
Novel ICT Trends that can Empower Business Again

Dražen VUKOTIĆ
Superius d.o.o., Pula

drazen.vukotic@superius.hr

Nikola TANKOVIĆ
Superius d.o.o., Pula

nikola.tankovic@superius.hr

Mario ŽAGAR
University of Zagreb Faculty of Electrical Engineering and Computing, Zagreb

mario.zagar@fer.hr

Abstract:

High availability of computational infrastructure enabled every company to use business

software applications, ERP (Enterprise Resources Planning) systems in particular. ERP

systems became inevitable part of business. With many positive characteristics that ERP

systems provided, they also brought some negative effects. Given the way they evolved, ERP

systems are highly standardized and inflexible as they provide customization only in a way

that is built in design time. That is why they are becoming a lagging factor to fast and

innovative business process changes which enable competitive advantage. ERP system

represents a realistic image of a business system, and vice versa. This raises a possibility to

change and adapt business system and its processes by adapting ERP system. In an evolved

business environment that is always changing and growing, adaptations to ERP systems must

follow in speed. This paper covers new technical possibilities to enable faster and efficient

changes to the business systems by its end-users, without the need to involve IT departments

or companies. ADBE (Application Design by Example) possibilities are specially covered as a

way to create and modify business software applications

Keywords:

PbE, Programming by Example, ADBE, Application Design by Example, Data Collection and
Data Estimation Methodology; JEL Code: C890

Introduction

In early 1980’s the era of personal computers began which brought big changes in business
management. Utilizing IT in business processes became possible for small and medium
businesses, not only for large - scale companies which could afford large mainframes.
Networking of small personal computers enabled collaborative work and faster information
exchange. Working on-line meant unprecedented number of ways of doing business in that
period like MRP and JIT managing of production and stocks. In a wave of new technical
possibilities came () great new applications covering all main business processes available for
variable size companies in all markets, since 1990 known as ERP (Enterprise Resource
Planning).

ERP software market had great potential so IT companies started to build wide use ERP
applications for unknown buyers. In a struggle to gain market share, they coded the best

common practice to satisfy the needs of different buyers across several business areas. IT
companies further advanced their solutions by incorporating business knowledge gained from
their customers, so applications where adapted to better satisfy customer needs. After some
time, a reversed process began: companies taking the role of customers started to change their
business processes to accompany their software solutions. On one side, this enabled
standardization of business processes and possibility of B2B1 cooperation with positive
effects on company efficiency. On other hand, companies which introduced ERP system
faced quite big difficulties when they wanted to alter certain business process outside the
frame that ERP system provided.

Characteristics of business applications development and implementation

Development of business applications began in parallel with computerization of business
processes specific for certain business area on one side, and computerization of common
processes used by majority of companies on the other. By combining these two paths, ERP
systems for specific businesses evolved. In the beginning, applications were developed by
own IT departments or ordered from outer IT companies. With time, ERP systems as product
or end solution, became available which could more or less be configured to satisfy specific
needs. It is a common case to have also a combination of these different solutions depending
on size and abilities of businesses own IT departments. Custom development means having a
tailored application, and buying an ERP product means having best practices for certain
industry implemented already. Figure 1 displays the difference between custom tailored
classically developed application and end-product application across five different aspects: (1)
process coverage, (2) speed of development, (3) speed of implementation, (4) economic
factor, and (5) ease of modification. Level of compliance for each category is an
approximation based on 20 years of author's experience.

0

2

4

6

8

10

12

1 Coverage 2 Speed of Dev. 3 Speed of Impl. 4 Economic

Factor

5 Ease of

Modification

Comparison Category

C
o

m
p

li
a

n
c

e

Inhouse Application
Development

Custom development by
Outer IT Company

Off the Shelf Application

Figure 1: Comparison of custom design and end solution

It can be observed that all three types of development have similar characteristics, except in
level of customizability and price, which vary significantly.

1 B2B - Business-to-business, commerce transactions between businesses

The role of ERP in business

Main positive characteristics of ERP system are: computerization of all important aspects of
business, great increase in efficiency of many processes, having knowledge about best
business practices and enabling better B2B cooperation by introducing standardization of
business processes. During development, ERP systems adapted quite well to specific business
areas and according to [1] and [2], they represent a realistic image of business system
covering most business functions. The other way around also stands: by changing the
functionality of ERP it is possible to change business processes, especially in those parts
where processes are taking place only by information exchange (B2B, B2C2, C2B3 and G2C
or C2G4).

Classical approach to ERP application support

Classical ERP systems are complex, they often possess thousands of relations and tens of
thousands lines of code. They are also developed in long cycles, often in even a decade,
involving many people, some of which have also changed working positions. This is way
ERP modules are poorly integrated, with documentation missing, being incomplete or too
extensive. Business processes are commonly described in programming code and hard to
modify. To solve such problems, two approaches are used: more efficient development, and
parameterization. In first approach, in-house IT departments are working to perfect earlier
developed modules, following new technologies and educating themselves. They are also
developing new modules and exploring existing solutions. In contrast, outside IT companies
are working closely with their customers and are implementing their requirements promptly.
They are also following new technologies, educating own IT experts and suggesting new
technological changes. Such IT companies incorporate vast customer experience in their
products and optimize them accordingly. They are guided with majority of their customers,
law changes, and technological trends. They often use parameterization in their products to
adapt to specific customer needs. Such parameterization enables managing certain
functionalities, switching them on or off, or changing their behavior.

In first approach, in-house IT department is stuffed with providing technical support of earlier
developed modules and “locked” with using technologies used so far. Every new development
represents a new risk for them threatening the stability of an existing system. Outside IT
companies that develop custom tailored solutions are trying to unify their solutions for
different users to lessen the burden of support, but that approach is making further changes
quite difficult to achieve. By switching to new technologies they must also support older
functionalities for existing customers. IT companies that develop for wider markets often
implement larger amount of functionalities then is commonly needed for their customers with
solutions being too restrictive [3]. Parameterization of their systems is so complex that it can
only be achieved by experienced consultant. Such solutions are commonly too complex for
average users with rules that are forced upon their business system. Business is shaped
according to these complex solutions that are often not optimal for the tasks at hand.

2 B2C - business-to-consumer, electronic commerce, e.g. online retailing
3 C2B - Consumer-to-business is a business model in which consumers create value, and firms consume this
value
4 G2C - Government-to-Citizen is the communication link between a government and private individuals and
vice versa (C2G)

Additions and changes of systems are complex, long-lasting and expensive, with most
commonly implemented late or not consistently in all segments. That is why innovative and
specific business processes are hard to enclose into existing ERP solutions which in final
lower concurrent advantage of their users. That is why we suggest using new technological
and programming options which will enable their users manually changing and adapting their
applications without the need for specialized knowledge of application development,
databases and servers with goal of efficient and quick change of their business processes.

New technological trends

In the past 10 years of IT industry has been developed many IT achievements that push the
limits of applicability in IT. Main characteristics of these technologies are that they are
mature, inexpensive and available and that there are strong interdependencies of business and
consumer solutions. For this reason, there is a decrease of users refusing the IT solutions,
which is one of the prerequisites of the proposed concept. From new IT trends we emphasize
(1) ubiquitous computing, (2) wireless communication, (3) cloud computing, (4) dynamic
DBMS, (5) application developing without coding and (6) interoperability. Each of these six
trends is necessary to achieve an efficient modeling of business processes through changes in
business information systems. The first three technologies are important to ensure that every
employee (or other business entity), regardless of location and type of work could be
equipped with appropriate computer device and business applications, that can exchange
information on-line with the central office and other employees (or other business entities).
The following two technologies are important to enable simple and effective changes in
business applications, and consequently the business models that will propagate to all users of
business applications. The latest technology allows an increasing number of business
processes between different business entities to be conducted virtually, and thus further
strengthen the ability to change business processes through changes in business information
systems. In the following paragraphs we briefly describe these trends and characteristics that
are important to achieve this goal.

Ubiquitous computing

During the development of IT industry, the ratio of the number of users to the number of
computers were changed as follows: in the beginning one computer served more than one
user, then in the PC era one computer served one user, while today one user has many
different computers at their disposal. Availability of computer equipment went from a few
mainframe computers available exclusively in specialized computer centers, over desktop
computers available at home or in the office, laptop computers available mostly during
sedentary activities to handheld and smartphone computers available in any situation, even
when the user is mobile. In the beginning their use was exclusively dedicated to the business
or to the science. Later on, computers started to be used for private purposes and for
entertainment, while today various purposes (private, business and fun) are firmly interwoven.
Computers used to be focused exclusively on a particular task, while today they are
multifunctional devices focused on the user. An important feature of modern day computers is
the fact that they are equipped with various kinds of sensors (touch screen, accelerometer,
camera, GPS, photometer…) which substantially expand the possibilities of application.

Wireless communication

The capabilities of wireless communication today are characterized by increasing coverage of
the population, the globe, micro locations which is heading toward absolute coverage.
Transfer speeds are increasing all the time. The level of reliability and service availability is
very high, while prices have a downward trend due to relatively competitive market.

Cloud computing

Cloud computing has become a mature technology and a common part of IT infrastructure. It
has gained the trust of both private and business users. The concept of cloud computing
popularizes a model of publishing and accessing data as opposed to the old model of
gathering and distributing data. As a result, new usage models arise, based on the
collaboration of different types of users. Usage models such as SaaS5, PaaS6 and IaaS7 are
available. What they all have in common is the capability of upsizing and downsizing
depending on the current needs of the user. New business models are also developed, where
cloud computing represents a platform for creating markets of data and flow of information.

Dynamic DBMS

Due to their characteristics such as reliability in carrying out transactions, ACID properties,
maintaining referential integrity, SQL8 data access etc., relational databases have become
almost unparalleled in creating data oriented business applications. An additional
complication for the developers emerges when trying to achieve the M2-M1-M0 approach to
metamodelling data, which allows for a dynamic modification of the data model after the
business application has already entered production phase. There are entire programming
environments [4] that allow that approach but they are impractical for a non-technical user.
The problem is that the metamodel of the relational database is based on fundamental data
units consisting of entities and relations. Entities are realized through a tabular structure,
while relations are realized through referential integrity. This structure is implicitly built into
the database engine which is accessed using SQL DDL9 standard commands. The data model
is created in the design phase of the application so it is difficult to change it during the
production phase by, for instance, moving a column from one table to another table or break it
away into a separate entity. On the other hand, non-relational databases like Key-Value or
Graph databases have a more atomized structure than relational databases. The fundamental
data unit in a Key-Value database is a Key-Value pair that corresponds to the column in the
relational table. In the graph database, the fundamental data unit is a node, which corresponds
to a cell in the graph database.

5 SaaS - Software as a service is a software delivery model in which software and associated data are
centrally hosted on the cloud.
6 PaaS - Platform as a service is a category of cloud computing services that provide a computing
platform (operating system, database, Language is a programming language designed for managing data
in relational database management systems (RDBMS).web server etc.) as a service.
7 IaaS - Infrastructure as a service provides hardware (servers, storage, network etc.) as a service.
8 SQL - Structured Query Language is a programming language designed for managing data in relational
database management systems (RDBMS).
9 DDL – Data Definition Language - subset of Structured Query Language (SQL) for
creating tables and constraints

Figure 2: Key-Value and graph structures are much more flexible and suitable for a dynamic

modification

Relational structure groups data by type and meaning (table and a column in a table), Key-
Value structure groups them by meaning, while graph structure views all data equally, where
their grouping can depend on the content of an individual node and its relations to other
nodes. That's why Key-Value and Graph structures are much more flexible and suitable for a
dynamic modification of metamodel and data models in the same way that a modification in
production data is possible as shown on Figure 2.

Codeless application development

Programming through coding is the usual approach in computer program developing. There
are more than 8000 registered programming languages. However, programming through
coding has some drawbacks that prevent a wider circle of users from developing computer
applications. The procedure of programming through coding is too abstract, demands a lot of
specialized knowledge and experience, which is why there is a chronic lack of programmers
on the market. There is insufficient overlap of knowledge between the buyer and the supplier
of the programming product, which often leads to developing a programming product that is
not in accordance with the user's wishes and needs. Programming is an iterative procedure
involving many participants which further slows down and complicates the whole process,
while the product requires comprehensive and thorough testing. Business knowledge built
into the application is hidden in the programming code, which poses an additional problem
during later modifications of the application. As a result of all the problems listed above, a
process of developing applications without coding (which eliminates one or more drawbacks
arising from programming through coding) is being increasingly explored and advanced.
However, developing applications with no coding has still not reached a phase in which it
would be simple and intuitive enough to be usable by non-programmer users.

Interoperability

Using computer applications in business is so common that many business processes have
become completely virtual. For example, a large part of business processes in taking orders,
sales, payment, human resources etc. no longer have any material traces except for records in
computer applications. Standardization of formats and protocols makes it possible to
implement these virtual processes not only within a company, but also between various
companies. In order to achieve this, formal and industrial standards have been developed,
which greatly expand the realm of possibility for B2B, B2C, C2B and B2G cooperation.
These possibilities create new opportunities and new business models for companies, while
posing a challenge for application developers in finding a way to, on the one hand, ensure
standardization of formats to enable data exchange and, on the other hand, to ensure sufficient
flexibility for later modifications and expansion. Apart for technical issues, this segment
raises new legal, ethical and moral issues regarding the allowed degree and purpose of sharing
of available data.

Codeless developing tools

In the previous chapter we talked about already existing technologies that make the concept of
changing business processes through modification of business applications that support or
enable these processes possible. The technology that is currently not sufficiently developed is
the technology for codeless developing. This technology is key factor for achieving speed and
efficiency in the process of developing or modifying business applications, especially because
it would enable end users to make those modifications. There are tools on the market that
make codeless developing of applications possible. According to research [11], these tools
can be divided into five basic categories: (1) visual programming and parameterization tools,
(2) modeling tools, (3) ontology tools (4) composing tools and (5) PbE tools (Programming
by example). Next we will briefly describe the elementary characteristics of each of the listed
categories.

Visual programming and parameterization tools

Basic characteristic of this group of tools is using visual techniques for creating the program
logic and interface. This group can be divided into three subcategories: (1) tools for graphical
editing of the user interface, (2) tools for defining data and processes through special
diagrams and (3) visual programming tools. Even though tools of this category make the
creation of complex applications without coding possible, their drawback is the fact that users
have to have knowledge of programming principles and database structure.

Modeling tools

Tools from this group describe the business process through special types of diagrams, with
UML10, BPMN11 or OPM12 used most frequently. Based on these models, an application is

10 UML - Unified Modeling Language is an object modeling and specification language used in software
engineering

generated through a generative or an interpretative approach. Generative approach consists of
creating a programming code in a higher-level programming language and compiling it into
the executive code of the application. Interpretative approach is based on the existence of a
run-time engine that generates and delivers requested program elements. This method enables
automatic generation or modification of program specifications on demand, but has a
somewhat poorer performance than generative approach. The drawback of this approach is an
additional level of abstraction introduced into the modeling process by introducing graphical
symbols and syntax that describe the observed business process.

Ontology tools

Ontology in IT terminology represents a model of knowledge that describes the observed area
(domain) as a group of concepts and relations between them. Two main groups of ontology
can be defined: domain-specific ontology and foundation (or upper) ontology. Domain-
specific ontology describes concepts from various specific domains, whereas foundation
ontology describes common concepts. The focus of the tools from this group is to describe a
business process. This is achieved by way of an application user interface adapted for this
task. User enters his knowledge of the business process into the application by describing
objects participating in the business process and the relations between them. The same
interface gives him the ability to input and edit instances of objects created in the previously
described way. The drawback of these tools stems from the fact that external add-ins
programmed in the old-fashioned way are required for dealing with more complex processes.

Composing tools

Studies [2] show that every business IS consists of a finite group of business functions
amounting to 50.000 different business functions in all types of business. Differences between
business types are reflected in less than 20% of business functions. Therefore, IS
representation of every common business function has to implement 80% of standardized
functionalities and has to be able to support up to 20% of specificities. If program modules
supporting every single one of the 50.000 different business functions were available on the
market, the user could assemble a complex information system using only the modules he
needs for his work. Authors [5] start from the assumption that every module must have its
representation through a user interface, regardless of whether we are dealing with a manual or
an automatic process, and suggest a procedure of simple creation of complex applications
using the method of composing the application from modules that support basic business
functions. The drawback lies in the fact that supporting 20% of specificities is much more
challenging than supporting 80% standard functionalities and the 20% specificities is what
makes the difference between a satisfied and an unsatisfied user. Therefore, it is necessary to
provide a procedure that would allow for a simple modification of existing or creation of new
modules designed for specific business functions.

PbE Tools

11 BPMN - Business Process Model and Notation is a graphical representation for specifying business
processes in abusiness process model.
12 OPM - Object Process Methodology is an approach to designing information systems by depicting them
using object models and process models.

Even though here are different applications of the PbE principle, the main attributes of a tool
that enables PbE are: (1) using the same user interface both for working on the application
and for programming the application and (2) programming consists of teaching the program
system by demonstrating by example what is required. Programming the user interface is
done by pointing out the interface element the user wants to put onto the application user
interface via a Drag&Drop or a Point&Click method. Advanced PbE tools independently
make conclusions of the nature of the data entered and any rules to be applied to this data,
based on a small amount of data entered in the learning process. For example, if a new field is
added into the application, the type of the field can be explicitly set (text, number, date), or
the system will independently suggest that this is a date field after a date value has been
entered into it. Afterwards, the system will require that only date values be entered into this
field. Programming of a process is carried out by giving examples as to how a process should
be done. A similar case is with spreadsheets by entering mathematical, logical or other
operation whose result is shown in a particular cell. Another method that allows for iteration
is based on collecting user's actions and storing them for executing at a user request, but with
data which are relevant at the moment of request. The most well known example of this
technique is macro-programming, frequently used in spreadsheets. Drawbacks of PbE tools
stem from the fact that they are focused on creating a user interface and memorizing user's
actions, while too little attention is given to modeling and storing data. In certain cases, when
there isn't enough information, the PbE system must ask the user to solve the dilemma by
entering the appropriate parameters, which is sometimes non-intuitive or too complex.

Application Design by Example

Classical approach of creating a computer program consists of several common phases such
as defining business processes, database modeling, implementing user interface and program
logic, creating basic application modules, and connecting them into one functional unit. In the
previous section, we describe the tools that enable development of applications without
coding, but these tools focus only on some of these phases. Thus, the tools for visual
programming and parameterization are focused only on making the user interface and
program logic, modeling tools are focused only on defining the business processes and
databases, tools for defining domain ontology are focused only on the description of business
processes, and tools for composing solve only the problem of connecting different modules in
the functional unit. With such a partial approach, these tools can not fully achieve the basic
goal - that the average user can create new or modify an existing application.

The paper [6] highlights two key factors that such a tool must meet. First, do not introduce
new levels of abstraction. Most users will easily describe their business processes, but will
have difficulty in abstract modeling. For example, the process of taking customer orders,
users usually describe in a way similar to this: "When I take an order, I record the name of the
customer, delivery date and place of delivery, and then I write the items, quantities and
discounts." The average user will seldom describe the process in a structured and generalized
manner suitable for the computer program implementation as outlined in the following
example: "Order is the process of creating a document that has a header and one or more
items. The header contains information about the customer, date and place of delivery. The
items contain information about the ID and name of the item, quantity, and discounts. Product
and quantity are mandatory, and the discount is not mandatory."

Second, it is extremely important to use only the familiar user interface. Most users are very
familiar with the business applications they use in their daily work but have difficulty in
getting used to new programs. Therefore, special tools designed to create applications without
programming make a large barrier to their acceptance. In addition, the result of programming
can be seen only after the "compile and deploy" procedure. The concepts that are important
for modeling databases such as foreign keys, referential integrity, relationships, etc. are IT
terms that average users are not interested. Research [7] shows that users easily express
themselves using the familiar user interface elements. They want to say: "At this point I want
to have information about due debt in the same form as total debt is presented." It is therefore
important to find a way that will enable to easily add, delete or modify user interface
elements, and all other activities related to the technical work needed to achieve this task, the
system should process automatically in the background.

For all these reasons, we propose a new approach to application development - ADBE
(Application Design by Example), which takes the best of each method described above and
combines them into a single, comprehensive new method.

The technological structure of ADBE implementation

Technologically speaking, ADBE implementation is a client-server application based on
HTML5 and JavaScript technology on the client side and based on the Java technology on the
server side. Neo4J graph database is used for storage purposes on the server side. Server side
is powered by a server in the cloud and application is used by the SaaS principle. It is a
multiplatform solution, optimized to work with touch screen and can be used on a
smartphone, tablet or PC computers. The solution is unique because it allows you to create or
modify applications directly on the smartphone, which is also one of the key prerequisites for
enabling a rapid change in business processes through changes in business application.

The logical structure of ADBE implementation

Logically speaking, ADBE solution is interpretative application model based on three-layer
metamodel-model-data (M2-M1-M0) architecture [8]. M2 model implements OPM [9]
structure that contains object description of all modeling elements. M1 contains model of all
parts of the application (data structure, user interface, program logic) which are modeled
using M2 elements. The system can support several applications at the same time. M0
contains information created by using of these applications.

As previously mentioned, graph database stores elementary information in the form of nodes
and links. This type of storage makes it easy to inherit objects between M2-M1-M0 layer
models. The model is therefore autoreflective because all components of the model are
described by components that are also part of the model. This feature is extremely important
to enable the PbE process. Figure 3 shows the concept how the application can be created or
changed. Modeler is a modeling software extension that uses information from the fixed M2
metamodel and allows reading and changing elements of the M1 application model, and thus
the behavior of the application.

Client application reads the M1 model and uses it to generate the User Application user
interface and the starting point process. The application then retrieves data from the M0 layer

needed to conduct next process, also written in the M1 model. If the Data model of the M1
layer is changed by Modeler Extension, this change is automatically reflected in the M0 layer.
Due to the atomicity property of the graph database, M1 data model can be arbitrary changed
over the data already stored in the M0 layer.

Figure 3: The logical structure of ADBE implementation

Example of application creating by ADBE

Below we will show how to create an application using ADBE method. The application
allows you to create short custom message (Twiit). For ease of understanding, let us first
consider an example of serialization of M1 application model and corresponding instances
created in M0 model. M2 layer metamodel contains OPM structure, and Figure 4 shows M2
model of objects and relationships that have source and destination. Using Modeler we
created two objects: message – Twiit object and its sender – User object.

Figure 4: M2-M1-M0 layers of Twiit example application

Using this application model, we launched the application that created the Twiit "When
people talk, listen completely". The Twiit is sent by the User with the name "Ernest
Hemingway".

Figure 5 shows the complete process of generating an application using ADBE method and
visual editing of user interface using the Point & Change method. At the same time the user
interface is created, automatically is created the ontology of the business process and model of
objects and processes too. Table 1 gives step by step description of the ADBE process.

Table 1: Description of ADBE example

Nr. Procedure description

1. The process begins by logging into the system. The system recognizes users 'Ernest Hemingway', but
also determined that for him there is no application. Therefore, automatically opens the M1 node to
create a new application and start the application in design mode.

2. The system has showed an application form that has several standard elements of user interface that
expect the entry of its content or removal from the application model (M1). These elements are (1)
the application name (<Enter application name>, (2) exit button (<logout>) and a company logo
<Insert logo or company name>. With Tap & Hold method user shows to the system what element
he wants to change.

3. After entering the required information, the user can, without leaving the design mode, to test the
application by clicking on the button "Logout". However, the user decides that he wants to add a new
element to the application by pressing <Insert element>.

4. Based on the context of the previous step, the system decides which elements of the interface can
offer for selection. The user selects the option "Document".

5. The system displays the basic elements of the interface and automatically enters data into them from
the current context: User name and time. Initial elements of the interface are described in the M1
layer. These are: (1) <back button>, (2) <document Title>, (3) <home button>, (4) <Current user>,
(5) <Current date and time>, (6) <Cancel > and (7) <Apply>. The user changes the labels for <back
button>, <document Title> and <home button>.

6. Interface elements from the M1 document model are given new label values that are written to the
M0 model: <back button> the value "Go back", <document Title> the value "Twiit" and <home
button> value of the "Home". Thereafter, the user indicates that he wants to add a new element to the
interface by pressing <Insert New element>.

7. Based on the context of the previous step, the system concludes what elements of the interface can
offer at this time. The user chooses the option "Text Field" and by selecting its properties explicitly
instructs the system that this is mandatory multirecord text field.

8. The system adds a new node in the M1 model and automatically displays the modified document.
The user indicates that he wants to add another element of the interface by pressing the <Insert new
element>.

9. The user repeats the process of selecting a new element of the interface, this time it's a dropdown list.
He entered the name of the label: "Message Priority". In the background, system automatically
creates a new data type and M1 structure which describes it.

10. Dropdown list is added to the interface. By pressing the "Home" button system returns to the Home
screen of the application.

11. The application is ready for use. The user selects the option "Message Priority" and enters an element
called "Normal", then select "Twiit".

12. Based on the context, system decides that it should display the M1 node that lists all the documents
of this type, with the possibility of adding a new document. The user changes the <new screen Title>
in “Twiit search” then presses the button "Add twiit".

13. The system opens the document "Twiit" and automatically fills in the fields "User" and "Time" with
the values of context. The user enters messages text and "Priority" and presses the button "Twiit it!"
which publishes the message.

14. The system returns a list of all twiits. At the top of the list shows the most recently added twiit. The
user selects the option "go back"

15. Once the user selects the Modeler option <Apply>, the application returns to the user mode and is
ready to share and use.

In the example it should be noted that to navigate through the application we use only the
elements of the application itself.

Figure 5: The complete process of generating an application using ADBE method

Composition of elementary ADBE solutions

Atomicity of the graph database provides another important property of ADBE solutions -
data sharing. While the M2 model is common to the whole system, in the M1 layer can be
stored a lot of elementary applications. These applications can be grouped into more complex
application in K1 layer. K1 layer applications then can be grouped together much more
complex applications in layer K2, etc. to the arbitrary level of complexity marked „m“. Figure
6 shows how to create a new application by using composing method. It should be noted that

because atomicity of the graph database, data on the M0 layer may also be composed into the
new group, which method would be equivalent to creating a view in the relational model, but
with the additional possibility of changing data.

Figure 6: Creating complex application by using composing method.

Future work

Although the complete infrastructure described in this paper have been implemented and used
in real-world applications, described ADBE approach is not fully developed in the part of
application modeling. Further research will try to find the most intuitive and efficient
solutions for the PBE approach. It involves the measurement of application creation efficiency
of the classical approach in comparison with ADBE approach. Figure 7 displays the
prediction of comparison diagram between classical application development approach and
ADBE approach across five different aspects: (1) process coverage, (2) speed of development,
(3) speed of implementation, (4) economic factor, and (5) ease of modification.

0

2

4

6

8

10

12

1 Coverage 2 Speed of Dev. 3 Speed of Impl. 4 Economic Factor 5 Ease of

Modification

Comparison Category

C
o

m
p

li
a

n
c

e

Inhouse Application
Development

Custom development by
Outer IT Company

Off the Shelf Application

ADBE

Figure 7: Comparison of classic design and ADBE

The expectation is that ADBE method will have a significant advantage over conventional
methods of development in all categories except for category (1) process coverage.

In addition, further research will focus on the implementation of BI tool that will be able to
enable the analysis of data stored in the graph database, assuming the frequent changes in data
structures. This tool should be able to use the structure of the data model of the M1 layer and
based on this information to offer the user options for analysis, also using PBE approach.
Once the user selects the desired option, the tool should allow fast searching of data stored in
the M0 layer.

Conclusion

IT has all the prerequisites to become a powerful driving force to improve business again. To
achieve the goal of modification of business processes through the modification of business
computer applications, it is necessary to provide a solution in which the business user with
average knowledge and skills in using IT could independently and efficiently change their
business applications, and thus the business process. For this become real, it is necessary to
simplify the programming process as much as possible. The user should not be even aware
that it is about programming. He just needs to show with an example what he needs done and
a computer program automatically does the rest in all aspects of an applications. ADBE is a
suggested procedure that combines the best of all methodologies developed so far for codeless
application development. It is described in the concept of the Superius G2 software system
that implements all of these principles.

Acknowledgements

This work is supported in part by the Croatian Ministry of Science, Education and Sport,
under the research project “Software Engineering in Ubiquitous Computing”.

References

[1] Jakupović, Alen; Pavlić, Mile, Measuring the Complexity of Business Organization and Business Software

Using Analytic Hierarchy Process (AHP). // Computer Technology and Application. 2 (2011) , 9; 736-747
[2] Jakupović, Alen; Pavlić, Mile. Procjena veličine poslovnih djelatnosti podržanih ERP rješenjima // CASE22

/ Polonijo, Mislav (ur.). Rijeka : CASE d.o.o, 2010. 51-57
[3] Fried, Jason, Rework / Jason Fried and David Hansson.--1st ed. eISBN: 978-0-307-46376-0
[4] Ramljak Darije,Dinamički prilagodljivi poslovni procesi kroz BPM i SOA koncepte// CASE22 / Polonijo,

Mislav (ur.). Rijeka : CASE d.o.o, 2010. 5-10
[5] Srbljić, Siniša; Škvorc, Dejan; Skrobo, Daniel, Widget-Oriented Consumer Programming. // Automatika :

časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije. 50 (2009) , 3-4; 252-264
[6] Halbert, Daniel, 1984. Programming by example. Ph. D. diss. University of California, Berkeley
[7] Lieberman, Henry, Your wish is my command: programming by example, p.cm. ISBN 1-55860-688-2
[8] The UML Metamodel, [Online] http://umlbase.com/learn/fundamentals/the-uml-metamodel/
[9] D. Dori, Object-process methodology: a holistics systems paradigm. Springer, 2002, no. s. 1.
[10] N. Tankovic, D. Vukotic, and M. Zagar, “Executable graph model for building data-centric applications,” in

Information Technology Interfaces (ITI), Proceedings of the ITI 2011 33rd International Conference on,
june 2011, pp. 577 –582.

[11] Vukotić, Dražen, Tanković, Nikola. Alati za razvoj aplikacija bez kodiranja // CASE23 / Polonijo, Mislav
(ur.). Rijeka : CASE d.o.o, 2011. 15-22

