
Multiple Conclusion Deductions in Classical Logic

Marcel Maretić

LAP 2013-09



1 Introduction

2 Multiple Conclusion Deductions

3 Proof search

4 Semantic version of analysis

5 Synthesis

6 First Order Logic

7 Conclusion



1. Introduction



Natural deductions

Natural deductions are calculi with assumptions

Lukasiewicz, Jaśkowski 1926.–1930.
Gentzen 1933.–1935.

"ein Kalkül des natürlichen Schliessen"
"Untersuchungen über das logische Schliessen"

A A→ B
B

A ∧ C
C

B ∧ C

4 / 103



Linear Jaskowski-type (Fitch)

−A→ −B

B

−A→ −B

−A

−A→ −B

−B

B

A

B→ A

(−A→ −B)→ (B→ A)



Example

(1)
A A→ B

B −B
(2)

⊥
−A

(1)

−B→ −A
(2)

Deduction of −B→ −A from A→ B.

6 / 103



Gentzen’s NK calculus
introductions & eliminations

(I∧)
A B
A ∧ B

(E∧)
A ∧ B

A
A ∧ B

B

(I∨)
A

A ∨ B
B

A ∨ B
(E∨)

A ∨ B

A
...
C

(i)
B
...
C

(i)

C
(i)

7 / 103



(I→)

A
...
B

(i)

A→ B
(i) (E→)

A→ B A
B

(I−)

A
...
⊥

(i)

A
(i) (E−)

A A
⊥

(TND)
A ∨ A



Features of NK
"Local" and "global" inference rules

(I∧)
A B
A ∧ B

vs.

(E∨)
A ∨ B

A
...
C

(i)
B
...
C

(i)

C
(i)

Premisses (E∨) are deductions, not formulae!

9 / 103



Redundant deductions
motivation for normal form

A ∧ B
A B

A ∧ B

B
A ∨ B

A
...
C

B
...
C

C

Principle of inversion (Prawitz)
About elimination following an introduction:

one essentially restores what had already been established

Equivalently:

No formula-node is a major formula of two consecutive inferences.

10 / 103



Normal form theorem for NK

Theorem 1.
If Γ ` A in NK then there is a natural deduction of A from Γ
that is in normal formal.

Gentzen’s unpublished proof for NJ was found much later.

11 / 103



LK — Logistischer Klasischer Kalkül
Inference rules

(− `) Γ ` A, ∆
Γ, A ` ∆

(` −) Γ, A ` ∆
Γ ` A, ∆

(∧ `) Γ, A, B ` ∆
Γ, A ∧ B ` ∆

(` ∧) Γ ` A, ∆ Γ ` B, ∆
Γ ` A ∧ B, ∆

(∨ `) Γ, A ` ∆ Γ, B ` ∆
Γ, A ∨ B ` ∆

(` ∨) Γ ` A, B, ∆
Γ ` A ∨ B, ∆

(→`) Γ ` A, ∆ Γ, B ` ∆
Γ, A→ B ` ∆

(`→)
Γ, A ` B, ∆

Γ ` A→ B, ∆



Hauptsatz
Cut elimination theorem; or "normal form theorem for LK"

Theorem 2 (Hauptsatz). Cut rule is eliminable in LK.

Nice consequences:

subformula property
consistency
Craig’s lemma
bottom-up proof search
LK proof calculus is analytic



Consistency

Derivation of empty sequent ` :

` A ∧−A

A ` A
A,−A `

A ∧−A `
`

But there is no cut-free derivation of empty sequent
(cut is the only simplyfing rule)



2. Multiple Conclusion
Deductions



Kneale
Critique of NK — Gentzen’s natural deduction calculus for classical logic

Duality of ∧, ∨ presents itself in symmetry of the pair:

(I∨)
A

A ∨ B
B

A ∨ B
(E∧)

A ∧ B
A

A ∧ B
B

. . . but not in the other one:

(I∧)
A B
A ∧ B

(E∨)
A ∨ B

A
...
C

(i)
B
...
C

(i)

C
(i)



Kneale

Hypothetical rules (I→), (I−), (E∨) are complicated:

(I→)

A
...
B

(i)

A→ B
(i) (I−)

A
...
⊥

(i)

A
(i)

(E∨)
A ∨ B

A
...
C

(i)
B
...
C

(i)

C
(i)



Kneale’s Remedy
Multiple Conclusion Inference Rules

(I∧)
A B
A ∧ B

(E∧)
A ∧ B

A
A ∧ B

B

(I∨)
A

A ∨ B
B

A ∨ B
(E∨)

A ∨ B
A B

(I→)
B

A→ B A A→ B
(E→)

A A→ B
B

(I−)
A −A

(E−)
A −A



Kneale’s Remedy
Multiple Conclusion Inference Rules

(I∧)
A B
A ∧ B

(E∧)
A ∧ B

A
A ∧ B

B

(I∨)
A

A ∨ B
B

A ∨ B
(E∨)

A ∨ B
A B

(I→)
B

A→ B A A→ B
(E→)

A A→ B
B

(I−)
A −A

(E−)
A −A

Note: major formulas are conclusions of introductions and premisses
eliminations.



Example
"development"

Proofs are formula trees. Instances of inference rules are building blocks
of proofs.

A→ B A −A B

A→ B

−A ∨ B

Proofs are branching up and down.



Example
Building a Kneale development/deduction

Kneale’s "development"

A→ B A −A B

A→ B

−A ∨ B

proves −A ∨ B K̀N A→ B.

Building blocks are:

A→ B A
A −A −A ∨ B

−A B
B

A→ B



Trees don’t have cycles

Joining

A ∨ B
A B

+
A B
A ∧ B

?

Certainly not

A ∨ B
A B
A ∧ B



What do we get with KN?

Symmetry of dual ∧ and ∨:

(I∧)
A B
A ∧ B

(E∨)
A ∨ B

A B



What do we get with KN?

(E∨)
A ∨ B

A
...
C

(i)
B
...
C

(i)

C
(i)

becomes−−−−−−−−→

A ∨ B
A
...
C

B
...
C

No discharging. All inferences are local.



What do we get with KN?

Kneale version of another hypothetical deduction:

(I→)

A
...
B

(i)

A→ B
(i)

is built from

A
...
B

A A→ B
B

A→ B

. . .



A A→ B
...
B

A→ B



Kneale developments

Theorem 3.
KN is sound, but incomplete.

KN-unprovable tautologies:

(A→ A) ∧ (A ∨ (A→ A))

distributive law:

A ∨ (B ∧ C) ` (A ∨ B) ∧ (A ∨ C)



Contractions

Some (simple) cycles have to be allowed:

A A
A

and
A

A A
.

For example:

A ∨ A
A A

A .



Contractions

We "borrow" NK-notation for discharging hypothesis. We’ll "discharge"
duplicate premisses (conclusions).

Ex:
(A ∧ B) ∨ (A ∧ C)
A ∧ B
A(1)

A ∧ C
ZZA (1)

29 / 103



MCD deduction of a formula unprovable in KN
with contractions

A

(1) A→ A
���

�A→ A (1)

(2)��
��A→ A

A→ A (2)

A ∨ (A→ A)

B



MCD deduction of a formula unprovable in KN
with contractions

A

A→ A

���
�A→ A

A ∨ (A→ A)���
�A→ A

(A→ A) ∧ (A ∨ (A→ A))



3. Proof search



proof search
in MPD calculus

I. Analysis X

II. Synthesis

We can search for proofs in normal form.
Top and bottom nodes are obvious pieces of the puzzle.



proof search
in MPD calculus

I. Analysis X

II. Synthesis

We can search for proofs in normal form.
Top and bottom nodes are obvious pieces of the puzzle.



proof search (sketch)

Proof search sketch Γ ` ∆

I. Analysis
find all analytic deductions of Γ formulas as premisses
find all analytic deductions of ∆ formulas as conclusions

II. Synthesis
try to match/build Γ ` ∆ from analytic parts

We’ll present such a procedure and prove it to be equivalent to tableaux
method.



Motivating Example
A ∧ B ` A ∧ B

Proof search for A ∧ B ` A ∧ B:

A ∧ B
A

A ∧ B
B

A B
A ∧ B

A ∧ B
A

A ∧ B
B

A ∧ B



Motivating Example
A ∧ B ` A ∧ B

Proof search for A ∧ B ` A ∧ B:

A ∧ B
A

A ∧ B
B

A B
A ∧ B

A ∧ B
A

A ∧ B
B

A ∧ B



Motivating Example
A ∧ B ` A ∧ B

Proof search for A ∧ B ` A ∧ B:

A ∧ B
A

A ∧ B
B

A B
A ∧ B

A ∧ B
A

A ∧ B
B

A ∧ B



Algorithm 1: Analysis of F going down
input : non-atomic F

F
↓

output : appropriate inference(s) with appropriate major formula F.

F
↓ 7→

F
F1 F2

or F
↓ 7→

F
F1

,
F
F2

Algorithm returns all analytical deductions of F as premiss.
(normal form, one major formula)



Example

↑
X → (Y ∧ Z)

↑
Y ∧ Z

X → (Y ∧ Z) , X X → (Y ∧ Z)

Y Z
Y ∧ Z

X → (Y ∧ Z) , X X → (Y ∧ Z)

40 / 103



Matching (sparivanje)
ad hoc, for now

Matching – series of connections that yields π za Γ ` ∆

(premisses are in Γ, conclusions are in ∆)

N.B. We don’t get a necessarily minimal deduction, but we get one in
normal form.
Connections are Intro-Elim.



Matching (sparivanje)
ad hoc, for now

Matching – series of connections that yields π za Γ ` ∆

(premisses are in Γ, conclusions are in ∆)

N.B. We don’t get a necessarily minimal deduction, but we get one in
normal form.
Connections are Intro-Elim.



Matching (sparivanje)
ad hoc, for now

Matching – series of connections that yields π za Γ ` ∆

(premisses are in Γ, conclusions are in ∆)

N.B. We don’t get a necessarily minimal deduction, but we get one in
normal form.
Connections are Intro-Elim.



4. Semantic version of
analysis



TF semantic analysis

−>
(−A)>

A⊥
−⊥

(−A)⊥
A>

∧>
(A ∧ B)>

A>
B>

∧⊥
(A ∧ B)⊥

A⊥ B⊥

∨>
(A ∨ B)>

A> B>
∨⊥

(A ∨ B)⊥
A⊥
B⊥

→ >
(A→ B)>
A⊥ B>

→ ⊥
(A→ B)⊥

A>
B⊥



Analytic deductions and clauses

Let π be a.d. of F as premiss:

F, A1, .., An ` B1, .., Bm

(Ai and Bj are atoms)

We get

F> |= −A1, ..,−An, B1, .., Bm .

F implies clause
{−A1, ..,−An, B1, . . . , Bm} .

Atoms on top are ⊥-marked. Atoms on the bottom are >-marked.



Analytic deductions and clauses

Let π be a.d. of F as premiss:

F, A1, .., An ` B1, .., Bm

(Ai and Bj are atoms)

We get

F> |= −A1, ..,−An, B1, .., Bm .

F implies clause
{−A1, ..,−An, B1, . . . , Bm} .

Atoms on top are ⊥-marked. Atoms on the bottom are >-marked.



Analytic deductions and clauses

Let π be a.d. of F as premiss:

F, A1, .., An ` B1, .., Bm

(Ai and Bj are atoms)

We get

F> |= −A1, ..,−An, B1, .., Bm .

F implies clause
{−A1, ..,−An, B1, . . . , Bm} .

Atoms on top are ⊥-marked. Atoms on the bottom are >-marked.



Analytic deductions and clauses

Let π be a.d. of F as premiss:

F, A1, .., An ` B1, .., Bm

(Ai and Bj are atoms)

We get

F> |= −A1, ..,−An, B1, .., Bm .

F implies clause
{−A1, ..,−An, B1, . . . , Bm} .

Atoms on top are ⊥-marked. Atoms on the bottom are >-marked.



Back to inference rules ...

A B
A ∧ B

read as−−−−−−−→
(A ∧ B)⊥

A⊥ B⊥

"(A ∧ B)⊥ implies A⊥ or B⊥."

50 / 103



Semantic Analysis with MCDs

(∧⊥) A B
A ∧ B

(∧>) A ∧ B
A and

A ∧ B
B

(∨⊥) A
A ∨ B and

B
A ∨ B

(∨>) A ∨ B
A B

(→ ⊥) B
A→ B and A A→ B

(→ >) A A→ B
B

(−⊥)
A −A

(−>) A −A

Introductions Eliminations



Sequence of analytic deductions...
is conjunction of signed formulas...

Theorem 4.
All analytic deductions of F> determine logically equivalent clausal form of
F.

By analogy F⊥ gets clausal form for −F.



5. Synthesis



What about the connection?
(of two analytic deductions)

Let L andM denote clauses belonging to deductions that can be
matched through A.

Z1 |= L, A
Z2 |=M,−A

After connecting

Z1, Z2 |= L,M .

(A is eliminated ("resolved"))



Resolution
decision procedure for satisfiability

Resolution:
M, A N , A
M,N

(ClauseM,N =M∪N is resolvent of clausesM, A =M∪{A} i
N , A = N ∪ {A}.)

Theorem 5.
Clausal form is not satisfiable if we can derive an empty clause from it by
resolution.

Successful matching corresponds with resolution of empty clause.

Theorem 6.
Resolution is decision procedure for propositional classical logic.



Resolution
decision procedure for satisfiability

Resolution:
M, A N , A
M,N

(ClauseM,N =M∪N is resolvent of clausesM, A =M∪{A} i
N , A = N ∪ {A}.)

Theorem 5.
Clausal form is not satisfiable if we can derive an empty clause from it by
resolution.

Successful matching corresponds with resolution of empty clause.

Theorem 6.
Resolution is decision procedure for propositional classical logic.



Example

Analytic deductions of

A ∧−C,−B ∨ C |= A ∧−B,−A ∨ C

are:

A ∧−C
A

A ∧−C
−C

−B
−B ∨ C

C
−B ∨ C

A −B
A ∧−B

−A
−A ∨ C

C
−A ∨ C

57 / 103



Example

{−C}

{A} {−A, B}
{B}

(1)
{−B, C}

{C}
(2)

∅
(3)



A ∧−C
A

A ∧−C
−C

−B
−B ∨ C

C
−B ∨ C

A −B
A ∧−B

−A
−A ∨ C

C
−A ∨ C

A −B B −B C

A ∧−C −B ∨ C

A ∧−B −A ∨ C



Clausal Satisfiability Tree
1◦ as abbreviation of Beth’s fully developed semantic tree

Clausal Satisfiability Tree — (motivation are semantic
trees): formula tree with open and closed branches, nodes
are literals – open branches represent models.

τA and τB are equivalent if every model of τA is a model of
τB and vice versa.

60 / 103



CNF adjustment
we’ll allow clausal trees – clause analysis in one step

{A1, A2, . . . , An}

An. . .. . .A2A1



So we don’t have to deal with

((A1 ∨ A2) ∨ A3) ∨ A4

A4(A1 ∨ A2) ∨ A3

A3A1 ∨ A2

A2A1

62 / 103



Clausal Satisfiability Tree
2◦ build it directly

A CBA DCBA



Clausal Satisfiability Tree
2◦ build it directly from clauses

Clausal form
A ∧ (B ∨ C) ∧ (A ∨ B ∨ C)

yields analytic deductions whose clauses are

{A}, {B, C} i {A, B, C} ,

which finally yields:

A

C

CBA

B

CBA



Clausal Satisfiability Tree
2◦ build it directly from clauses

Clausal form
A ∧ (B ∨ C) ∧ (A ∨ B ∨ C)

yields analytic deductions whose clauses are

{A}, {B, C} i {A, B, C} ,

which finally yields:

A

C

CBA

B

CBA



A

−C

CB−A

B

CB−A

Fig. : Clauses are visible in the tree

Remember:

an. deductions→ clauses→ clausal tree

We’ll use clausal tree as a map to find matching.



Unbalanced c.s. trees

−B

−A

BA

B

−B

A

−A

Fig. : Simple (left) and unbalanced (right) clausal sat. tree for {A, B}, {−A},
{−B}

As long as they are closed, or open branches "go through" all clauses,
they are equivalent.

67 / 103



Example I
proof search for distributive law in MCD

Distributive law:

A ∨ (B ∧ C) ` (A ∨ B) ∧ (A ∨ C)



Analysis

I. Analysis yields a sequence of analytic deductions

A ∨ (B ∧ C)

A
B ∧ C

B

A ∨ (B ∧ C)

A
B ∧ C

C

 >-analysis

A
A ∨ B

A
A ∨ C

(A ∨ B) ∧ (A ∨ C)

A
A ∨ B

C
A ∨ C

(A ∨ B) ∧ (A ∨ C)

B
A ∨ B

A
A ∨ C

(A ∨ B) ∧ (A ∨ C)

B
A ∨ B

C
A ∨ C

(A ∨ B) ∧ (A ∨ C)


⊥-analysis



For given set of clauses {A}, {A, B}, {A, C}, {A, C}, {A, B}, {B, C}.

form a (closed) clausal satisfiability tree:

A

A B

A C

A

A

B C

B

C



For given set of clauses {A}, {A, B}, {A, C}, {A, C}, {A, B}, {B, C}.

form a (closed) clausal satisfiability tree:

A

A B

A C

A

A

B C

B

C



A

A B

A C

A

A

B C

B

C

We augment the tree with all arrows that close its branches.
Nodes incident with arrows are circled.



A

A B

A C

A

A

B C

B

C

A

A B

A C

B C

Unmatched clauses {A, C} i {A, B} are not necessary.

Throwing them out is enough for a matched tree.



A

A B

A C

A

A

B C

B

C

A

A B

A C

B C

Unmatched clauses {A, C} i {A, B} are not necessary.

Throwing them out is enough for a matched tree.



Closed & matched tree

A

A B

A C

B C

A

A B

A C

B C



Closed & matched tree

A

A B

A C

B C

A

A B

A C

B C



Top-sort the DAG (arrows point down)

A

A B

A C

B C

A B C A

A AB C



Top-sort the DAG (arrows point down)

A

A B

A C

B C

A B C A

A AB C



Algorithm
Searching for a match

Removal of an unmatched clause in a closed tree can "break" (un-match)
some other matched clause. It is not a problem, though.

R

N S

τN τS

Unmatched clause



Removal of an unmatched clause
... and its subtree ... is not a problem.

�

R

N S

τN τS



�

R

N S

τN τS

R

τN

Lemma 7. A closed tree remains closed after removal of unmatched clauses.

Finally, when there is nothing left to remove – we get a matching.



Conclusion

Theorem 8.
MCD is analytic (and complete) calculus for classical
propositional logic.

Completeness follows from equivalence with semantic trees.



6. First Order Logic



NK inference rules for quantifiers

(I∃)
A(a/x)
∃xA(x)

(E∃)
∃xA(x)

A(a/x)
...
C

C
(a doesn’t appear in hypotheses, nor in C)

(I∀)
A(a/x)
∀xA(x)

(a doesn’t appear in hypotheses)

(E∀)
∀xA(x)
A(a/x)

Symmetry lost, hypothesis discharging reenters the story. . . ?



Existential Instantiation
solution for (E∃) with cumbersome stipulation

∃xA(x)
A(a/x)

and dual (I∀) rule:

A(a/x)
∀xA(x)

must not be a-connected to an (E∃) inference instance that introduces a.



Don’t want to connect

∃xFx
Fa

Fa
∀xFx

to get absurd deduction

∃xFx
Fa
∀xFx .

Luckily, a being "fresh" is enough for tableaux, and also enough for us.



Example of "new" deduction

∃y∀xFxy
∀xFxa

Fba
∃yFby
∀x∃yFxy

Symmetry and (apparent) locality of inference rules are preserved.



Semantic analysis for ∀∀∀, ∃∃∃

∀>
∀xAx >

Aa >
∀⊥

∀xAx ⊥
Aa ⊥

(new a)

∃>
∃xBx >

Ba >
(new a)

∃⊥
∃xBx ⊥

Ba ⊥



Unified notation
γ and δ formula

γ γ1 γ2 . . .

∀xAx > Aa > Ab > . . .

∃xAx ⊥ Aa ⊥ Ab ⊥ . . .

γ never finishes on infinite universum {a, b, c, . . . } ...

δ δ1

∃xAx > Aa > new/fresh a

∀xAx ⊥ Aa ⊥ new/fresh a



Tableaux Example

∀x∀y(Rxy→ −Rxx ∧−Ryy) >, a

∀x− Rxx ⊥

−Raa ⊥

Raa >

Raa→ −Raa ∧−Raa >

Raa ⊥ −Raa >

Raa ⊥

(1), a iz (3)

(2)

(3) iz (2), novi a

(4) iz (3)

(5) iz (1) a

(6) iz (5)

(7)



Cyclic method – analyzing in cycles

Tableaux closes for a valid Γ |= ∆ as long as every formula gets
analyzed.

For example, we can queue formulas in cycles.
Then prioritize (within the cycle):

1. α, β (Truth functional)
2. δ (instantiation)
3. γ (application)

Theorem 9.
Cyclic variant of analytic tableaux is a positive decision procedure for FOL.

But, tableuax is decision procedure for monadic fragment of FOL.



Analysis
again, analytic deductions end with atoms

Atoms Aa, Ab, . . .
Literals Aa, −Aa, . . .
Clauses, clause trees...

Only difference – we’ll have to build the clausal tree and try to close it
as soon as possible.

Working with prenex formulas makes life easier.
(branching is postponed)



Example
Show ∃y∀xFxy |= ∀x∃yFxy with analytic deduction method:

∃y∀xFxy
δ

δ

∀x∃yFx

∃y∀xFxy
δ a new
∀xFay
γ a

δ

∀x∃yFx

∃y∀xFxy
δ a new
∀xFay
γ a, b

γ a, b
∃yFb

δ b new
∀x∃yFx



∃y∀xFxy
δ a novi
∀xFay

γ a, b
Fab

Fab
γ a , b
∃yFb

δ b novi
∀x∃yFx

Without the aux. notation:

∃y∀xFxy
∀xFay

Fab

Fab
∃yFb
∀x∃yFx

Matching here is trivial: connect through Fab results in

∃y∀xFxy
∀xFxa

Fba
∃yFby
∀x∃yFxy



7. Conclusion



Digression
6|= sequents

Γ 6|= ∆ denotes that Γ |= ∆ is not valid

Read Γ 6|= ∆ as

Γ>, ∆⊥

Example
A 6|= B, C

denotes A>, B⊥, C⊥



Rules for 6|= analysis

−>
Γ, A 6|= ∆
Γ 6|= A, ∆

−⊥
Γ 6|= A, ∆
Γ, A 6|= ∆

∧>
Γ, A ∧ B 6|= ∆
Γ, A, B 6|= ∆

∧⊥
Γ 6|= A ∧ B, ∆

Γ 6|= A, ∆ Γ 6|= B, ∆

∨>
Γ, A ∨ B 6|= ∆

Γ, A 6|= ∆ Γ, B 6|= ∆
∨⊥

Γ 6|= A ∨ B, ∆
Γ 6|= A, B, ∆

→ >
Γ, A→ B 6|= ∆

Γ 6|= A, ∆ Γ, B 6|= ∆
→ ⊥

Γ 6|= A→ B, ∆
Γ, A 6|= B, ∆



Semantic 6|= Tree

Semantic tree grows downward
α i β rules are essentially identical
Branch closes if it its sequent is overlapping

Γ, C 6|= C, ∆ .

Fully expanded branches

−A ∨ B 6|= A→ B
−A 6|= A→ B

−A , A 6|= B

A 6|= A, B

B 6|= A→ B

B, A 6|= B



Semantic 6|= Tree

−A ∨ B 6|= A→ B
−A 6|= A→ B

−A , A 6|= B

A 6|= A, B

B 6|= A→ B

B, A 6|= B

6|= Tree is (notationally) equivalent to analytic tableaux
Closed 6|= tableaux can be inverted upside down. Replacing 6|= with
` gives a LK proof of Γ ` ∆ without cut.
"Sequent proofs are upside down tableaux proofs"



Turning the tableaux upside-down
gives LK proof

A ` A, B
−A, A ` B
−A ` A→ B

B, A ` B
B ` A→ B

−A ∨ B ` A→ B
.



Conclusion

LK and analytic tableaux are equivalent (as notational variants)
MCD’s are really not that different – proof search is analytic, relates
to common techniques
Analysis is similar to tableaux (converts to CNF, with tableaux we
get DNF)
Synthesis is simple, relates to resolution

101 / 103



. . . about multiple sequents:

"It must be admitted that this new concept of a sequent in general
already constitutes a departure from ’natural’ and that its
introduction is primarily justified by the considerable formal
advantages ..."



The End.

Thank you


	Introduction
	Multiple Conclusion Deductions
	Proof search
	Semantic version of analysis
	Synthesis
	First Order Logic
	Conclusion

