### Multiple Conclusion Deductions in Classical Logic

Marcel Maretić

LAP 2013-09

### 1 Introduction

### 2 Multiple Conclusion Deductions

- 3 Proof search
- 4 Semantic version of analysis
- 5 Synthesis
- 6 First Order Logic

### 7 Conclusion

### 1. Introduction

Natural deductions are calculi with assumptions

- Lukasiewicz, Jaśkowski 1926.–1930.
- Gentzen 1933.–1935.
  - "ein Kalkül des natürlichen Schliessen"
  - "Untersuchungen über das logische Schliessen"

| Α | $A \rightarrow B$ | $A \wedge C$ |
|---|-------------------|--------------|
|   | В                 | C            |
|   | $B \wedge C$      |              |

### Linear Jaskowski-type (Fitch)

$$-A \rightarrow -B$$

$$B$$

$$-A \rightarrow -B$$

$$-A$$

$$-A$$

$$-B$$

$$B$$

$$B$$

$$A$$

$$B \rightarrow A$$

$$(-A \rightarrow -B) \rightarrow (B \rightarrow A)$$

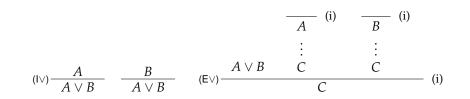
Example

Deduction of  $-B \rightarrow -A$  from  $A \rightarrow B$ .

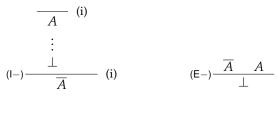
### Gentzen's NK calculus

introductions & eliminations

$$(I \land) - \frac{A \ B}{A \land B} \qquad (E \land) - \frac{A \land B}{A} - \frac{A \land B}{B}$$







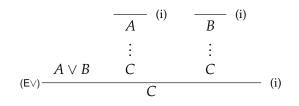


 $(\mathsf{TND})$   $\overline{A \lor \overline{A}}$ 

#### Features of NK "Local" and "global" inference rules

$$(\mathsf{I} \wedge) \underbrace{A \quad B}{A \wedge B}$$

vs.



Premisses (EV) are *deductions*, not formulae!

### **Redundant deductions**

motivation for normal form



#### Principle of inversion (Prawitz) About elimination following an introduction:

one essentially restores what had already been established

Equivalently:

No formula-node is a major formula of two consecutive inferences.

### Theorem 1.

*If*  $\Gamma \vdash A$  *in NK then there is a natural deduction of A from*  $\Gamma$  *that is in normal formal.* 

Gentzen's unpublished proof for NJ was found much later.

### LK — Logistischer Klasischer Kalkül Inference rules

$$(-\vdash) \frac{\Gamma \vdash A, \Delta}{\Gamma, \overline{A} \vdash \Delta}$$

$$(\vdash -) \frac{\Gamma, A \vdash \Delta}{\Gamma \vdash \overline{A}, \Delta}$$

$$(\land \vdash)$$
  $\frac{\Gamma, A, B \vdash \Delta}{\Gamma, A \land B \vdash \Delta}$ 

 $(\lor \vdash)$   $\frac{\Gamma, A \vdash \Delta \quad \Gamma, B \vdash \Delta}{\Gamma, A \lor B \vdash \Delta}$ 

$$(\vdash \land) \underbrace{ \begin{array}{c} \Gamma \vdash A, \Delta \quad \Gamma \vdash B, \Delta \\ \hline \Gamma \vdash A \land B, \Delta \end{array} }_{ \begin{array}{c} \end{array}}$$

$$(\vdash \lor) \frac{\Gamma \vdash A, B, \Delta}{\Gamma \vdash A \lor B, \Delta}$$

$$(\rightarrow \vdash) \underbrace{\Gamma \vdash A, \Delta \quad \Gamma, B \vdash \Delta}_{\Gamma, A \to B \vdash \Delta} \qquad (\vdash \rightarrow) \underbrace{\Gamma, A \vdash B, \Delta}_{\Gamma \vdash A \to B, \Delta}$$

### **Theorem 2 (Hauptsatz).** *Cut rule is eliminable in LK.*

Nice consequences:

- subformula property
- consistency
- Craig's lemma
- bottom-up proof search
- LK proof calculus is **analytic**

### Consistency

Derivation of empty sequent  $\vdash$ :

But there is no cut-free derivation of empty sequent (*cut is the only simplyfing rule*)

# 2. Multiple Conclusion Deductions

Kneale Critique of NK — Gentzen's natural deduction calculus for classical logic

Duality of  $\land$ ,  $\lor$  presents itself in symmetry of the pair:

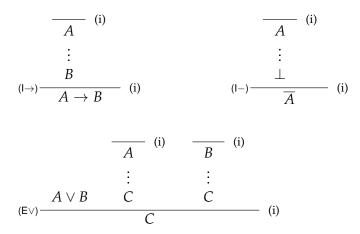
$$(\mathsf{I}\lor) \ \frac{A}{A\lor B} \quad \frac{B}{A\lor B} \qquad \qquad (\mathsf{E}\land) \ \frac{A\land B}{A} \quad \frac{A\land B}{B}$$

... but not in the other one:

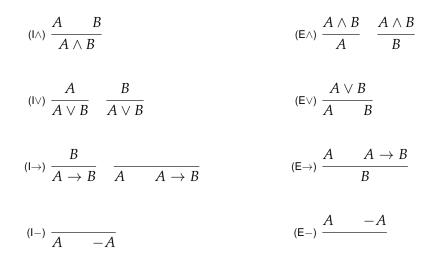
$$(I \land) \frac{A \ B}{A \land B} \qquad (E \lor) \frac{A \lor B \ C \ C}{C} \qquad (i)$$

### Kneale

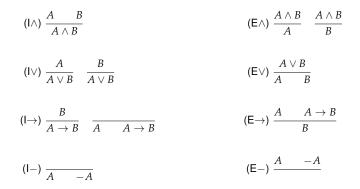
Hypothetical rules  $(I \rightarrow)$ , (I -),  $(E \lor)$  are complicated:



#### Kneale's Remedy Multiple Conclusion Inference Rules



#### Kneale's Remedy Multiple Conclusion Inference Rules



Note: major formulas are conclusions of introductions and premisses eliminations.

Proofs are formula trees. Instances of inference rules are building blocks of proofs.

$$A \to B \qquad A \qquad -A \lor B \\ \hline -A \qquad B \\ \hline A \to B \qquad A \qquad A \qquad A \qquad A \qquad A \rightarrow B$$

Proofs are branching up and down.

Kneale's "development"

$$A \to B \qquad A \qquad -A \lor B \\ \hline -A \qquad B \\ \hline A \to B \qquad A \qquad -A \qquad B \\ \hline A \to B \qquad A \qquad A \rightarrow B$$

proves 
$$-A \lor B \vdash_{\mathsf{KN}} A \to B$$
.

Building blocks are:

$$\frac{A \quad -A}{A \rightarrow B \quad A} \qquad \frac{A \quad -A}{-A \quad B} \qquad \frac{-A \lor B}{A \rightarrow B} \qquad \frac{B}{A \rightarrow B}$$

### Trees don't have cycles

Joining

$$\frac{A \lor B}{A \quad B} \quad + \quad \frac{A \quad B}{A \land B} \quad ?$$

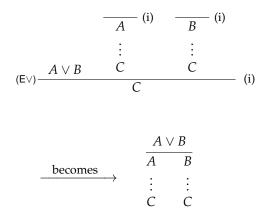
Certainly not

 $\frac{A \lor B}{\frac{A \land B}{A \land B}}$ 

Symmetry of dual  $\land$  and  $\lor$ :

$$(I \land) \ \frac{A \quad B}{A \land B} \qquad \qquad (E \lor) \ \frac{A \lor B}{A \quad B}$$

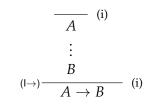
### What do we get with KN?



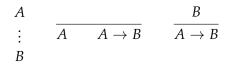
No discharging. All inferences are local.

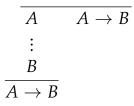
### What do we get with KN?

Kneale version of another hypothetical deduction:



is built from





**Theorem 3.** *KN is sound, but incomplete.* 

KN-unprovable tautologies:

- $\blacksquare \ (A \to A) \land (A \lor (A \to A))$
- distributive law:

 $A \lor (B \land C) \vdash (A \lor B) \land (A \lor C)$ 

Some (simple) cycles have to be allowed:

$$\frac{A}{A} = \frac{A}{A}$$
 and  $\frac{A}{A} = \frac{A}{A}$ .

For example:

$$\frac{\frac{A \lor A}{A}}{\frac{A}{A}}$$

•

We "borrow" NK-notation for discharging hypothesis. We'll "discharge" duplicate premisses (conclusions).

Ex:

| $(A \wedge B)$ | $\vee (A \wedge C)$           |
|----------------|-------------------------------|
| $A \wedge B$   | $A \wedge C$                  |
| $A_{(1)}$      | $\overline{\mathbf{M}_{(1)}}$ |

### MCD deduction of a formula unprovable in KN

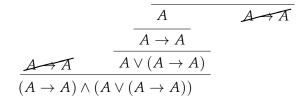
with contractions

$$\overbrace{(1)}{A \xrightarrow{A \xrightarrow{A}} A} (1)$$

$$(2) \underbrace{A \to A}_{(2)} \underbrace{A \to A}_{B} \underbrace{A \to A}_{(2)}$$

### MCD deduction of a formula unprovable in KN

with contractions



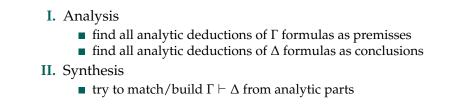
## 3. Proof search

### I. Analysis $\checkmark$

We can search for proofs in normal form. Top and bottom nodes are obvious pieces of the puzzle.

# I. Analysis ✓II. Synthesis

We can search for proofs in normal form. Top and bottom nodes are obvious pieces of the puzzle. Proof search sketch  $\Gamma \vdash \Delta$ 



We'll present such a procedure and prove it to be equivalent to tableaux method.

# Motivating Example $A \land B \vdash A \land B$

Proof search for  $A \land B \vdash A \land B$ :

Proof search for  $A \land B \vdash A \land B$ :

$$\frac{A \wedge B}{A} \qquad \qquad \frac{A \wedge B}{B} \qquad \qquad \frac{A \quad B}{A \wedge B}$$

Proof search for  $A \land B \vdash A \land B$ :

| $A \wedge B$ | $A \wedge$   | В            | Α | В |
|--------------|--------------|--------------|---|---|
| A            | В            | B            |   |   |
|              |              |              |   |   |
|              | $A \wedge B$ | $A \wedge B$ |   |   |
|              | A            | В            |   |   |
|              | A            | $\wedge B$   |   |   |

Algorithm 1: Analysis of *F* going down

input : non-atomic F

output: appropriate inference(s) with appropriate major formula *F*.

F



Algorithm returns all analytical deductions of *F* as premiss. (normal form, one major formula)

Example

 $\stackrel{\uparrow}{\boxed{X \to (Y \land Z)}}$ 

$$\frac{\uparrow}{[Y \land Z]} \\ \overline{X \to (Y \land Z)}$$

,

$$X \qquad X \to (Y \land Z)$$

$$\frac{\frac{Y \quad Z}{Y \wedge Z}}{X \to (Y \wedge Z)} \quad , \qquad \qquad \overline{X \quad X \to (Y \wedge Z)}$$

**Matching** – series of connections that yields  $\pi$  za  $\Gamma \vdash \Delta$  (premisses are in  $\Gamma$ , conclusions are in  $\Delta$ )

**Matching** – series of connections that yields  $\pi$  za  $\Gamma \vdash \Delta$  (premisses are in  $\Gamma$ , conclusions are in  $\Delta$ )

**N.B.** We don't get a necessarily minimal deduction, but we get one in normal form.

Connections are Intro-Elim.

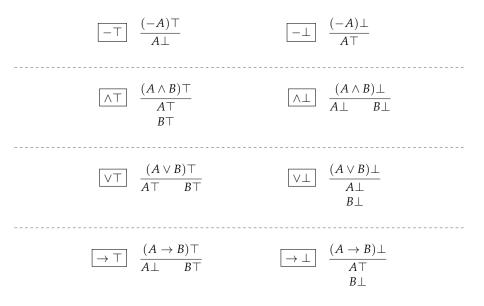
**Matching** – series of connections that yields  $\pi$  za  $\Gamma \vdash \Delta$  (premisses are in  $\Gamma$ , conclusions are in  $\Delta$ )

**N.B.** We don't get a necessarily minimal deduction, but we get one in normal form.

Connections are Intro-Elim.

# 4. Semantic version of analysis

#### TF semantic analysis



Let  $\pi$  be a.d. of *F* as premiss:

$$F, A_1, ..., A_n \vdash B_1, ..., B_m$$

( $A_i$  and  $B_j$  are atoms)

Let  $\pi$  be a.d. of *F* as premiss:

$$F, A_1, ..., A_n \vdash B_1, ..., B_m$$

( $A_i$  and  $B_j$  are atoms)

We get

$$F\top \models -A_1, ..., -A_n, B_1, ..., B_m.$$

Let  $\pi$  be a.d. of *F* as premiss:

$$F, A_1, ..., A_n \vdash B_1, ..., B_m$$

( $A_i$  and  $B_j$  are atoms)

We get

$$F\top \models -A_1, ..., -A_n, B_1, ..., B_m.$$

*F* implies clause

$$\{-A_1,\ldots,-A_n, B_1,\ldots,B_m\}.$$

Let  $\pi$  be a.d. of *F* as premiss:

$$F, A_1, ..., A_n \vdash B_1, ..., B_m$$

( $A_i$  and  $B_j$  are atoms)

We get

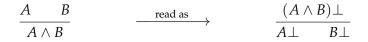
$$F\top \models -A_1, ..., -A_n, B_1, ..., B_m.$$

F implies clause

$$\{-A_1,..,-A_n, B_1,...,B_m\}$$
.

Atoms on top are  $\perp$ -marked. Atoms on the bottom are  $\top$ -marked.

#### Back to inference rules ...



" $(A \land B) \perp$  implies  $A \perp$  or  $B \perp$ ."

## Semantic Analysis with MCDs

$$(\wedge \bot) \frac{A \land B}{A \land B} \qquad (\wedge \top) \frac{A \land B}{A} \text{ and } \frac{A \land B}{B}$$
$$(\vee \bot) \frac{A}{A \lor B} \text{ and } \frac{B}{A \lor B} \qquad (\vee \top) \frac{A \lor B}{A B}$$
$$(\rightarrow \bot) \frac{B}{A \to B} \text{ and } \frac{A}{A \to B} \qquad (\rightarrow \top) \frac{A \land A \to B}{B}$$
$$(-\bot) \frac{A}{A - A} \qquad (-\top) \frac{A - A}{B}$$
$$Introductions$$
$$Eliminations$$

#### Theorem 4.

*All analytic deductions of*  $F \top$  *determine logically equivalent clausal form of F*.

By analogy  $F \perp$  gets clausal form for -F.

# 5. Synthesis

## What about the connection?

(of two analytic deductions)

Let  $\mathcal{L}$  and  $\mathcal{M}$  denote clauses belonging to deductions that can be matched through A.

$$Z_1 \models \mathcal{L}, A$$
$$Z_2 \models \mathcal{M}, -A$$

After connecting

$$Z_1, Z_2 \models \mathcal{L}, \mathcal{M}$$
.

(A is eliminated ("resolved"))

**Resolution:** 

$$\frac{\mathcal{M}, A \quad \mathcal{N}, \overline{A}}{\mathcal{M}, \mathcal{N}}$$

(Clause  $\mathcal{M}, \mathcal{N} = \mathcal{M} \cup \mathcal{N}$  is **resolvent** of clauses  $\mathcal{M}, A = \mathcal{M} \cup \{A\}$  i  $\mathcal{N}, \overline{A} = \mathcal{N} \cup \{\overline{A}\}$ .)

#### Theorem 5.

*Clausal form is not satisfiable if we can derive an empty clause from it by resolution.* 

**Resolution:** 

$$\frac{\mathcal{M}, A \quad \mathcal{N}, \overline{A}}{\mathcal{M}, \mathcal{N}}$$

(Clause  $\mathcal{M}, \mathcal{N} = \mathcal{M} \cup \mathcal{N}$  is **resolvent** of clauses  $\mathcal{M}, A = \mathcal{M} \cup \{A\}$  i  $\mathcal{N}, \overline{A} = \mathcal{N} \cup \{\overline{A}\}$ .)

#### Theorem 5.

*Clausal form is not satisfiable if we can derive an empty clause from it by resolution.* 

Successful matching corresponds with resolution of empty clause.

#### Theorem 6.

Resolution is decision procedure for propositional classical logic.

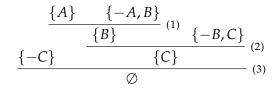
## Example

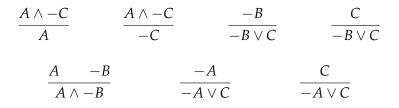
#### Analytic deductions of

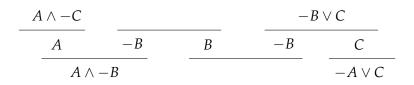
$$A \wedge -C, -B \vee C \models A \wedge -B, -A \vee C$$

#### are:

| $A \wedge -C$ |    | $A \wedge -C$ |             | -B          | С                      |
|---------------|----|---------------|-------------|-------------|------------------------|
| A             |    | - <i>C</i>    | -           | $-B \lor C$ | $\overline{-B \lor C}$ |
| А             | -B |               | -A          |             | С                      |
| $A \wedge$    | -B | -             | $-A \lor C$ |             | $\overline{-A \lor C}$ |



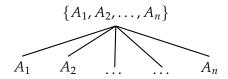




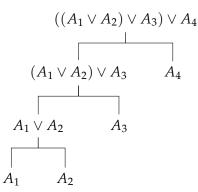
Clausal Satisfiability Tree — (motivation are semantic trees): formula tree with open and closed branches, nodes are literals – open branches represent models.

 $\tau_A$  and  $\tau_B$  are equivalent if every model of  $\tau_A$  is a model of  $\tau_B$  and vice versa.

#### CNF adjustment we'll allow clausal trees – clause analysis in one step



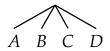
#### So we don't have to deal with



## Clausal Satisfiability Tree 2° build it directly

A

 $\bigwedge_{A \ B \ C}$ 



## Clausal Satisfiability Tree

2° build it directly from clauses

Clausal form

 $A \wedge (B \vee \overline{C}) \wedge (\overline{A} \vee B \vee C)$ 

#### Clausal Satisfiability Tree

2° build it directly from clauses

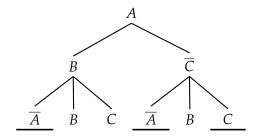
Clausal form

$$A \land (B \lor \overline{C}) \land (\overline{A} \lor B \lor C)$$

yields analytic deductions whose clauses are

$$\{A\}, \{B,\overline{C}\}$$
 i  $\{\overline{A}, B, C\}$ ,

which finally yields:



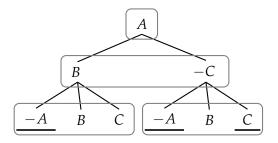


Fig. : Clauses are visible in the tree

Remember:

an. deductions  $\rightarrow$  clauses  $\rightarrow$  clausal tree

We'll use clausal tree as a map to find matching.

#### Unbalanced c.s. trees

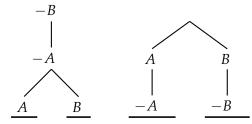


Fig. : Simple (left) and unbalanced (right) clausal sat. tree for  $\{A, B\}$ ,  $\{-A\}$ ,  $\{-B\}$ 

As long as they are closed, or open branches "go through" all clauses, they are equivalent.

## Distributive law:

## $A \lor (B \land C) \vdash (A \lor B) \land (A \lor C)$

## Analysis

I. Analysis yields a sequence of analytic deductions

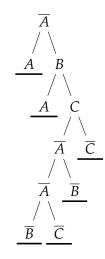
|                                   | $\frac{A \lor (B \land C)}{A \qquad \frac{B \land C}{B}}$ | $\frac{A \lor (B \land C)}{A \qquad \frac{B \land C}{C}}$                    | ] ⊤-analysis |
|-----------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------|--------------|
| $\frac{A}{A \lor B}}{(A \lor B)}$ | $\frac{A}{A \lor C}$<br>$\land (A \lor C)$                | $\frac{\frac{A}{A \lor B}}{(A \lor B) \land (A \lor C)}$                     |              |
| $\frac{B}{A \lor B}}{(A \lor B)}$ | $\frac{A}{A \lor C}$ $\land (A \lor C)$                   | $\frac{B}{A \lor B} \qquad \frac{C}{A \lor C}$ $(A \lor B) \land (A \lor C)$ | ⊥-analysis   |

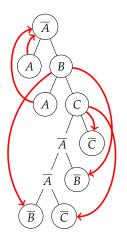
For given set of clauses  $\{\overline{A}\}$ ,  $\{A, B\}$ ,  $\{A, C\}$ ,  $\{\overline{A}, \overline{C}\}$ ,  $\{\overline{A}, \overline{B}\}$ ,  $\{\overline{B}, \overline{C}\}$ .

form a (closed) clausal satisfiability tree:

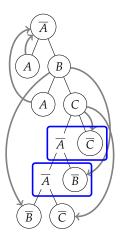
For given set of clauses  $\{\overline{A}\}$ ,  $\{A, B\}$ ,  $\{A, C\}$ ,  $\{\overline{A}, \overline{C}\}$ ,  $\{\overline{A}, \overline{B}\}$ ,  $\{\overline{B}, \overline{C}\}$ .

form a (closed) clausal satisfiability tree:

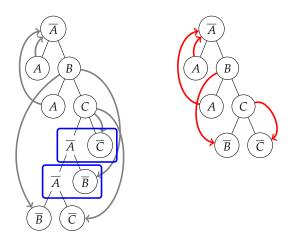




We augment the tree with all arrows that close its branches. Nodes incident with arrows are circled.



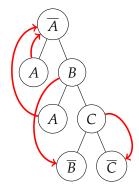
Unmatched clauses  $\{\overline{A}, \overline{C}\}$  i  $\{\overline{A}, \overline{B}\}$  are not necessary.



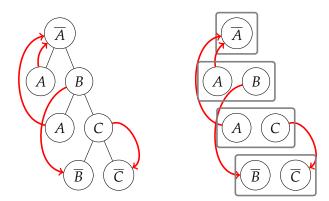
Unmatched clauses  $\{\overline{A}, \overline{C}\}$  i  $\{\overline{A}, \overline{B}\}$  are not necessary.

Throwing them out is enough for a matched tree.

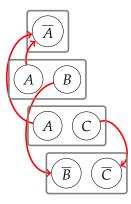
#### Closed & matched tree



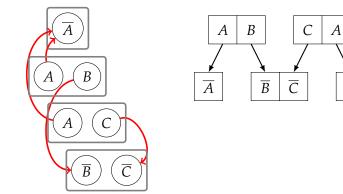
#### Closed & matched tree



Top-sort the DAG (arrows point down)

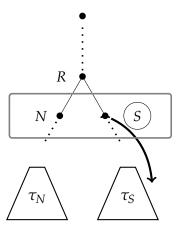


Top-sort the DAG (arrows point down)



 $\overline{A}$ 

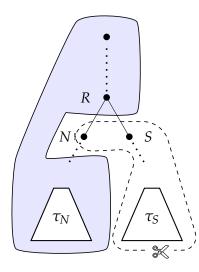
Removal of an unmatched clause in a closed tree can "break" (un-match) some other matched clause. It is not a problem, though.

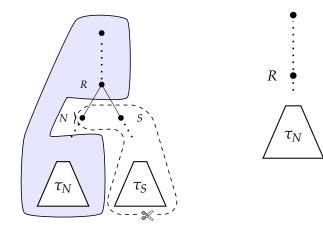


#### Unmatched clause

#### Removal of an unmatched clause

... and its subtree ... is not a problem.





Lemma 7. A closed tree remains closed after removal of unmatched clauses.

Finally, when there is nothing left to remove – we get a matching.

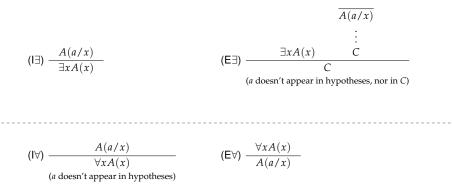
#### Theorem 8.

MCD is analytic (and complete) calculus for classical propositional logic.

Completeness follows from equivalence with semantic trees.

# 6. First Order Logic

#### NK inference rules for quantifiers



Symmetry lost, hypothesis discharging reenters the story...?

#### Existential Instantiation solution for (E3) with cumbersome stipulation

$$\frac{\exists x A(x)}{A(a/x)}$$

and dual (I∀) rule:

 $\frac{A(a/x)}{\forall x A(x)}$ 

must not be *a*-connected to an  $(E\exists)$  inference instance that introduces *a*.

#### Don't want to connect

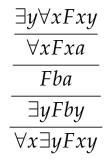


#### to get absurd deduction

# $\frac{\exists x F x}{Fa}$ $\frac{\forall x F x}{\forall x F x}$

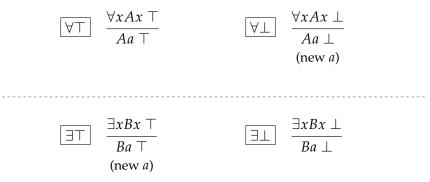
Luckily, *a* being "fresh" is enough for tableaux, and also enough for us.

#### Example of "new" deduction



Symmetry and (apparent) locality of inference rules are preserved.

Semantic analysis for  $\forall$ ,  $\exists$ 



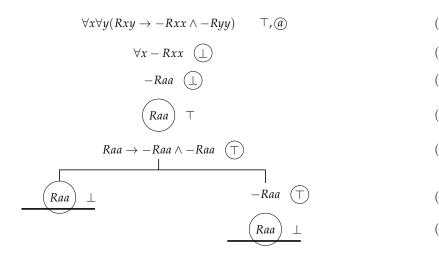
# Unified notation $\gamma$ and $\delta$ formula

| γ                     | $\gamma_1$ | $\gamma_2$ |  |
|-----------------------|------------|------------|--|
| $\forall xAx \top$    | $Aa \top$  | $Ab \top$  |  |
| $\exists x A x \perp$ | $Aa\perp$  | $Ab \perp$ |  |

 $\gamma$  never finishes on infinite universum {*a*, *b*, *c*, ...} ...

| δ                   | $\delta_1$             |
|---------------------|------------------------|
| $\exists xAx \top$  | $Aa \top$ new/fresh a  |
| $\forall xAx \perp$ | $Aa \perp$ new/fresh a |

#### Tableaux Example



#### Cyclic method – analyzing in cycles

Tableaux closes for a valid  $\Gamma \models \Delta$  as long as every formula gets analyzed.

For example, we can queue formulas in cycles. Then prioritize (within the cycle):

- 1.  $\alpha$ ,  $\beta$  (Truth functional)
- 2.  $\delta$  (instantiation)
- 3.  $\gamma$  (application)

#### Theorem 9.

Cyclic variant of analytic tableaux is a positive decision procedure for FOL.

But, tableuax is decision procedure for monadic fragment of FOL.

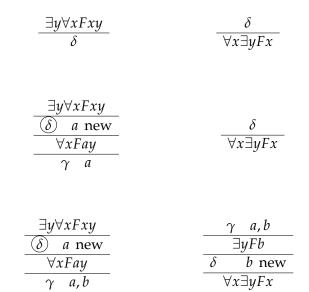
- Atoms  $Aa, Ab, \ldots$
- Literals Aa, -Aa, ...
- Clauses, clause trees...

Only difference – we'll have to build the clausal tree and try to close it as soon as possible.

Working with prenex formulas makes life easier. (branching is postponed)

#### Example

#### Show $\exists y \forall x Fxy \models \forall x \exists y Fxy$ with analytic deduction method:



| $\exists y \forall x F x y$ | Fab                       |
|-----------------------------|---------------------------|
| $\delta$ <i>a</i> novi      | $\gamma$ (a), b           |
| $\forall xFay$              | $\exists yFb$             |
| $\gamma a, b$               | $\delta$ b novi           |
| Fab                         | $\forall x \exists y F x$ |

Without the aux. notation:



Matching here is trivial: connect through Fab results in

| $\exists y \forall x F x y$ |
|-----------------------------|
| $\forall xFxa$              |
| Fba                         |
| $\exists yFby$              |
| $\forall x \exists y F x y$ |

### 7. Conclusion



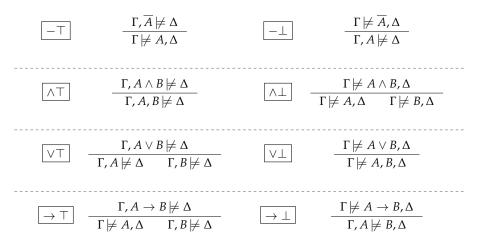
# Γ ⊭ Δ denotes that Γ ⊨ Δ is not valid Read Γ ⊭ Δ as Γ⊤, Δ⊥

Example

 $A \not\models B, C$ 

denotes  $A \top$ ,  $B \bot$ ,  $C \bot$ 

#### Rules for $\not\models$ analysis



#### Semantic $\not\models$ Tree

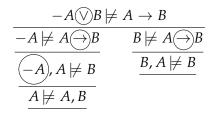
- Semantic tree grows downward
- $\alpha$  i  $\beta$  rules are essentially identical
- Branch closes if it its sequent is overlapping

$$\Gamma, C \not\models C, \Delta$$
.

Fully expanded branches

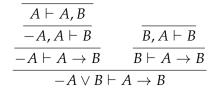
$$\frac{-A \bigtriangledown B \not\models A \to B}{-A \not\models A \bigcirc B} \qquad \qquad \frac{B \not\models A \bigcirc B}{\underline{A \not\models A, B}} \qquad \qquad \frac{B \not\models A \bigcirc B}{\underline{B, A \not\models B}}$$

#### Semantic $\not\models$ Tree



- $\not\models$  Tree is (notationally) equivalent to analytic tableaux
- Closed  $\not\models$  tableaux can be inverted upside down. Replacing  $\not\models$  with  $\vdash$  gives a LK proof of  $\Gamma \vdash \Delta$  without cut.
- "Sequent proofs are upside down tableaux proofs"

# Turning the tableaux upside-down gives LK proof



- LK and analytic tableaux are equivalent (as notational variants)
- MCD's are really not that different proof search is analytic, relates to common techniques
- Analysis is similar to tableaux (converts to CNF, with tableaux we get DNF)
- Synthesis is simple, relates to resolution

... about multiple sequents:

"It must be admitted that this new concept of a sequent in general already constitutes a departure from 'natural' and that its introduction is primarily justified by the considerable formal advantages ..."

## The End.

Thank you