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Background: Babesia infections in dogs can result in a wide range of clinical and laboratory presentations, including

coagulopathy. Expression of intercellular adhesion molecule-1 (ICAM-1) and von Willebrand factor (vWF) in dogs with

babesiosis is unknown.

Objectives: Whether inflammation in babesiosis triggers activation of ICAM-1 and the coagulation system.

Animals: Twelve and 10 dogs with naturally occurring babesiosis before and after antiparasitic treatment, respectively,

were compared with 10 healthy dogs.

Methods: In this prospective study, diagnosis was made by blood smear examination and confirmed by PCR.

C-reactive protein (CRP), soluble intercellular adhesion molecule 1 (sICAM-1), and von Willebrand factor (vWF) levels

were measured by a canine ELISA kit, fibrinogen (FIB) and factor VIII activity levels were measured by coagulometric

methods, and blood cell counts (WBC, RBC, PLT) were determined with an automatic analyzer.

Results: Compared to healthy dogs, the CRP, sICAM-1, and FIB concentrations were significantly increased before

therapy and remained high for 3 days after therapy in dogs with babesiosis. vWF activity was significantly decreased in

dogs with babesiosis before treatment. FVIII activity did not differ between dogs with babesiosis and healthy dogs. WBC;

RBC and PLT were significantly lower before treatment and normalized by 3 days after treatment.

Conclusion and Clinical Importance: A proinflammatory condition in babesiosis appears to influence endothelial

dysfunction and hemostatic activity. Although clearly beneficial for the parasite, sequestered blood cells can obstruct blood

flow in small vessels, promote an inflammatory state, and could increase the severity of babesiosis.
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Babesia canis is an intraerythrocytic protozoan
parasite that is transmitted by ticks and by trans-

fusion to dogs. Babesiosis in dogs is a common disease
with a worldwide distribution1–4 and a high and
increasing prevalence in Croatia.5,6 In addition, babesi-
osis is becoming more frequently diagnosed in humans,
as animal reservoirs and tick vectors have increased in
number and humans have inhabited areas where reser-
voir and tick populations are high.7,8 Babesia parasites
in dogs can result in a wide range of clinical presenta-
tions that range from a mild, subclinical illness to
complicated forms and death.6,9

Hematologic changes play an important role in the
pathogenesis of babesiosis,5–8 which involves an acute-
phase response that is triggered by the overproduction
of inflammatory mediators.10–12

Coagulation and inflammation are closely related
parts of the host defense mechanism, and inflamma-
tion is known to promote coagulation.13,14 Loss of the
structural and functional integrity of the endothelium
leads to endothelial dysfunction, which reduces the
endothelial capacity to maintain homeostasis and leads
to the development of pathological inflammatory pro-
cesses and vascular disease.15 Endothelial dysfunction
results in hemostatic activation, inflammation, and
vasoconstriction.16 Although previous studies have
identified an association between C reactive protein
(CRP) and endothelium-dependent vascular reactivity,
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Abbreviations:

AvWS acquired von Willebrand syndrome

CAM cell adhesion molecule

CRP C reactive protein

EC endothelial cells

ELAM endothelial leukocyte adhesion molecule

FIB fibrinogen

FVIII factor VIII

ICAM intercellular adhesion molecule

PLT platelets

pRBC parasitized red blood cells

RBC red blood cells

VCAM vascular cell adhesion molecule

VWD von Willebrand disease

vWF von Willebrand factor

WBC white blood cells
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it remains unclear whether the association is a conse-
quence of a primary pathological trigger or an endo-
thelial disturbance.16,17

From a biological perspective, changes in cellular
adhesive properties are important for Babesia para-
sites. Infected red blood cells (RBC) show increased
adhesive properties for different cell types, including
vascular endothelial cells, resulting in their accumula-
tion in different organs, probably to avoid destruction
in the spleen.18–20 However, the precise molecular
mechanisms of this process are still unclear. In addi-
tion, adhesion molecules likely play an important role
in tissue damage secondary to the inflammatory
response.21,22 Few comparative studies have been per-
formed on Babesia parasites, and the molecular mech-
anisms that underlie the pathogenesis of babesiosis in
dogs remain virtually unknown.

Given previous observations of alterations of the
inflammatory response and the hemostatic system dur-
ing babesial infection,3,23,24 we hypothesized that
inflammation in babesiosis might be associated with
the enhanced expression of cell adhesive molecules and
endothelial activation. The aim of the present study
was to assess the levels of inflammation, coagulation
activation, and endothelial stimulation in dogs with
babesiosis, before and after antiparasitic treatment,
and to compare the results with healthy controls.

Materials and Methods

Dogs with babesiosis admitted to Sesvete Veterinary Station

were eligible for prospective enrollment in the study. Samples of

blood were obtained before (n = 12) and the 3rd day after

(n = 10) intramuscular treatment with imidocarb dipropionate

(6 mg/kg). The diagnosis of babesiosis infection was made by

direct observation of large piroplasms in stained blood smears,

which were recognized as large species. Polymerase chain reaction

analysis confirmed the presence of B. canis subspecies in all

dogs.25 The number of parasitized RBCs (pRBCs) was deter-

mined by microscopy examination before and after treatment.

Before the treatment, the average pRBC number was 71 9 109/L

(range, 1 9 109/L to 378 9 109/L). After the treatment, parasites

were not detectable in peripheral blood smears.

The control group consisted of 10 healthy dogs. At the time of

enrollment, none of the healthy dogs had histories of previous

clinically relevant illness. Routine hematologic and biochemical

analyses were performed, and all of the obtained results were

within reference ranges.

Blood was collected with an 18-g needle by jugular venipunc-

ture, using the Vacutainer blood collection system.a Blood sam-

ples were drawn atraumatically and without stasis into EDTA,

serum, and trisodium citrate (0.011 mol/L) tubes. Serum samples

were centrifuged (1,500 9 g at 4°C for 10 minutes), within

2 hours of collection. Citrated blood samples were centrifuged

(2,000 9 g at 4°C) and plasma and serum were stored at �80°C
before analysis.

The hematologic parameters were analyzed on automatized

hematology analyzer.b CRP and soluble intercellular adhesion

molecule (sICAM) were measured in serum, using ELISA canine

kit.c von Willebrand factor (vWF) detection in citrated plasma

was carried out using the ASSERACHROM “STA LIATEST

vWF immunoassay detection kit.”d Standards, controls and sam-

ples are pipetted into the wells of a microtiter plate precoated

with specific antibodies. After plate washing, an enzyme linked

antibody was added, and the enzyme reaction was measured by

optical density. All ELISA tests were performed in duplicate. We

analyzed the multimeric structure of vWF in plasma by low reso-

lution SDS-agarose gel electrophoresis,e followed by electroblot-

ting on nitrocellulose and imunoenzyme luminiscence detection.

The VWF multimers analysis was used for determination of vWF

multimers in 3 healthy dogs and 3 dogs with the lowest vWF

activity. The 1-stage clotting assay for factor VIII (FVIII) and

fibrinogen were performed on the ACL 7000 analyzerf using

reagents from that manufacturer, i.e., HemosIL SynthASil aPTT

reagent, FVIII-deficient plasma and calibration plasma obtained

from 10 healthy dogs. Fibrinogen concentration was determined

using the thrombin clotting time, where the time taken for the

patient’s sample to clot is compared to a standard canine curve.

The Mann–Whitney test was used to identify statistically sig-

nificant differences between the healthy and infected populations.

Differences with a P-value <.05 were considered statistically sig-

nificant. All statistical analyses were performed with the Statistica

8 for Windows software program.g The results in dogs infected

with babesiosis, before (B0) and after treatment (B3) with imido-

carb dipropionate, were compared with those in healthy dogs

(controls). All levels of significance were P < .01, and are indi-

cated in the relevant figures by *.

Results

Significantly increased concentrations of fibrinogen
(mean 6.3 g/L, control 2.5 g/L), CRP (mean 154 mg/L,
control 1.4 mg/L), and sICAM-1 (mean 0.450 mg/L,
control 0.180 mg/L) were evident in dogs with babesiosis
before the treatment as compared to healthy dogs. These
concentrations remained significantly increased for
3 days after antiparasitic treatment, when parasites were
not present in the circulation (mean fibrinogen 5.3 g/L,
mean CRP 50 mg/L, and mean sICAM-1 0.238 mg/L)
(Figs 1–3).

Before treatment, dogs with babesiosis showed signifi-
cantly lower vWF activity levels (B0 mean 35%, control
59%) than those of healthy dogs. Although the vWF
activity was still low at 3 days after treatment, there was
no statistical difference compared to healthy dogs (B3
mean 44%, control 59%) (Fig 4). In the 3 healthy dogs
that were tested, the high, middle, and low molecular
weight (MW) forms of vWF were observed. In contrast,

Fig 1. Concentrations of fibrinogen in babesiosis before treat-

ment (B0) and on day 3 after treatment (B3) compared with con-

trol, healthy dogs (*P < .01).
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the 3 dogs with the lowest vWF activity levels (15, 8, and
4%) showed a complete absence of high MW multimers.
The FVIII activity did not differ between animals with
babesiosis and healthy animals (B0 mean 86%, B3 mean
90%, control 91%) (Fig 5).

The numbers of RBCs, WBCs, and PLTs were
significantly lower before treatment and normalized by
3 days after treatment (Table 1).

Discussion

Consistent with previous reports,2,10,11 the dogs in this
study displayed excessive proinflammatory activity with
significantly increased concentrations of CRP and fibrin-
ogen. The levels of these 2 proteins remained signifi-
cantly high for 3 days after treatment. Numerous studies
have reported the occurrence of hyperfibrinogenemia as
an acute-phase protein reaction in dogs with babesio-
sis.12,26–28 Increased fibrinogen concentration indicates
activation of the coagulation system and potential fibrin

Fig 2. Concentrations of C reactive protein in babesiosis before

treatment (B0) and on day 3 after treatment (B3) compared with

control, healthy dogs (*P < .01).

Fig 3. Concentrations of soluble intercellular adhesion molecule

1 in babesiosis before treatment (B0) and on day 3 after treat-

ment (B3) compared with control, healthy dogs (*P < .01).

Fig 4. Activity of von Willebrand factor in babesiosis before

treatment (B0) and on day 3 after treatment (B3) compared with

control, healthy dogs (*P < .01).

Fig 5. Activity of factor VIII in babesiosis before treatment

(B0) and on day 3 after therapy (B3) compared with control,

healthy dogs (*P < .01).

Table 1. WBC, RBC, and PLT in dogs with babesio-
sis before treatment (B0) and the 3rd day after treat-
ment (B3) compared with control, healthy dogs.

n Mean Median Range

WBC (9109/L)

B0* 12 6.2 5.4 2.9–10
B3 10 14 12 8.7–19
Control 10 10 11 6.1–16

RBC (91012/L)

B0* 12 6.1 6.1 4.5–8.1
B3 10 7.2 7.2 5.3–8.4
Control 10 7.3 7.1 6.8–8.3

PLT (9109/L)

B0* 12 99 95 59–145
B3 10 148 149 89–210
Control 10 207 171 121–368

WBC, white blood cells; RBC, red blood cells; PLT, platelets.

*P < .01.
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formation.12 High fibrinogen might interfere with the
antigen binding of antibodies,29 which can suppress
the immunologic system and prolong Babesia survival in
the circulation of dogs.

C reactive protein has been reported to be a suitable
but nonspecific marker of inflammation in dogs, which
can be used as a predictive marker for risk of disease
and to monitor the response to treatment.30,31 Upon
infection with Babesia parasite, the plasma concentra-
tion of CRP increased even before parasites were
detected in the blood.12 As proinflammatory factors,
CRP and fibrinogen could lead to the upregulation of
ICAM-1. CRP influences the activation of ECs and
the expression of adhesion molecules, whereas fibrino-
gen promotes fibrin formation.31,32 Fibrin and its
cleavage products upregulate ICAM-1 production in
ECs, providing a link between fibrin deposition and
adhesion molecule expression, which might subse-
quently lead to leukocyte accumulation and transendo-
thelial extravasation.33–35

Intercellular adhesion molecule-1 is cytokine-induc-
ible glycoprotein belonging to the immunoglobulin
superfamily. It is constitutively expressed on vascular
ECs and is upregulated in response to various stimuli,
including cytokines, during inflammation.36,37 Cell-
bound ICAM-1 can be released from the surface;
therefore, increased serum concentrations of sICAM-1
indicate systemic endothelial activation.37 In the pres-
ent study, dogs with babesiosis before and 3 days after
antiparasitic treatment showed significantly increased
sICAM-1 compared to the healthy control dogs.

As a proinflammatory factor, CRP has direct effects
on EC activation, causing the expression of adhesion
molecules.38 The results obtained in human studies
support the hypothesis that the induction and interac-
tion of adhesion molecules are the main mechanisms
in CRP-induced chemokine secretion.39 Increased body
temperature in dogs with babesiosis can also induce
the expression of ICAM-1.40 The pathogenesis of
human babesiosis is closely linked to the host response
to infection and parasite-induced modifications in the
erythrocyte membrane, where ICAM-1 is upregulat-
ed.41 Some Babesia species export proteins to the sur-
face of infected erythrocytes, resulting in the adherence
of these erythrocytes to the vascular endothelium and
in their delayed clearance by the spleen. This mecha-
nism is widely considered to protect invaded cells from
entrapment and destruction in the spleen, and to
maintain the microaerophilic parasites in a relatively
hypoxic environment.1,18,42

The adhesion of infected RBCs to the endothelium
can lead to a blockade of the microcirculation and
the local proliferation of parasites, which may further
increase parasitemia.1,8,43 Sequestered RBCs can
obstruct blood flow in small vessels, resulting in a
local increase in the inflammatory cytokine concentra-
tion and an increase in disease severity.44 Despite
intense research in human medicine, the role of adhe-
sion molecules in the activation pathways of hemosta-
sis and inflammation in dogs requires additional
investigation.

The endothelial dysfunction, interaction of blood
cells with the endothelium, and activation of the coag-
ulation cascade secondary to an acute-phase response
may serve as triggers of hemostasis disturbances.11,12,27

As an essential part of primary hemostasis, vWF is a
useful marker for EC activation, functioning as both a
FVIII carrier and a PLT-vessel wall mediator in the
blood coagulation system.45–47 The vWF protein is
secreted by 2 pathways: 1 pathway is continuous and
does not require cellular stimulation, and the other is
regulated and is responsive to different stimuli.46,48

Several factors influence vWF activity, including the
acute-phase response and enzymatic proteolysis. The
inflammatory state results in an increase in plasma
vWF activity.46,49,50

In contrast to our expectations, the vWF activity in
dogs before antiparasitic treatment was significantly
decreased compared to healthy dogs, even with evi-
dence of an inflammatory state. In addition, in the 3
dogs with the lowest vWF activity, multimeric analysis
showed a complete absence of large vWF multimers.
The FVIII activity of the infected dogs did not differ
from that of healthy dogs. Analyses of the vWF activ-
ity and the structure of the multimers in canine medi-
cine are frequently performed to diagnose von
Willebrand disease, which is characterized by an inher-
ited quantitative or qualitative deficiency of vWF.51,52

However, there is scant data concerning vWF activity
in other canine diseases. In contrast to von Willebrand
disease, which is an inherited disease, acquired von
Willebrand syndrome describes any qualitative, struc-
tural, or functional disorder of vWF that is not inher-
ited.53,54 Various pathogenic mechanisms have been
proposed as the cause of acquired von Willebrand syn-
drome in humans; these include the action of autoanti-
bodies, increased vWF clearance from the plasma, or
sequestration of high MW vWF multimers, which have
been demonstrated in patients with hematologic disor-
ders.55–57 Inflammation and the release of cytokines
during inflammation could influence the conversion
kinetics of hyper-reactive, ultralarge vWF multimers to
the smaller and less-active plasma forms of vWF.50,58

In addition, hypothyroidism could decrease synthesis
of otherwise normal vWF and cause acquired von
Willebrandt syndrome.59 Decreased thyroxine concen-
tration is recorded in dogs infected with B. canis,60 so
hypothyroidism could represent possible cause of
acquired von Willebrand syndrome in babesiosis.

Of the 3 blood cell types evaluated in this study,
PLTs were affected most dramatically by babesiosis
infection. The PLT numbers were significantly lower
before treatment and normalized by 3 days after treat-
ment. Because nearly all tick-borne infections in mam-
malian hosts, including babesiosis, can result in
thrombocytopenia,61 the PLT count is routinely tested
in dogs with babesiosis. If thrombocytopenia is not
present in dogs, then a diagnosis of babesiosis is not
probable.27,62–64 There are several possible explana-
tions for the observed decreased PLT count in dogs
with babesiosis before treatment. Splenomegaly, which
is associated with many tick-borne diseases, increases
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PLT sequestration and destruction by splenic macro-
phages.61 Consumptive coagulopathy is another possi-
ble explanation of thrombocytopenia in babesiosis.3,26

Autoantibodies to phosphatidyl-serine may contribute
to the thrombocytopenia seen in B. bovis infections.65

In addition, PLT-expressed lymphocyte function-asso-
ciated antigen (LFA)-1 can interact with ICAM-1 to
promote PLT binding to ECs. The adhered PLTs can
function as bridging molecules between the endothe-
lium and the pRBCs.36

Inflammatory processes induce leukocytosis and the
synthesis of acute-phase reactants. However, in this
study, compared to the healthy controls, the babesio-
sis-infected dogs before treatment displayed a signifi-
cantly decreased number of WBCs, which normalized
by 3 days after treatment. Neutropenia was previously
noted in babesiosis during the early phase of the dis-
ease before antiparasitic treatment.3,9,66 One mecha-
nism involved in leukopenia includes the ability of
PLTs, which bind with activated ECs, to interact with
leukocytes and induce their so-called “secondary cap-
ture.” The subsequent neutrophil-endothelial interac-
tion67 could contribute to the initial decrease in WBC
number before treatment and trigger vascular inflam-
mation. Leukocytes have the capability to bind with
ICAM-1 via receptors.36,67 Thus, ICAM-1 overexpres-
sion could contribute to the initial decrease in the
WBC count observed at the beginning of the disease
and mediate leukocyte transendothelial migration as
part of a cascade of molecular interactions.

We observed that the number of RBCs was signifi-
cantly lower before treatment and normalized after
treatment. Anemia, particularly hemolytic anemia, is
frequently reported in canine babesiosis. In this pro-
cess, erythrocytes are destroyed mainly because of the
action of autoantibodies, macrophage activity, splenic
sequestration, or as a result of glucose-6-phosphate
dehydrogenase deficiency.9,12,68 The binding of an
antierythrocyte antibody can lead to intra- or extra-
vascular hemolysis.69 The cytoadherence of
parasitized erythrocytes to EC receptors as a result of
ICAM-1 overexpression could represent an additional
mechanism for the fall in RBC number in Babesia
infections. However, this influence is probably minor
in babesiosis, given the very low number of circulating
parasites.

Our study had several limitations. The investigators
had no control over the disease process before the
dogs presented to the hospital. Only a small number
of animals were included in the study. Other markers
of endothelial dysfunction, such as vascular cell adhe-
sion molecule and endothelial leukocyte adhesion mol-
ecule, were not included in our analyses. Nevertheless,
despite these limitations, our results indicate that an
inflammatory response is associated with the endothe-
lial disturbances and hemostatic imbalances that are
observed in dogs with naturally occurring babesiosis.
The acute-phase protein reaction could have direct
effects on EC activation, causing the increased expres-
sion of ICAM-1, which can bind pRBCs, WBCs, and
PLTs via their receptors. The endothelial dysfunction,

interaction of blood cells with the endothelium, and
activation of the coagulation cascade secondary to an
acute-phase response may trigger hemostasis distur-
bances, contributing to the pathogenesis of babesiosis.
Thus, vascular effects could be an important patholog-
ical mechanism in this disease. However, the results of
this preliminary study should be verified by further
research.
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