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Abstract: The paper describes practical method for analyzing 
the economic dispatch of a power system using Lagrange 
multiplier method regarding Kuhn-Tucker conditions, without 
taking into consideration the transmission limitations and 
losses. The example describes nine thermal generators with 
different fuel cost functions. Generator curves are represented 
with quadratic fuel cost functions and with simplified, linear 
model. Optimal solution of power output from each generator is 
presented, regarding both cost functions in correlation to 
different values of load demand. The possibility of using 
described simplified cost functions in active distribution 
network is also suggested. 
Keywords: lagrange multiplier, economic dispatch, cost 
function, optimization 
 

1.  INTRODUCTION 
 
The decentralization of the electric power system 

with steady growth of demand for power and public 
pressure to reduce greenhouse gas emissions are reasons 
for increased use of distributed generation (DG). DG has 
a significant impact on the overall system operation and 
control especially when different DG units and storage 
devices are combined. In order to obtain an economically 
optimal operation of these units, a mathematical model 
and optimization is needed [1]. 

Optimization is finding the precise solution, of many 
existing solutions, that fulfills the maximum conditions, 
from one specific and established point of view. If that 
particular goal is oriented towards the economic domain, 
economic optimum represents that situation or state of 
economy that assures the highest efficiency [2]. 
Economic dispatch, as part of unit commitment, 
represents the scheduling of generators to minimize the 
total operating cost. Mathematically, it can be stated as a 
constrained optimization problem. In solutions to 
constrained problems the goal is to find a m vector of 
choice variables P which minimizes f(P) subject to: 
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In above equations, we have n inequality constraints 
and r equality constraints. Nonlinear constrained 
optimization is referred to as nonlinear programming [3]. 

There are many ways for defining the operating state 
of generators. The main goal is to include as many 
variables as possible that effect operational costs, such as 
the generator distance from the load, type of fuel, load 
capacity and transmission line losses.  

The generator cost is typically represented by four 
curves: fuel cost, heat rate, input/output (I/O) and 

incremental cost. Generator curves are generally 
represented as cubic or quadratic functions and piecewise 
linear functions. Thermal power plant uses a quadratic 
fuel cost function such as the Fuel Cost Curve [4]: 
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where i = unit number (generator); Ci = operating cost of 

unit; PGi = electrical power output (power generation) of 

a unit i; a, b and c = fuel cost coefficients of unit i. The 

fuel cost curve allows us to look at a wide range of 

economic dispatch practice such as total operating cost of 

a system, incremental cost and minute by minute loading 

of a generator. The fuel cost function becomes more non-

linear when the actual generator response is considered. 

Quadratic and naturally, cubic cost functions more 

accurately models the actual response of conventional 

thermal generators where fuel is oil, coal and gas, but 

also diesel generators, gas micro turbines, biomass power 

plants, fuel cells, etc [5]. Energy sources such as solar, 

wind and hydro are not included because the fuel that 

drives its power generation is without price.  

The main elements that are used to define the cost of 

electrical energy generation are: operating costs, facility 

construction and ownership cost [4]. The operating cost 

is the most significant one and it is dominated mostly by 

the fuel cost. The aim of power system economic 

dispatch is to maximize system efficiency and minimize 

system losses that can’t be billed or pass on to customers. 

Input/output test and calculations are used to provide 

system performance data in the form of input and output 

equations. I/O curves are primarily used in the 

calculation of the total incremental cost. Incremental cost 

is the inclination of the fuel cost curve and it represents 

the cost of next unit of energy from that generator at a 

specific output level PGi of the i
th

 generator. In short, it 

describes how much it will cost to operate a generator to 

produce an additional unit of power. 
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Most economic dispatch algorithms when subjected 

to equality and inequality constraints use Lagrange 

multipliers to set up the optimization problem [6]. 

Several standard search techniques like lambda iteration 

method [4], gradient search method, the Newton 

Raphson iteration method, secant method [7] and linear 

programming have been developed to solve comparable 

optimization problems. Nevertheless, these methods have 

certain limitations on solving constrained optimizations.  
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2.  PROBLEM FORMULATION 
 
Problem formulation is to find the optimal output Pi 

to minimize the cost of power generation from nine 

generators with different cost functions to supply specific 

load demand PGD. The objective function to minimize is: 
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Cost function coefficients of nine generators 

according to (3) and generator output limits (constraints) 

are presented in table 1. The original data are from [7], 

[8] and [9]. The units are arranged by size, according to 

their minimum and maximum constraints, the smallest 

one first. 

The condition that the total load be equal to specific 

power demand PGD is an equality constraint because: 
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The power output of any generator must not exceed 

its rating nor drop below a given value for stable 

operation. In minimizing cost of generating electrical 

power without compromising system reliability and 

market security, inequality constraints of each generator 

must also be defined: 
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The upper boundary Pi
max

 is directly related to upper 

rating of the generator while lower boundary Pi
min

 is 

directly linked to thermal consideration that is required to 

maintain the steam which drives the turbine (table 1). 

In the following theoretical development, we convert 

all constraints to equalities. In order to do so, we add an 

appropriate non-negative slack variables yi
2
 and xi

2
, the 

values of which are yet unknown [3]. Converting all 

defined inequalities to equalities, one gets: 
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where yi and xi are artificially introduced variables. 

In order to minimize f(P), we minimize the Lagrange 

function defined as: 
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where λ is a vector of Lagrange multipliers for 

inequalities, and β is a vector of Lagrange multipliers for 

equalities. In order to minimize our objected function (5), 

we minimize the Lagrangian function obtained as: 
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where λ, βi
min

 and βi
max

 are the Lagrange multipliers 

associated with the constraint of total demand, minimum 

and maximum output from the generators.  

Unit 

i 

Cost function coefficients Constraints 

ai bi ci Pi
min[MW] Pi

max[MW] 

1 24.3891 25.5472 0.02533 2.4 12 

2 117.7551 37.5510 0.01199 4 20 

3 100 6 0.005 7 28 

4 660 25.92 0.00413 10 55 

5 300 8 0.0025 14 56 

6 81.1364 13.3272 0.00876 15.2 76 

7 500 10 0.002 20 84 

8 217.8952 18 0.00623 25 100 

9 680 16.5 0.00211 20 130 

Tab. 1. Cost functions coefficients and constraints of 9 generators 

The Kuhn-Tucker necessary condition requires that 

the gradient of L be zero [3]. Hence, we want: 
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In order to satisfy the (11), the vector to be solved for 

is: 
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3.  DISCUSSION OF RESULTS 
 
Matlab software is a fundamental tool that is often 

used to solve power system problems and at it will be 

used to solve this one as well. The results are presented 

in table 2.  

According to the optimization results, all generators 

tend to give output as close to its minimum or maximum 

as possible. Total load must be equal to specific demand 

according to (6). The first Lagrange multiplier λ 

associated with equality constraint increases along with 

specific demand.  

It is interesting to observe the Lagrange multipliers β 

and their relation to the slack variables and generator 

output levels. First we will examine the values of  βi
min

 in 

relation to the associated values of yi, at chosen load 

demand of 300 MW. All generator outputs are above 

their lower constraints except generators “4” and “9”. 

Consequently, all yi, except y4 and y9 are nonzero, and the 

square of their values is equal to the generator output in 

order to satisfy (8). However, since generators “4” and 

“9” are held at theirs lower limit, y4 = y9 = 0. The values 

of βi
min

 associated with values of yi portray the effect of 

relaxing the lower limit associated with these constraints 
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[3]. Since all other generators are above their lower 

limits, increasing the lower limit from zero will not make 

any difference to the value of (5), hence, the value of β
min

 

associated with all generators but “4” and “9” is zero.  

 Load demand for quadratic cost functions 

i 180 [MW] 
220 

[MW] 
300 [MW] 350 [MW] 450 [MW] 550 [MW] 

PG1 12.00 12.00 12.00 12.00 12.00 12.00 

PG2 10.05 14.85 20.00 20.00 20.00 20.00 

PG3 28.00 28.00 28.00 28.00 28.00 28.00 

PG4 10.00 10.00 10.00 19.67 54.19 55.00 

PG5 24.38 46.59 56.00 56.00 56.00 56.00 

PG6 30.55 43.55 64.70 76.00 76.00 76.00 

PG7 20.00 20.00 47.55 66.28 84.00 84.00 

PG8 25.00 25.00 41.74 52.04 99.81 100.00 

PG9 20.00 20.00 20.00 20.00 20.00 119.00 

total 180 220 300 350 450 550 

y1 3.10 3.10 3.10 3.10 3.10 3.10 

y2 2.46 3.29 4.00 4.00 4.00 4.00 

y3 4.58 4.58 4.58 4.58 4.58 4.58 

y4 0.00 0.00 0.00 -3.11 6.65 6.71 

y5 3.22 5.71 6.48 6.48 6.48 6.48 

y6 3.92 5.32 7.04 7.80 7.80 7.80 

y7 0.00 0.00 5.25 6.80 8.00 8.00 

y8 0.00 0.00 4.09 5.20 8.65 8.66 

y9 0.00 0.00 0.00 0.00 0.00 9.95 

x1 0.00 0.00 0.00 0.00 0.00 0.00 

x2 3.15 2.27 0.00 0.00 0.00 0.00 

x3 0.00 0.00 0.00 0.00 0.00 0.00 

x4 6.71 6.71 6.71 5.94 0.90 0.00 

x5 5.62 3.07 0.00 0.00 0.00 0.00 

x6 6.74 5.70 3.36 0.00 0.00 0.00 

x7 8.00 8.00 6.04 4.21 0.00 0.00 

x8 8.66 8.66 7.63 6.92 0.43 0.00 

x9 10.49 10.49 10.49 10.49 10.49 3.32 

λ 496.57 678.18 980.10 1171.6 2076.6 2673.4 

β1
min 0.00 0.00 0.00 0.00 0.00 0.00 

β2
min 0.00 0.00 0.00 0.00 0.00 0.00 

β3
min 0.00 0.00 0.00 0.00 0.00 0.00 

β4
min 423.04 241.43 -60.48 0.00 0.00 0.00 

β5
min 0.00 0.00 0.00 0.00 0.00 0.00 

β6
min 0.00 0.00 0.00 0.00 0.00 0.00 

β7
min 204.23 22.62 0.00 0.00 0.00 0.00 

β8
min 175.22 -6.39 0.00 0.00 0.00 0.00 

β9
min 514.27 332.66 30.75 -160.7 -1065.8 0.00 

β1
max 161.94 343.55 645.46 836.95 1742.0 2338.8 

β2
max 0.00 0.00 106.52 298.01 1203.0 1799.8 

β3
max 224.65 406.26 708.18 899.66 1804.7 2401.5 

β4
max 0.00 0.00 0.00 0.00 0.00 575.29 

β5
max 0.00 0.00 224.26 415.74 1320.78 1917.5 

β6
max 0.00 0.00 0.00 26.98 932.02 1528.8 

β7
max 0.00 0.00 0.00 0.00 722.51 1319.3 

β8
max 0.00 0.00 0.00 0.00 0.00 593.18 

β9
max 0.00 0.00 0.00 0.00 0.00 0.00 

Tab. 2. Power generation of PGi for quadratic cost function of                
a generator 
 

Power generation of each generator in correlation to 

specific load demand is shown in Fig. 1. Generators “1”, 

“3”, “4” and “5” operate at their upper limit and all other 

generator operate below their upper limits. Therefore x1 

= x3 = x4 = x5 = 0 in order to satisfy (9). The values of 

associated βi
max 

(i = 1, 3, 4, 5) indicates the sensitivity of 

(5) to the relaxation of related generator output PGi [3]. 

For other generators which are operating below their 

upper limits, the values of x are equal to the square root 

of the difference between the upper limit and the 

generator output. Consequently, the values of  βi
max 

for 

these generators are zero. The defined cost functions are 

quadratic. If we are unable to precisely determine the 

coefficient c in our cost functions, we can simplify the 

cost function by letting the coefficient ci tend to zero and 

therefore making the function linear. 
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Fig 1. Power generation of each unit in correlation to specific demand 

for quadratic cost function 

 

With these simplified cost functions we carry out the 

minimization procedure. The computed results of PGis 

and the differences between quadratic cost function and 

simplified model are presented in table 3. This time 

Lagrange multipliers λ, βi
min

 and βi
max

 and variables yi and 

xi are not incorporated. 

The generators no longer tend to give output as close 

to its minimum or maximum. For example, the generator 

“8”, at specific demand of 450 MW, with quadratic cost 

curve has output very close to maximum (99,8142 MW), 

while at simplified method, its output value is           

78,65 MW. For generator “4”, same thing happens: at 

specific demand of 450 MW, with quadratic cost curve 

has output very close to maximum (54,186 MW), while 

at simplified method, its output value is 37,56 MW. 

Since total demand of 450 MW must be obtained, the 

difference in output takes on generator “9”: with 

quadratic cost curve its output is minimal (20 MW), 

while at simplified method, its output value is           

57,79 MW.  

 Load demand for simplified cost functions 

i 
180 

[MW] 
220 

[MW] 
300 

[MW] 
350 

[MW] 
450 

[MW] 
550 

[MW] 

PG1 12 12 12 12 12 12 

PG2 9.990 14.690 20 20 20 20 

PG3 28 28 28 28 28 28 

PG4 10 10 10 10 37.560 55 

PG5 24.11 46.172 56 56 56 56 

PG6 30.90 44.138 66.214 76 76 76 

PG7 20 20 46.359 72.211 84 84 

PG8 25 25 41.427 55.789 78.648 100 

PG9 20 20 20 20 57.792 119 

total 180 220 300 350 450 550 

Tab. 3. The computed results of PGis  
 

When demand for power generation is low, the 

differences are non-significant, regardless the generator’s 

output. As we are approaching higher level of power 

demand, the differences in generator’s output increases, 

the distribution of power generation is changing. 

In Fig. 3. the differences for generator 6, 7 and 8 are 

presented. The solid lines represent curves with quadratic 

cost function while broken lines represent curves of the 

simplified model. 
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for simplified cost function 

 Related differences PGi - PGis 

i 
180 

[MW] 

220 

[MW] 

300 

[MW] 

350 

[MW] 

450 

[MW] 

550 

[MW] 

1 0 0 0 0 0 0 

2 0.0654 0.164 0 0 0 0 

3 0 0 0 0 0 0 

4 0 0 0 9.675 16.625 0 

5 0.273 0.422 0 0 0 0 

6 -0.338 -0.586 -1.513 0 0 0 

7 0 0 1.199 -5.931 0 0 

8 0 0 0.314 -3.744 21.166 0 

9 0 0 0 0 -37.792 0 

Tab. 4. Related differences between generator outputs 
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4. CONCLUSION 

 
The paper describes a method for analyzing the 

economic dispatch of a power system using Lagrange 
multiplier method regarding Kuhn-Tucker conditions on 
quadratic cost functions and simplified model, where 
quadratic function becomes linear, without taking into 
consideration the transmission limitations and losses, in 
order to supply a specific load demand. The optimal 
solution in generators output obtained from simplified 
model is not the same as the optimal solution obtained 
from the exact quadratic fuel cost function. At lower 
values of specific load demand the differences are not 
significant, but at higher demand values the power 
generation distribution is considerably different, 
especially at larger units. It can be concluded that for 
higher load demand values we must use as accurate 
polynomial equations as possible, but for lower load 
demand values we can use simplified, linear model.  

Due to rapid load growth and continuous depletion of 
fossil fuel reserve, most are looking for non-conventional 
energy sources as an alternative. One of the solutions is 

generating power locally at distribution voltage level and 
thus creating an active distribution network with the 
possibility of combining multiple and diverse power 
sources, especially renewable intermittent energy 
resources like solar, wind and small hydro with non-
intermittent ones (gas micro turbines, diesel generators, 
fuel-cells, biomass thermal power plants etc.). 

In presented analysis it is shown that generators tend 
to operate as close to its constraints, regardless the load 
demand value. By combining different power sources we 
are able to use their intermittent characteristic to our 
advantage. Generators with non-intermittent power 
sources will mainly operate at maximum output when 
there is no wind, Sun or water and we can use simplified 
method. In situation when power generation from 
intermittent power sources are at maximum output, the 
generator with non-intermittent power sources will likely 
be at its minimum or close to its lower limits, which 
allows as again, to use simplified method.If we use 
presented simplified linear model we can more easily 
find and compare the costs of next unit of energy from a 
generators at given output levels, because incremental 
cost for all power sources is then a constant. Defining 
optimum solutions for combined use of power generators 
regarding working conditions, facility construction, 
ownership costs and energy efficiency both electrical and 
heat, are elements for further research. 
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