation, introduced by Parlett and Reinsch
in [18]. This similarity transformation equilibrates the column and row norms, and
reduces the norm of A. In the generalized eigenvalue problem Ax = λBx, balancing is
enforced on both matrices A and B, as proposed by Ward in [27], and by Lemonnier
and Van Dooren in [14]. It is important to emphasize here that balancing will in most
cases improve condition numbers, and the balanced problems will produce more accu-
rate results than the original ones. Nevertheless, there are examples where balancing
does not improve the condition of the problem, or even worse, it can produce more
ill-conditioned problems as illustrated by Watkins [28].

On the other hand, some algorithms are almost invariant under scaling in re-
spect of numerical stability. Such algorithms are, for example, Jacobi algorithms
for solving symmetric eigenvalue and singular value problems, see [8]. In the case
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of a positive definite matrix A the condition number for eigenvalues is bounded by
n ·minDdiagonal κ(DAD), and the condition number for singular values is bounded by√
n ·minDdiagonal κ(AD) (see van der Sluis [25]), showing that the forward errors are

invariant under appropriate scalings.
In this paper we propose efficient algorithms for balancing three matrices, and

we study how the scaling issues affect computational tasks in computational control.
Specially, we are interested in numerical problems related to descriptor systems, which
involve three matrices of different dimensions. A descriptor system has the following
form

Eẋ(t) = Ax(t) +Bu(t) (1.1)

y(t) = Cx(t) +Du(t),

where A,E ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, and m� n. As pointed out
by Paige in [16], scaling represents a coordinate transformation. When x̃ = D−12 x,
ũ = D−13 u, and ỹ = D4y, for positive definite diagonal matrices D1, D2, D3 and D4,
then the system

D1ED2
˙̃x(t) = D1AD2x̃(t) +D1BD3ũ(t)

ỹ(t) = D4CD2x̃(t) +D4DD3u(t),

is equivalent to (1.1). Paige distinguishes two reasons for scaling in control theory.
The first one is to choose coordinate transformations and units (this corresponds to
diagonal scalings) so that the mathematical problem accurately reflects the sensitivity
of the physical problem. The second reason is to minimize the effect of rounding
errors on the computed solution, and is less important. Scaling for numerical stability
must not alter physical sensitivity. As an example of scaling in control theory Paige
refers to measuring how far a system with E = I, where I is the identity matrix, is
from an uncontrollable one. His proposed measure is pessimistic if bounds on model
uncertainties are dominated by the uncertainties in just a few elements. In this case,
a good scaling is similar to the one for the generalized eigenvalue problem: scale so
that the uncertainties in elements of A and B are all of the same order of magnitude.
In order to determine controllability of the system (1.1) with a general matrix E, the
scaling has to include three matrices A, B and E.

In [3] and [4] an efficient algorithm for computing the frequency response matrix
G(σ) = C(σE − A)−1B + D of the system (1.1) is proposed, for large number of
shifts σ. The first part of this algorithm comprises of the m-Hessenberg–triangular–
triangular reduction of matrices A, B and E performed by a sequence of orthogonal
transformations, and an efficient version of this algorithm is introduced in [3]. A
similar reduction is used for solving the pole assignment problem in descriptor linear
systems via state feedback. This problem is very sensitive to input data.

The algorithms of our interest, which are related to the descriptor systems, are
based on orthogonal transformations. Even orthogonal transformations applied to
badly scaled matrices can result in adding two numbers with a large difference in
order of magnitude. In floating point arithmetic the influence of the number with the
small order of magnitude can be completely lost in the sum. Although the orthogonal
transformation always produces a result with a small relative error, in case of badly
scaled matrices they can severely increase the condition number. For example, Powell
and Reid in [20] observed that for the least squares problems, in which the rows of the
coefficient matrix vary widely in norm, Householder QR factorization has unsatisfac-
tory backward stability properties. They showed that row and column pivoting give
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desirable backward error, and Cox and Higham in [6] proved that sorting the rows by
descending ∞-norm at the start gives the same result.

In order to avoid this sort of numerical instability in problems involving three
matrices, it is advisable to balance all three matrices. The balancing is performed
by diagonal transformations which reduce the difference in orders of magnitude of
all elements in these matrices. We will illustrate the need for balancing with an
example. In [16] (see also [3]) an algorithm that reveals controllability of the system
(1.1) with nonsingular E is proposed. The original system is transformed to an
equivalent system with a suitable form, and for m = 1 this form is equivalent to
the m-Hessenberg–triangular–triangular form. The algorithm for the m-Hessenberg–
triangular–triangular reduction first reduces E to the upper triangular form. Then
it annihilates one by one element below the diagonal of B with the Givens rotations
applied from the left, while simultaneously maintaining the triangular form of E by
applying the Givens rotations from the right. When B is done the algorithm switches
to A, annihilating elements below the m-th subdiagonal. Suppose that E and B are
already upper triangular. Let A, B and E be defined as follows

A =


5
4 − 1

2 2

1 3
4 − 1

3

1 − 1
4

1
30

 , B =


3
2

0

0

 , E =

 1 1 1

0 1 1

0 0 ε

 ,
where ε is a small number. Nevertheless, E is a nonsingular matrix. Now, we want to
annihilate the element on position (3, 1) of A by the Givens rotation Gl. We obtain

Gl =

 1 0 0

0 1√
2

1√
2

0 − 1√
2

1√
2

 , A1 = GlA =


5
4 − 1

2 2√
2 1

2
√
2
− 9

30
√
2

0 − 1√
2

11
30
√
2

 ,

E1 = GlE =

 1 1 1

0 1√
2

1+ε√
2

0 − 1√
2

−1+ε√
2

 .
When the above computation is performed in finite precision arithmetic with the
roundoff error u, and when ε ≤ u/2, then the computed matrix Ê1 and its elements
are of the form

fl
(

1√
2

+ ε√
2

)
= fl

(
1√
2

)
,

fl
(
− 1√

2
+ ε√

2

)
= −fl

(
1√
2

)
,

Ê1 =


1 1 1

0 fl
(

1√
2

)
fl
(

1√
2

)
0 −fl

(
1√
2

)
−fl
(

1√
2

)
 ,

and Ê1 is singular. In this example, matrix E is badly scaled which caused adding
one large and one small number, and thus loosing nonsingularity of the orthogonally
transformed matrix E. Actually, the condition number of E1 increased to infinity. If
our task was to solve the pole assignment problem, this result would reduce the number
of finite poles that can be assigned. On the other hand, if the balancing algorithm
presented in the next section is applied to the matrices A, B, and E, it produces
matrices Abal = DlADr, Bbal = DlB, and Ebal = DlEDr, with Dl = diag(1, 1, 104)
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and Dr = diag(0.1, 1, 100). Elements which determine the Givens rotation Gbal,1 that

annihilates Abal(3, 1) are (0.1, 1000), and the updated matrix Êbal,1 = fl(Gbal,1Ebal)
has the form

Êbal,1 =

 1.000000000000000·10−1 1.000000000000000·100 1.000000000000000·102

0 9.999999950000001·10−5 1.000000000551115·10−2

0 −9.999999950000000·10−1 −9.999999950000000·101

 .
Êbal,1 is now both exactly and numerically nonsingular.

Besides the control theory, there are other examples involving three matrices
of same dimensions. Such an example is the quadratic eigenvalue problem λ2Ax +
λEx + Bx = 0, for A,B,E ∈ Rn×n. A similar example comes from the structural
dynamics engineering problem, where direct frequency analysis leads to the solution
of the algebraic linear system (σ2A+σB+C)x = b for several values of the frequency-
related parameter σ (see, for example, [22] and [23]).

1.1. Balancing two matrices. Ward [27] proposes a balancing technique which
applies to two n × n matrices A = [aij ] and B = [bij ] involved in the generalized
eigenvalue problem. This technique produces two diagonal matrices Dl and Dr such
that the range of elements in DlADr and DlBDr is optimally small. The basic idea
is forcing the exponents in exponential notation of all nonzero elements in DlADr

and DlBDr to be as close to zero as possible. The diagonal matrices are defined as
Dl = diag(10l1 , . . . , 10ln) and Dr = diag(10r1 , . . . , 10rn) ∈ Rn×n. Besides 10, another
radix can be used for exponential representation. For example, multiplication with
powers of 2 introduces no rounding errors. The elements of the scaled matrices are of
the form (DlADr)ij = 10li+rjaij and (DlBDr)ij = 10li+rj bij . The magnitude of an
element is represented as the logarithm of its absolute value. In order to reduce the
range of magnitude for elements, the objective

min
li,rj

 n∑
i,j=1
aij 6=0

(li + ri + log10 |aij |)2 +

n∑
i,j=1
bij 6=0

(li + ri + log10 |bij |)2

 .
is minimized, using a generalized conjugate gradient method developed by Concus et
al. [5]. This algorithm is implemented in the LAPACK [1] routine dggbal.

2. Balancing three matrices. Our main goal is to indicate a need of balancing
three matrices in particular problems, and we will illustrate its benefits in Section 4.

In the Control and Systems Library SLICOT [24] there already exists the routine
TG01AD which can balance three matrices, but it has several drawbacks. It is only
a slight modification of the Ward’s algorithm. The minimization function takes into
account only the element with the largest magnitude in each row of the matrix B.
On the other hand, the generalized conjugate gradient method in this routine uses
the same preconditioner as in the case of two matrices. The preconditioner in dggbal

is a singular matrix, while the system of normal equations in case of three matrices
can be nonsingular. Thus, the conjugate gradient method can stop before reaching
the minimum of the minimization function. The second drawback of TG01AD is that
it can result with unsatisfactory scaling of the matrix B, leaving it with a large norm.
This is particulary inconvenient for algorithms that include rank revealing, such as
the staircase reduction. Both drawbacks are illustrated by examples and presented in
Section 4.
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Besides stressing the benefits of the balancing algorithms, our intention is to offer
a proper and better algorithm for balancing three matrices, which will correct both
drawbacks of the routine TG01AD and provide more functionality.

We will extend Ward’s approach to balancing three matrices which will change
the minimization problem, but the minimization algorithm will remain the same.
Our balancing algorithm will produce diagonal matrices Dl and Dr, such that the
range of magnitude orders of all elements in the matrices DlADr, DlEDr, and DlB
is optimally small. Computation of the frequency response matrix G(σ) is invariant
under such diagonal transformations. Optionally we can balance the matrix B from
the right introducing the third diagonal matrix DB .

After introducing abbreviations l = (l1, . . . , ln) and r = (r1, . . . , rn), our prob-
lem of balancing matrices A = [aij ], B = [bij ], and E = [eij ] is equivalent to the
minimization problem

min
l,r∈Rn

φ(l, r), (2.1)

φ(l, r) =

n∑
i=1

 n∑
j=1

aij 6=0

(li + rj + log10 |aij |)2 +

n∑
j=1

eij 6=0

(li + rj + log10 |eij |)2 +

m∑
j=1

bij 6=0

(li + log10 |bij |)2

 .
To find a solution of the minimization problem (2.1), we differentiate the function
φ(l, r) and equalize its gradient with zero, as in [27]. After obtaining minimizing lmin
and rmin, if integers in l and r are required, they can be retrieved by the rounding
operation. Further, ∇φ(l, r) = 0 results with a linear system Lx = p which has the
following form[

F1 G
GT F2

] [
l
r

]
=

[
−c
−d

]
, L =

[
F1 G
GT F2

]
, p =

[
−c
−d

]
, (2.2)

where
1. F1 ∈ Rn×n is a diagonal matrix F1 = diag(nr1 , . . . , nrn) and

nri =

n∑
j=1
aij 6=0

1 +

n∑
j=1
eij 6=0

1 +

m∑
j=1
bij 6=0

1

is the total number of nonzero elements in the i-th rows of A, B, and E,
2. F2 ∈ Rn×n is a diagonal matrix F2 = diag(nc1 , . . . , ncn) and

ncj =

n∑
i=1
aij 6=0

1 +

n∑
i=1
eij 6=0

1

is the total number of nonzero elements in the j-th columns of A and E,
3. G = [gij ] ∈ Rn×n is the sum of the incidence matrices of A and E, i. e.

gij =

{
1, if aij 6= 0
0, if aij = 0

}
+

{
1, if eij 6= 0
0, if eij = 0

}
,

4. c = [ci] ∈ Rn has elements

ci =

n∑
j=1
aij 6=0

log10 |aij |+
n∑
j=1
eij 6=0

log10 |eij |+
m∑
j=1
bij 6=0

log10 |bij |,
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5. d = [dj ] ∈ Rn has elements

dj =

n∑
i=1
aij 6=0

log10 |aij |+
n∑
i=1
eij 6=0

log10 |eij |.

In the special case when the matrices A, B, and E contain only nonzero elements the
system matrix in (2.2) reduces to

M =

[
(2n+m)I 2eeT

2eeT 2nI

]
, (2.3)

where I ∈ Rn×n is the identity matrix and e = [ 1 . . . 1 ]T ∈ Rn.
The minimization problem (2.1) is in fact a linear least squares problem, and

(2.2) represent its system of normal equations. We know that the matrix of normal
equations is positive semidefinite, and that the system is consistent (see [11], [2]).
Nevertheless, we found the structure of this system interesting. We explored its prop-
erties directly from the definition (2.2) and stated them in the following proposition.
Since we did not encounter such an approach in literature on balancing techniques,
we present the proof of the proposition with some details.

Proposition 2.1.
(i) The system matrix L of the system (2.2) is symmetric positive semidefinite

or positive definite.
(ii) If L is singular positive semidefinite, then the system (2.2) is consistent.
(iii) The matrix M defined with (2.3) is symmetric positive definite, and its

inverse is equal to

M−1 =

[ 1
2n+mI + 2

(2n+m)mee
T − 1

nmee
T

− 1
nmee

T 1
2nI + 1

nmee
T

]
. (2.4)

Proof.
(i) The proof of positive semidefinitness of L can be obtained by mathematical

induction on the total number of nonzero elements in A, B, and E. If A = E = 0n×n
and B = 0n×m are zero matrices, then L = 02n×2n which can be regarded as a
degenerate positive semidefinite matrix.
Let us assume that for A, B, and E, which have altogether N nonzero elements, the
matrix L is positive semidefinite. Let us observe what happens when we add one more
nonzero element to one of these three matrices. If this extra element is ai0j0 or ei0j0 ,
then the elements of L with indices (i0, i0), (i0, n+j0), (n+j0, i0), and (n+j0, n+j0)
are incremented by 1. In case when this extra element is bi0j0 , then only the element
of L with indices (i0, i0) is incremented by 1. The new system matrix in (2.2) is now
of the form

L+H, H = uuT ,

where u = ξi0 + ξn+j0 for the first case, and u = ξi0 for the second case, with ξi being
the i-th unit vector. In both cases the matrix H is symmetric positive semidefinite
(the spectrum of H is σ(H) = {0, 2} or σ(H) = {0, 1}). If we order eigenvalues of
the matrices L, H, and L+H in the ascending order, then by the Weyl monotonicity
theorem [17, Section 10-3] we have

λj(L+H) ≥ λj(L) + λ1(H) ≥ 0, j = 1, . . . , 2n,
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and the matrix L+H is positive semidefinite, too.
In case when there is no zero elements in A, B, and E, then L is equal to M from
(2.3). The spectrum of M is σ(M) = { 12 ((4n+m)−

√
16n2 +m2), 2n, 2n+m, 12 ((4n+

m) +
√

16n2 +m2)}, hence M is positive definite.
(ii) Here we use mathematical induction on the total number of nonzero elements

in A, B, and E, one more time. For A = E = 0n×n and B = 0n×m, p = 0 and the
system (2.2) is consistent.
Again, we assume that for A, B, and E, which have altogether N nonzero elements,
the system (2.2) is consistent. Hence, there exists x ∈ R2n such that p = Lx. When
we add one more nonzero element to A, B, or E, then the new righthand side of the
system (2.2) is p+αu, where α = −log10|ai0j0 | or α = −log10|ei0j0 | with u = ξi0+ξn+j0
if the extra element is ai0j0 or ei0j0 , and α = −log10|bi0j0 | with u = ξi0 if the extra
element is bi0j0 . The new form of the system (2.2) is

(L+H)y = p+ αu, H = uuT , (2.5)

and the question now arises whether such y ∈ R2n exists. If L+H is a positive definite
matrix then we have no problem in solving the system in (2.5). If L + H remains
positive semidefinite, then the problem divides into two cases.
The first case is when u /∈ Im(L). In this situation we can write u = u1 + u2, where
u1 ⊥ u2, u1 ∈ Im(L), and u2 ∈ Ker(L). It can be easily shown that

y = x+
α− uTx
uT2 u2

u2

satisfies (2.5). In the second case u ∈ Im(L), hence there exists v ∈ R2n such that
u = Lv. Again, it can be easily shown that

y = x+
α− uTx
1 + vTLv

v + z0, z0 ∈ Ker(L) arbitrary

satisfies (2.5).
(iii) Direct multiplication proves that MM−1 = M−1M = I is satisfied.

Now we know that there is a solution to the equation ∇φ(l, r) = 0, and the
Hessian Hess(φ) = 2L is positive semidefinite, so this solution is indeed the global
minimum of the function φ. Since we are dealing here with a symmetric positive
semidefinite consistent system, we can apply the conjugate gradient method for ob-
taining its solution (see [13]). The conjugate gradient method is an iterative method
specially suited for positive (semi-) definite matrices with a structure (such as the L),
where the matrix–vector product is efficiently implemented. On the other hand, it
is much more convenient to work with the matrix M , and for that we can employ
the generalized conjugate gradient method from [5], as in the function dggbal. The
generalized conjugate gradient method is in fact a preconditioned conjugate gradient
method with the preconditioner equal to M . The solution of a system with the ma-
trix M can be found directly, since we know the explicit expression for M−1, and the
product M−1v with a vector v requires only O(n) operations. The convergence rate
of this method depends on the number of different eigenvalues of M−1L (see [12]).
For L = M the method converges in only 1 iteration.

2.1. Increasing the weight of B. Since the matrix B has usually less elements
than A and E, its influence on the minimization process is weaker. This can give an
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Algorithm 1: Generalized conjugate gradient method for the system Lx=p.

Input: symmetric positive semidefinite L ∈ R2n×2n, preconditioner M ,
p ∈ Im(L)

Output: solution x ∈ R2n of the system Lx = p

1 x0 = s0 = 0;
2 repeat
3 solve Mzk = p− Lxk;
4 if k = 0 then
5 β0 = 0;
6 else

7 βk =
zTk Mzk

zTk−1Mzk−1
;

8 end
9 sk = zk + βksk−1;

10 αk =
zTk Mzk
sTk Lsk

;

11 xk+1 = xk + αksk;

12 until convergence;

unsatisfactory result for B, where resulting A and E are much better balanced than
B. This is not an issue when balancing involves matrices of the same dimensions as in
[27] and [14]. Therefore, we are introducing here the weighted minimization function.
To increase its influence, we can multiply the part in φ involving the matrix B with
stronger weight. The matrices A and E have n2 elements, and B only mn, thus the
logical choice for weight is n

m . We introduce a new variant of φ as

φ(l, r) =

n∑
i=1

 n∑
j=1

aij 6=0

(li + rj + log10 |aij |)2+

n∑
j=1

eij 6=0

(li + rj + log10 |eij |)2+
n

m

m∑
j=1

bij 6=0

(li + log10 |bij |)2

 ,
(2.6)

which changes the definition of the matrix F1 and the vector c in (2.2) to
1. F1 ∈ Rn×n is a diagonal matrix F1 = diag(nr1 , . . . , nrn) and

nri =

n∑
j=1
aij 6=0

1 +

n∑
j=1
eij 6=0

1 +
n

m

m∑
j=1
bij 6=0

1,

2. c = [ci] ∈ Rn has elements

ci =

n∑
j=1
aij 6=0

log10 |aij |+
n∑
j=1
eij 6=0

log10 |eij |+
n

m

m∑
j=1
bij 6=0

log10 |bij |.

In case when the matrices A, B, and E contain only nonzero elements the system
matrix in (2.2) reduces to

M =

[
3nI 2eeT

2eeT 2nI

]
. (2.7)
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The (i) and (ii) part of Proposition 2.1 hold for weighted φ, too, but M−1 has a
simpler form.

Proposition 2.2.
(i) The system matrix L of the system (2.2) obtained from (2.6) is symmetric

positive semidefinite or positive definite.
(ii) If L is singular positive semidefinite, then this system is consistent.
(iii) The matrix M defined with (2.7) is symmetric positive definite, and its

inverse is equal to

M−1 =

[ 1
3nI + 2

3n2 ee
T − 1

n2 ee
T

− 1
n2 ee

T 1
2nI + 1

n2 ee
T

]
. (2.8)

Proof. The proof is the same as in Proposition 2.1.

2.2. Balancing B from both sides. This variant of the balancing algorithm
produces diagonal matrices Dl, Dr and DB such that the range of magnitude orders
of all elements in the matrices DlADr, DlEDr, and DlBDB is optimally small.

Let us denote DB = diag(10q1 , . . . , 10qm) ∈ Rm×m and q = (q1, . . . , qm). The
minimization problem is a bit more complicated than before:

min
l,r,q

φ(l, r, q), (2.9)

φ(l, r, q) =

n∑
i=1

 n∑
j=1

aij 6=0

(li + rj + log10 |aij |)2+

n∑
j=1

eij 6=0

(li + rj + log10 |eij |)2+

m∑
j=1

bij 6=0

(li + qj + log10 |bij |)2

 .
Equalizing ∇φ(l, r, q) = 0 produces a linear system Lx = p with the following form F1 G K

GT F2 0
KT 0 F3

 l
r
q

 =

 −c−d
−f

 , (2.10)

where F1, F2, G, c and d have the same form as in the original version of the balancing,
and

1. F3 ∈ Rm×m is a diagonal matrix F3 = diag(ncb1 , . . . , ncbm) and

ncbj =
n∑
i=1
bij 6=0

1

is the total number of nonzero elements in the j-th column of B,
2. K = [kij ] ∈ Rn×m is the incidence matrix of B, i. e.

kij =

{
1, if bij 6= 0
0, if bij = 0

}
,

3. f = [fj ] ∈ Rm has elements

fj =

n∑
i=1
bij 6=0

log10 |bij |.
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In the special case, when the matrices A, B, and E contain only nonzero elements,
the system matrix in (2.10) reduces to

M =

 (2n+m)In 2ene
T
n ene

T
m

2ene
T
n 2nIn 0

eme
T
n 0 nIm

 , (2.11)

where In ∈ Rn×n and Im ∈ Rm×m are the identity matrices, en = [ 1 . . . 1 ]T ∈
Rn, and em = [ 1 . . . 1 ]T ∈ Rm.

There is an alternative form of the minimization function φ in (2.9), where the part
involving the matrix B has stronger weight, as in the previous subsection. Properties
of its normal equations are similar to the properties of the system (2.10), which are
given in the following proposition.

Proposition 2.3.

(i) The system matrix L of the system (2.10) is symmetric positive semidefinite
and the system is consistent.

(ii) The matrix M ∈ R(2n+m)×(2n+m) defined with (2.11) is symmetric positive
semidefinite of rank 2n+m− 1, and its Moore–Penrose generalized inverse is

M†=


1

2n+mIn −
3

2(2n+m)2 ene
T
n

n−m
2n(2n+m)2 ene

T
n

3
2(2n+m)2 ene

T
m

n−m
2n(2n+m)2 ene

T
n

1
2nIn −

3
2(2n+m)2 ene

T
n

−5n−m
2n(2n+m)2 ene

T
m

3
2(2n+m)2 eme

T
n

−5n−m
2n(2n+m)2 eme

T
n

1
nIm + −7n−2m

2n(2n+m)2 eme
T
m

 .
(2.12)

(iii) In case when L 6= M , the following holds: Ker(L)⊥ ⊂ Ker(M)⊥.

Proof.

(i) The proof of this part of Proposition 2.3 is similar to the proof of the parts
(i) and (ii) of Proposition 2.1.

(ii) A direct verification of the Moore–Penrose conditions proves the statement
about M†. It can be easily verified that the vector

u0 =
1√

2n+m

 en
−en
−em


is a unit eigenvector of M corresponding to the eigenvalue λ0 = 0. Further, the
following equation holds

MM† = I − u0uT0 ,

thus Ker(M) = span{u0} and Im(M) = Ker(M)⊥ since M is symmetric.
(iii) Let us compute Lu0:

Lu0 =
1√

2n+m

 F1 G K
GT F2 0
KT 0 F3

 en
−en
−em

 =
1√

2n+m

 F1en −Gen −Kem
GT en − F2en
KT en − F3em

 ,
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whose components are

(Lu0)(i) =
1√

2n+m

nri −
 n∑

j=1
aij 6=0

1 +

n∑
j=1
eij 6=0

1

−
 m∑

j=1
bij 6=0

1


 = 0,

i = 1, . . . , n

(Lu0)(n+ j) =
1√

2n+m

 n∑
i=1
aij 6=0

1 +

n∑
i=1
eij 6=0

1− ncj

 = 0, j = 1, . . . , n

(Lu0)(2n+ j) =
1√

2n+m

 n∑
i=1
bij 6=0

1− ncbj

 = 0, j = 1, . . . ,m

Hence, u0 ∈ Ker(L) and Ker(M) ⊂ Ker(L). The statement follows immediately by
taking orthogonal complements.

Part (iii) of the Proposition 2.3 is important for line 3 of Algorithm 1. Since the
system Lx = p is consistent p − Lxk ∈ Im(L) = Ker(L)⊥ ⊂ Ker(M)⊥ = Im(M).
Thus, the system Mzk = p−Lxk is consistent and there exists its solution zk. In the
SLICOT routine TG01AD this might not be the case. The preconditioner used in this
routine

M = 2

[
nI eeT

eeT nI

]
is the same as in dggbal (see [27]) and is singular. On the other hand, the system
matrix L is as in the original version of our algorithm for m = 1 and can be nonsin-
gular. In some special cases it can happen that 0 6= p − Lxk ∈ Ker(M), producing
zk = 0 and the algorithm will prematurely stop since xk+1 = xk. Such an example is
presented in Section 4.

In the cases of the quadratic eigenvalue problem λ2Ax+ λEx+Bx = 0 and the
algebraic linear system (σ2A+ σB + C)x = b, all three matrices are of the same size
A,B,E ∈ Rn×n, and they all have to be balanced from both sides with the same
diagonal matrices: DlADr, DlEDr and DlBDr. This case reduces to the Ward’s
balancing algorithm, described in [27], except that the elements of F1, F2, G, c and
d equally include elements of all three matrices, and the matrix M is equal to the
corresponding matrix in dggbal multiplied by factor of 3/2.

3. Details of the algorithm. There are several details in Algorithm 1 which
can be improved in order to produce a more efficient software implementation. First,
the right hand side of the system in line 3 is residual rk = p − Lxk, which can be
computed by a recurrence induced by the recurrent computing of xk. Since x0 = 0, it
follows that r0 = p, and for k ≥ 1, rk+1 = rk − αkLsk (see [5]). Second, the matrices
L, M , and M−1 or M† are not stored, they are only used in products with vectors
such as zk = M−1rk or zk = M†rk, γk = zTkMzk, and tk = Lsk. Since we proposed
three variants of the balancing algorithm in this paper, each of these variants has its
own form of these products. Thus, let us denote by: S – the original variant, W – the
weighted variant, R – the variant where B is balanced from both sides. The products
are computed explicitly for each variant, as in the LAPACK routine dggbal.
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variant S

rk =

[
rk,1
rk,2

]
, rk,1 = rk(1 : n), rk,2 = rk(n+ 1 : 2n),

zk = M−1rk

=

[
1

2n+mrk,1 +
(

2
(2n+m)me

T
n rk,1 − 1

nme
T
n rk,2

)
en

1
2nrk,2 +

(
− 1
nme

T
n rk,1 + 1

nme
T
n rk,2

)
en

]
,

γk =
1

2n+m
rTk,1rk,1 +

1

2n
rTk,2rk,2 −

1

(2n+m)n
(eTn rk,1)2 +

1

nm
(eTn rk,1 − eTn rk,2)2;

variant W

rk =

[
rk,1
rk,2

]
, rk,1 = rk(1 : n), rk,2 = rk(n+ 1 : 2n),

zk = M−1rk

=

[
1
3nrk,1 + 1

n2

(
2
3e
T
n rk,1 − eTn rk,2

)
en

1
2nrk,2 + 1

n2

(
−eTn rk,1 + eTn rk,2

)
en

]
,

γk =
1

3n
rTk,1rk,1 +

1

2n
rTk,2rk,2 −

1

3n2
(eTn rk,1)2 +

1

n2
(eTn rk,1 − eTn rk,2)2;

variant R

rk =

 rk,1
rk,2
rk,3

 , rk,1 = rk(1 : n), rk,2 = rk(n+ 1 : 2n), rk,3 = rk(2n+ 1 : 2n+m),

zk = M†rk

=


1

2n+mrk,1 +
(
− 3

2(2n+m)2 e
T
n rk,1 + n−m

2n(2n+m)2 e
T
n rk,2 + 3

2(2n+m)2 e
T
mrk,3

)
en

1
2nrk,2 +

(
n−m

2n(2n+m)2 e
T
n rk,1 − 3

2(2n+m)2 e
T
n rk,2 + −5n−m

2n(2n+m)2 e
T
mrk,3

)
en

1
nrk,3 +

(
3

2(2n+m)2 e
T
n rk,1 + −5n−m

2n(2n+m)2 e
T
n rk,2 + −7n−2m

2n(2n+m)2 e
T
mrk,3

)
em

 ,
γk =

1

2n+m
rTk,1rk,1 +

1

2n
rTk,2rk,2 +

1

n
rTk,3rk,3 −

3

2(2n+m)2
(eTn rk,2 + eTmrk,3−

− eTn rk,1)2 − 1

n(2n+m)
((eTmrk,3)2 + eTn rk,1e

T
n rk,2 + eTn rk,2e

T
mrk,3).

The vector tk is computed as a sum of expressions Hijsk, where for each nonzero
element of A, E or B with indices (i, j), Hij is a matrix as defined in the proof of
Proposition 2.1.

The algorithm requires extra memory storage for storing vectors rk, sk and tk.
The dimension of the workspace used for storing these auxiliary variables is 6n in case
of the variants S and W, or 6n+ 3m in case of the variant R.

4. Numerical tests. The tests were executed on the Intel R© CoreTM Duo CPU
under Ubuntu Linux 10.04 (lucid). They were programmed in Fortran, compiled with
Intel R© Fortran Compiler 12.0.2, and all variables were in double precision or double
complex precision. The balancing algorithms for three matrices are implemented in
the routine dg3bal, whose code is available from the author.
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4.1. Example 1: random scaled matrices A, E and B. The matrices
were generated by starting with well scaled random matrices A,E ∈ R8×8 and
B ∈ R8×3, and then by scaling rows and columns of A and E, and rows of B
with the same diagonal matrices Dlr. We chose altogether 8 different matrices
Dlr with a growing range in the magnitude of its diagonal elements: the first ma-
trix Dlr = diag(1, 10, 1, 10, 1, 10, 1, 10, 1, 10) has the smallest range, and the last
Dlr = diag(10−8, 10−4, 100, 104, 108, 10−8, 10−4, 100) has the largest range. Besides
that, the columns of B were scaled by diag(104, 108, 1012) in all examples. Hence,
the rows of all three matrices and columns of A and E are gradually scaled, but the
columns of B are badly scaled. We generated altogether 80 examples, with 10 dif-
ferent starting sets of random matrices for each choice of Dlr. The obtained results
are illustrated in Figure 4.1. In all following figures the results for the matrix E are
omitted since they are almost the same as the results for A.
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Fig. 4.1: Random scaled matrices: magnitude ranges of elements for the original
matrices and the balanced matrices A and B.

The variant S of the balancing algorithm produced matrices DlADr and DlEDr

which are very similar to the matrices produced by the LAPACK routine dggbal.
The rows of DlB are also well scaled as well, but the columns remain badly scaled.
Thus, the range between the minimal and the maximal magnitude of elements in DlB
is not as small as the ranges for DlADr and DlEDr. We can not expect more from
balancing the matrix B only from the left. Weighted balancing for the matrix B
does not have much sense for this example since rows of A, E and B are scaled with
the same diagonal matrix. Thus, the inverses of the generating diagonal matrices
balance the rows of all three matrices well. In the case of the variant R of the
balancing algorithm, all three matrices are well balanced. The order of magnitude of
the elements of DlADr, DlEDr, and DlBDB remained in a narrow range.

4.2. Example 2: B with heavily scaled rows. The matrices A and E are
generated in the same way as ones in Example 1. While the rows of A and E are scaled
with the same matrices Dlr, the rows of B are scaled with different diagonal matrices
DlB whose diagonal elements have wider range in magnitude: DlB(i, i) = Dlr(i, i)

3.
The obtained results are illustrated in Figure 4.2. The variant W should have a
stronger influence on this example.

As we can see, the variants S and R produced similar results, since the columns
of B are not scaled. Both variants were not completely successful in balancing the
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Fig. 4.2: B with heavily scaled rows: magnitude ranges of elements for the original
matrices and the balanced matrices A and B.

matrix B. The variant W is slightly better for B, while in this case the balanced
matrices A and E have more scattered elements than the obtained balanced matrices
for the variants S and R.

4.3. Example 3: dg3bal vs. TG01AD. Here we show the superiority of our
balancing routine dg3bal over the SLICOT routine TG01AD. In the first test rounds
we generated matrices A, B, and E as in Example 2, but with one example for each
choice of diagonal matrices. The only difference is that we changed the number of
columns of B, taking m = 3, 5, 8. The results presented in Figure 4.3a show that
dg3bal balances elements of B better than TG01AD, specially for larger m when B has
larger influence in the minimization function of dg3bal.

The second test round comprises of one set of matrices A, B, and E, where n =
1000 and m = 10. A and E are generated by scaling random matrices with the matrix
Dlr = diag(10, 102, 103, . . . , 1010, 10, 102, 103, . . . , 1010) from both sides, and B is gen-
erated by scaling a random matrix with DlB = diag(104, 108, 1012, . . . , 1040, 104, 108,
1012, . . . , 1040) from the left. In this case Figure 4.3b displays the maximal mag-
nitude of elements in B, which maximally influences ‖B‖F . The magnitude of the
norm is extremely important for the rank revealing algorithms, deployed in the stair-
case reduction routines, which are used to determine the controllable part of the
system (1.1). These are the SLICOT routines TG01HD and TG01HX, and the new stair-
case reduction algorithm from [3]. The standard tolerance for rank determination is
n2u

√
‖A‖2F + ‖B‖2F , where u is the unit roundoff error. When the norms of A and

B are large, the numerical rank is usually smaller than the exact rank. In extreme
cases it turns out to be equal to zero for nontrivial submatrices. Detailed illustration
of sensitivity of the staircase reduction is given in Example 5. Figure 4.3b shows that
the S and W variants of dg3bal are more successful in norm reduction of B than
TG01AD. The maximal magnitude of elements in A and E are of order: 1 for TG01AD,
10 for variant S of dg3bal, and 106 for variant W of dg3bal.

The last test round in this example is concerned with the problem of the singular
preconditioner in the routine TG01AD. The matrices A, E, and B are defined as follows:

A =

 10−2 0 10−4

0 10−4 104

10−2 0 10−4

 , E =

 1 0 1
0 1 1
1 0 1

 , B =

 1010

104

1010

 ,
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Fig. 4.3: dg3bal vs. TG01AD: reduction of the magnitude range and maximal magni-
tude of elements in B.

and
√
‖A‖2F + ‖B‖2 = 1.414214 ·1010. In this case TG01AD generates the same matrix

L and the vector p as the variant S of dg3bal, but M is the same as in dggbal:

L =


5 0 0 2 0 2
0 5 0 0 2 2
0 0 5 2 0 2
2 0 2 4 0 0
0 2 0 0 2 0
2 2 2 0 0 6

 , p =


−4
−4
−4

4
4
4

 , M =


6 0 0 2 2 2
0 6 0 2 2 2
0 0 6 2 2 2
2 2 2 6 0 0
2 2 2 0 6 0
2 2 2 0 0 6

 .

It is easy to check that Mp = M†p = 0. The first step of the conjugate gradient
method is to compute z0 = M†p. Since z0 = 0, it implies s0 = 0, α0 = 0, and x1 = x0
which will satisfy the stopping criterion and the routine stops with unchanged data.
The problem arises due to p ∈ Ker(M). On the other hand the S variant of dg3bal

produces

Ab =

 10−1 0 10−3

0 10−2 105

10−1 0 10−3

 , Eb =

 10 0 10
0 100 10
10 0 10

 , Bb =

 102

10−4

102

 ,
where

√
‖Ab‖2F + ‖Bb‖2 = 1.000001 · 105. The original and the balanced matrices are

now used as input to the routine TG01HD. For the system (1.1), defined by the original
matrices A, B, and E, the routine returns that the system has 1 finite controllable
and 2 finite uncontrollable poles (poles are generalized eigenvalues of the pencil A−
λE). For the balanced system it turns out to have 2 finite controllable and 1 infinite
uncontrollable pole. Thus, since TG01AD stopped prematurely it does not change the
original matrices, and TG01HD gives the wrong answer about the controllable poles.
For the balanced system returned by dg3bal, TG01HD returns the correct answer.
Since E is obviously singular, there has to be an infinite pole.

4.4. Example 4: sensitivity of frequency response computation to scal-
ing. In this example we demonstrate how badly scaled matrices can produce an inac-
curate frequency response matrix. We started with the descriptor system (A0,B0,C0,
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D0,E0), where A0, E0 ∈ R4×4, B0 ∈ R4×1, C0 ∈ R1×4, D0 = 0, and whose pole
is placed near 0.4518i. Then, we produced badly scaled matrices E = Dl,0E0Dr,0,
A = Dl,0A0Dr,0, B = Dl,0B0, C = C0Dr,0, and D = D0 where Dl,0 and Dr,0

are badly scaled diagonal matrices. We observed three different choices of these di-
agonal matrices. For each choice of the diagonal matrices we computed frequency
response matrices for the original and the balanced system, where the m-Hessenberg–
triangular–triangular reduction of A, B, and E from [3] was the first step in the
algorithm, and σ was ranging from 10−2i up to 102i.
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Fig. 4.4: Magnitude of the computed frequency re-
sponse matrices, for the original and the balanced system:
Dl,0 = Dr,0 = diag(100,103,106,109), Dl,0 = Dr,0 = diag(100,104,108,1012),
and Dl,0 = Dr,0 = diag(100,106,1012,1018).

We compared the computed frequency response matrices of the original system
and the balanced system obtained by the variant S of the balancing algorithm. The
obtained results are illustrated in Figure 4.4.

As we can see, as the matrices Dl,0 and Dr,0 are gradually becoming worse scaled,
the produced frequency response matrix is becoming more inaccurate. For the first
choice we obtained 6–7 accurate leading digits when compared with the result for the
balanced system, while for the second choice there are 3–4 accurate digits. Specially,
for the third choice, the magnitudes of the errors were of the same order as the
magnitudes of the results, or larger, producing a results with no accurate digit for the
original system.

Let us emphasize here that SLICOT has only the routine TB05AD which computes
the frequency response matrix for a system with E = I. In that case balancing can
be applied via the LAPACK routine dgebal. dgebal balances only the matrix A
by a diagonal similarity transformation, since TB05AD reduces only the matrix A to
the Hessenberg form. In MATLAB the frequency response matrix can be computed
for a general descriptor system by the Hessenberg–triangular reduction of matrices
A and E, implemented in the routine freqresp. The MATLAB routine seems to
balance only the matrices A and E. The output of freqresp for the given example is
indistinguishable from the result of our routine applied on the balanced system. Our
algorithm based on m-Hessenberg–triangular–triangular reduction of A, B and E is
more efficient than the algorithm based only on the Hessenberg–triangular reduction,
and this is the reason why we need a balancing algorithm for three matrices.

4.5. Example 5: sensitivity of the staircase reduction. As mentioned ear-
lier, the staircase reduction is a tool used to determine the controllable part of the
system (1.1), see for example [16] and [26]. This problem is numerically very sensitive,
since it relies on rank revealing algorithms. We started again with random matrices
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A0, E0 ∈ R15×15 and B0 ∈ R15×3, and generated three sets of badly scaled matrices
Ai = DiA0Di, Ei = DiE0Di, Bi = DiB0, for i = 1, 2, 3, such that

D1 = diag(1, 102, 1, 1, 104, 1, 1, 106, 1, 1, 108, 1, 1, 109, 1)

D2 = diag(1, 103, 1, 1, 106, 1, 1, 109, 1, 1, 1012, 1, 1, 1014, 1)

D3 = diag(1, 103, 1, 1, 106, 1, 1, 109, 1, 1, 1012, 1, 1, 1016, 1)

We applied the SLICOT routine TG01HD to all four examples, and obtained four
different results, presented in the following table.

example # of contr. poles # of fin. uncontr. poles # of infin. uncontr. poles
0 15 0 0
1 3 9 1
2 1 14 0
3 0 15 0

The result for A0, E0, and B0 is correct, while all the others are incorrect due to
large norms of Ai and Ei. As the norms of these two matrices grow, the dimension
of the controllable part is decreasing. Specially in case of the last example, TG01HD
exited immediately without finding the controllable part.

The SLICOT routine TG01HD recommends balancing the system by the routine
TG01AD.

4.6. Example 6: sensitivity of the pole assignment problem to scaling.
We are interested in another problem from control theory: the pole assignment prob-
lem for descriptor linear systems of form (1.1) via state feedback. For details, see [10].
Let us define the closed-loop system

Eẋ = (A−BK)x(t) +Bv(t), (4.1)

where v(t) is an external signal, and K ∈ Rm×n is a feedback matrix. For the
regular system (1.1) with n1 = deg det(A− λE), and for the set of complex numbers
Γ = {λ1, λ2, . . . , λn1

} closed under complex conjugation, the problem is to find a
state feedback controller in the form u(t) = Kx(t) + v(t) such that Γ is the set of
finite poles of the closed-loop system (4.1), or alternatively, the elements of Γ are
the eigenvalues of the pencil (A − BK) − λE. Reliable methods for solving this
problem are the so-called Hessenberg methods based on explicit or implicit QZ-like
techniques. An explicit shift method for single input systems is proposed by Miminis
and Paige [15], and the implicit version of the algorithm for ordinary linear time
invariant systems with multiple inputs is proposed by Patel and Misra [19]. We
applied the QZ version of the Patel and Misra algorithm on a controllable descriptor
system with a non-singular matrix E. This algorithm is based on a reduction, similar
to the m-Hessenberg–triangular–reduction, which reveals controllability of the system.

Our example of the descriptor system (1.1) is defined for A,E ∈ R10×10 and
B ∈ R10×3, where
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A =



8.15·10−8 0 0 7.06·10−3 0 0 7.51·10−5 8.41·10−8 0 7.59·10−2

0 9.71·10−8 0 0 3.82·10−1 0 2.55·102 0 8.31·10−7 0
0 9.57·10−5 8.49·102 0 0 6.55·102 0 0 0 0
0 0 0 0 0 1.63·10−1 0 2.44·10−1 0 7.79·106

0 0 0 9.71·103 1.87·10−1 1.19·10−1 0 0 9.17·10−7 0
0 0 0 0 4.90·10−1 0 0 0 2.86·10−7 0
0 0 0 0 0 0 0 0 0 5.69·106

0 0 0 0 0 0 1.39·10−2 0 0 0
0 0 0 0 0 0 0 6.16·1014 0 0
0 0 0 0 0 0 0 0 5.68·10−7 3.37·106


,

E =



4.31·10−8 0 4.17·10−8 0 2.35·10−8 0 0 6.44·10−8 2.08·10−14 0
0 6.22·10−8 0 3.90·104 0 0 0 0 0 0
0 0 9.03·102 0 0 0 4.87·105 0 0 4.30·109

0 0 0 4.04·104 0 0 0 0 0 0
0 0 0 0 4.30·10−2 6.87·10−1 0 3.51·10−1 0 0
0 0 0 0 0 1.84·10−1 0 0 0 0
0 0 0 0 0 0 5.09·102 0 0 0
0 0 0 0 0 0 0 5.50·10−5 0 0
0 0 0 0 0 0 0 0 2.28·108 0
0 0 0 0 0 0 0 0 0 4.09·106


,

BT =

1.62·101 0 0 0 0 0 0 0 0 0
4.51·101 0 0 9.13·10−1 0 8.26·105 0 0 0 0

0 9.62·10−1 0 0 8.17·10−1 0 0 0 2.60·1013 8.00·10−1

 .
The set of desired finite poles of the closed-loop system is taken to be Γ = {−1 ±
2i,−8± 12i,−3,−7,−15,−25,−30,−100}. The pole assignment algorithm produced
the feedback matrix

K =

1.30·10−8 0 0 0 0 0 0 0 0 0
0 −4.74·10−13 1.07·10−15 −2.31·10−19 7.53·10−7 −4.72·10−8 0 0 0 0
0 −1.54·10−17 −4.41·10−10 3.33·10−16 1.84·10−11 2.93·10−10 0 0 6.13·10−5 1.05·10−16

 ,
and the computed eigenvalues of the pencil (A − BK) − λE are −3.0000, 8.6823 ±
12.732i,−6.7362,−0.13415, 0.40521, 0.94064,−2.4631, 1.5121±1.7799i, see Figure 4.5.
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Fig. 4.5: Desired poles in Γ and the computed poles.

It has to be mentioned here that the matrices A−BK and E were balanced prior to
eigenvalue computation, and as we can see, only one eigenvalue was assigned correctly.
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On the other hand, when we applied the balancing algorithm on the matrices A, B
and E, obtaining Dl = diag(103, 10−2, 10−6, 10−2, 10−2, 10−3, 10−3, 101, 10−16, 10−2)
and Dr = diag(104, 1010, 104, 10−2, 103, 103, 101, 103, 109, 10−4), and the balanced ma-
trices Ab = DlADr, Bb = DlB, Eb = DlEDr, the pole assignment algorithm applied
to the balanced matrices produced the feedback matrix

Kb =

1.30·10−4 0 0 0 0 0 0 0 0 0
0 7.49·10−1 −6.66·100 −1.00·100 −1.28·10−1 −2.04·100 0 0 0 0
0 0 0 0 0 0 3.91·108 2.93·108 7.45·108 −4.3341·107

 .
In this case, all computed eigenvalues of the pencil Ab − BbKb − λEb have at least
8 correct digits. We also observed that, in our experiments, where the columns of B
were badly scaled the system became numerically uncontrollable, reducing the number
of eigenvalues that can be assigned. Thus, the variant R of the balancing algorithm
is applicable and useful for this problem.

4.7. Example 7: An example from a real application. In the last subsec-
tion we will illustrate sensitivity issues of a badly scaled system coming from a real
application. The descriptor system of the form (1.1) is derived as a power system
model, and this example it is based on the Brazilian interconnection power systems
(BIPS) model relating to a 1998 heavy load condition. Matrices of the system can be
found as example bips98 606, which is a part of Rommes group in UF Sparse Matrix
Collection [21]. The dimensions are: n = 7135 and m = p = 4. The matrix A is very
badly scaled, with the smallest element equal to 1.4341 · 10−17 and the largest equal
to 1020 on several entries, causing a large condition number κ2(A) = 3.1321 · 1026. B
and E are well scaled. First we apply our balancing routine dg3bal to this system,
and then we are going to compare the results of the frequency response computation
and staircase reduction of the original and the balanced systems. The routine dg3bal

balanced the matrix A successfully. The obtained balanced matrix Ab has the smallest
element equal to 1.1374 ·10−6 and the largest equal to 1.0009 ·104, while the condition
number is reduced to κ2(Ab) = 2.4964. The balanced matrices Bb and Eb remained
well scaled.

We computed frequency response matrices for shifts σ ranging from 10−2 to 104.
The entries of the frequency response matrices for the original system differ from the
corresponding elements of the frequency response matrices for the balanced system
after 2 to 8 leading digits. This result is not as bad as it can be expected from the
ill-conditioned matrix A, and can be explained by the sparsity pattern of B. On
the other hand, since A has a large norm the real effect of the balancing is observed
when trying to determine the controllable part of the original system. When applied
to the original system, the routine TG01HD returned without finding the controllable
part, while when applied to the balanced system, the routine returned the controllable
part of dimension 616. Clearly, we would not be able to solve this problem for this
particular example without balancing.

5. Conclusion. In this paper three versions of the algorithm for balancing three
matrices simultaneously are proposed. The balancing is performed via diagonal trans-
formations and the goal is to reduce the range of order of magnitude for all elements
of the involved matrices. We illustrated its application with the reduction to the m-
Hessenberg–triangular–triangular form of three matrices A, B and E, which is used
for efficient computation of the frequency response matrix G(σ) = C(σE−A)−1B+D
in case of a descriptor system, with the pole assignment problem via state feedback,
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and with finding the controllable part of the system. The reduction algorithm can
produce a very inaccurate result for badly scaled matrices. The basic variant balances
rows and columns of A and E, and only rows of B, since computing G(σ) is invariant
under such transformations. The weighted variant of the balancing algorithm gives
more weight to the balancing of elements of B, since the basic algorithm can produce
well balanced A and E and poorly balanced B. The third variant offers a possibility
of balancing columns of B as well. Numerical experiments confirmed that balanc-
ing matrices A, B and E before the m-Hessenberg–triangular–triangular reduction
produces an accurate frequency response matrix, as well as accurate pole assignment
via state feedback. In case when the controllable part of the system is sought, the
answer might not be obtained when the system is badly scaled. The balancing is very
important for this kind of problem.
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