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ABSTRACT

In this paper we propose new blur identi�cation algorithm
based on singular value decomposition (SVD) of degraded
image. An unknown space-invariant point-spread function
(PSF) is also decomposed using SVD. Magnitude functions
of PSF singular vectors (left and right) are identi�ed using
averaged spectra of corresponding singular vectors of de-
graded image. Phase functions of PSF singular vectors are
supposed to be zero, except for the case when zero crossings
can be detected from corresponding magnitude functions.
In the proposed method, two dimensional PSF estimation
procedure is decomposed into several one-dimensional es-
timation procedures. PSF estimation algorithm does not
require numerical optimization, what implicates fast and
straightforward procedure.

1. INTRODUCTION

Image degradation manifests itself as a blurring of image
and adding of noise to the image. It is caused by im-
perfection of imaging systems and inappropriate imaging
conditions. Image blurring is modeled as a 2-D convolu-
tion of image with non-causal point-spread function (PSF).
Blur identi�cation is determination of unknown PSF, and
is the most important step towards successful digital image
restoration.

Early approaches to blur identi�cation take advantage
of 2-D power cepstrum of degraded image [1]. Periodic-
ity in logarithm of spectrum enables identi�cation of blurs
that have zeros on the unit bicircle (motion blur, out-of-
focus blur). More recent approaches are based on the 2-D
autoregressive moving average (ARMA) model of degraded
image. AR part of the model represents original image
model, and MA part represents non-causal PSF [2]. Es-
timation of unknown model parameters is performed us-
ing maximization of likelihood function. This method is
extended to more general case, using spectrally equivalent
minimum phase (SEMP) system representation [3]. In [4]
2-D ARMAmodel identi�cation is decomposed into parallel
1-D complex ARMA model identi�cation.

Iterative algorithms, where identi�cation and restora-
tion steps are performed one after another, are described
in [5] and [6]. In [7] the PSF is chosen from a collection of
a candidate PSFs to provide the best match between the
restoration residual power spectrum and its expected value.

Unknown PSF parameter estimation based on continuous
blur model is described in [8].

Our blur identi�cation algorithm operates on singular
vectors of degraded image. We identify components of SVD
decomposition of the unknown PSF. First (left and right)
singular vectors of PSF can be estimated using correspond-
ing �rst few singular vectors of degraded image. When S/N
ratio is high, it is possible to estimate second singular vec-
tors of PSF.

This paper is organized as follows. In Section 2 we dis-
cuss changes in singular vectors of original image due to
degradation. In Section 3 we describe our blur identi�ca-
tion algorithm. Section 4 contains identi�cation results and
discussion, while in Section 5 we summarize proposed algo-
rithm.

2. DEGRADATION OF SINGULAR VECTORS

Blur identi�cation is possible from physical modeling and
measurement of imaging system (test images), but it is
frequently necessary to identify blur from degraded image
only. Standard linear discrete model of image degradation
is described using following equation:

g(i; j) =

KX
k=�K

LX
l=�L

h(k; l)f(i� k; j � l) + n(i; j); (1)

where i and k represent discrete variables in vertical direc-
tion, j and l represent discrete variables in horizontal di-
rection, f(i; j) is original image, g(i; j) is degraded image,
n(i; j) is Gaussian white noise �eld, and h(k; l) is space-
invariant PSF of size (2K + 1)(2L + 1). If we look at the
images in the equation (1) as N �N matrices, than we can
analyze changes in SVD representation of original image
matrix F due to degradation. Original image is blurred in
such a way that original image is displaced by (k; l), and
linear combination using weighting factors h(k; l) is com-
puted:

RGX
r=1

srGurGv
T
rG =

=

KX
k=�K

LX
l=�L

h(k; l)

RFX
r=1

srFklurFklv
T
rFkl +N; (2)



whereN isN�N white Gaussian noise �eld, RG andRF are
the ranks, srG and sfRkl are singular values, urG and urFkl
are left singular vectors, vrG and vrFkl are right singular
vectors of degraded image and original image displaced for
(k; l), respectively. Important question is what happens
with image SVD when image is displaced by k rows and l
columns. Providing that displacement satis�es k; l � N ,
the �rst R1 singular vectors will be shifted versions (except
border) of singular vectors of image at position (0; 0), while
�rst R1 singular values will change insigni�cant. Shifts in
vertical direction will be visible on left singular vectors,
while shifts in horizontal direction will be visible on right
singular vectors:

urFk � urFkl; vrFl � vrFkl; r � R1; k; l� N: (3)

As we move towards smaller singular values, correspond-
ing singular vectors will be more and more perturbed and
equivalence in (3) isn't valid any more. It is supposed that
h(k; l) is also decomposed using SVD:

h =

RhX
p=1

sphuphv
T
ph; (4)

where h denotes PSF matrix, Rh is the rank, sph are singu-
lar values, uph and vph are left and right singular vectors
of PSF matrix, respectively. We will approximate h using
only �rst singular vectors. Vector u1h operates in vertical
direction, and v1h operates in horizontal direction. Chang-
ing the order of summation, and grouping the members that
operate separate in horizontal and vertical direction, (2) is
transformed into:

R1X
r=1

srGurGv
T
rG �

R1X
r=1

[srFkls1h(u1h � urFk)�

�(v1h � vrFl)
T
�
+NR1; (5)

where (*) denotes convolution operation, and NR1 repre-
sents a sum of �rst R1 base images of N . It is evident from
(5) and con�rmed experimentally on various PSFs and var-
ious types of images, that blurring e�ect of u1h is present
in the �rst left singular vectors of degraded image, while
blurring e�ect of v1h is present in the �rst right singular
vectors of degraded image. We found experimentally that
activity of u2h and v2h is present in left and right degraded
image singular vectors in the vicinity of r = N=2.

3. PSF ESTIMATION ALGORITHM

In order to perform estimation procedure we need a model
of singular vectors of original image. Covariance function
of singular vectors is modeled as a �rst-order stationary
Markov sequence. E�ect of noise also have to be incorpo-
rated into estimation procedure. E�ect of additive noise
and model of singular vectors of non-degraded image are
analyzed experimentally. Characteristics depicted in Fig.
1(a) and 1(b) are result of averaging on a number of images
of various scenes. Fig. 1(a) depicts value of one-step corre-
lation for non-degraded images, N = 256. As r moves from
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Figure 1: Experimental results: a) one step corre-
lation coe�cient as a function of r, b) S/N ratio
of singular vectors as a function of r, for images
with S/N ratio = 35 dB.

1 to N , singular vectors contain more higher frequency com-
ponents. We are also interested how additive noise is dis-
tributed over singular vectors of blurred image. Images are
blurred, and SVD of blurred image was computed. Then,
noise is added to blurred image, and SVD of that image
was computed. Change in singular vectors due to added
noise was analyzed, and expressed as dependence of S/N
ratio on singular vector number r. Functional dependence
depicted in Fig. 1(b) is a result of averaging over various
PSFs. Shape of characteristic does not depend signi�cantly
on S/N ratio.

Estimation procedure for u1h and v1h will be described.
It is evident from Fig. 1(b) that �rst few singular vectors
will have S/N ratio signi�cantly better than image S/N ra-
tio. The idea is to average spectra of �rst R1 singular vec-
tors, in order to further eliminate e�ect of noise. Estimates
of averaged spectra of original image singular vectors, ŜuF
for left and ŜvF for right vectors, are constructed on the
base of exponential model of covariance function:

ŜuF = ŜvF = DFT (�
jnj
R1); jnj �

N

2
; (6)



where �R1 is averaged value of �rst R1 one-step correla-
tion coe�cients, according to characteristic depicted in Fig.
1(a). For simplicity, the same model is used for left and
right singular vectors, and no additional information about
original image is extracted from degraded image. Now,
when we have referent models, magnitude functions of u1h
and v1h are estimated as follows:

ÛG =

vuuuut
R1X
r=1

SruG

R1ŜuF
; V̂G =

vuuuut
R1X
r=1

SrvG

R1ŜvF
; (7)

where ÛG is estimate of the magnitude function of u1h, V̂G
is estimate of magnitude function of v1h, SruG is the spec-
trum of r-th left singular vector and SrvG is the spectrum of
r-th right singular vector of degraded image. It is expected
that averaging will somewhat eliminate negative e�ects due
to simple model of non-degraded image singular vectors.

The magnitude function has to be coupled with the cor-
responding phase function. We take the phase function to
be zero, except for the case when zero-crossings can be de-
tected from the magnitude function. In that case � radian
jumps take place at the frequencies where zero crossings are
detected [3]. Finally, the inverse Fourier transform is ap-
plied, and real part of the resulting sequences is analyzed.
Positive values in the vicinity of the maximum are of inter-
est. Appearance of very small or negative values indicate
that we have reached boundaries of the PSF. This way, sup-
port of PSF is determined directly from the sequence where
�rst PSF singular vectors are estimated. Described proce-
dure is carried out separately for left and right singular
vectors. Vector û1h is estimate of u1h, and v̂1h is estimate
of v1h. Finally, estimated PSF ,

ĥ = û1hv̂
T
1h (8)

is normalized to have the sum of the matrix elements equal
to one. When S/N ratio is better than 45 dB, û2h and
v̂2h can be estimated using similar procedure from singular
vectors in the vicinity of the r = N=2.

4. RESULTS AND DISCUSSION

Important information extracted from Fig. 1 is: �rst sin-
gular vectors contain small amounts of noise, but problem
is in the fact that they are highly correlated, and contain
less high frequency components. Obviously, some trade-o�
must be done in determination of R1. We choose R1=20,
the number of singular vectors of degraded image that will
be used to determine �rst singular vectors of PSF. For the
original singular vectors model in (6) we used �R1 = 0:84.
This value was determined experimentally, averaging �rst
R1 values of function depicted in Fig. 1(a). The same model
is used for left and right singular vectors.

We tested described algorithm for blur identi�cation on
simulated and real world degraded images. Table 1. con-
tains results from one identi�cation example, for di�erent
S/N ratios. Image of town, N=256, was blurred using 3�3
truncated Gaussian PSF. Then certain amount of noise was
added to produce degraded image. Estimated PSF is good

0.07511 0.12384 0.07511

0.12384 0.20420 0.12384

0.07511 0.12384 0.07511

a)

0.07187 0.12583 0.07187

0.12286 0.21510 0.12286

0.07187 0.12583 0.07187

b)

0.07185 0.12603 0.07185

0.12266 0.21517 0.12266

0.07185 0.12603 0.07185

c)

0.07266 0.12616 0.07266

0.12231 0.21237 0.12231

0.07266 0.12616 0.07266

d)

Table 1: a) True PSF, b) PSF identi�ed at S/N
ratio=50 dB, c) PSF identi�ed at S/N ratio=40
dB d) PSF identi�ed at S/N ratio=30 dB.

description of true PSF, and is almost constant in a wide
range of S/N ratios of interest. This behaviour is result
of cumulative e�ect of characteristic noise distribution (de-
picted in Fig. 1(b) ) and averaging of singular vectors.
Magnitude functions (7) were also used to calculate real
cepstrum. In the case of motion blur, spikes in cepstrum [1]
were visible up to S/N ratios of 20 dB. Proposed algorithm
is an addition to methods described in [9]. For uniform
PSFs we estimated all values, not just PSF support. Some
ringing was present in the restored images. When PSF is
identi�ed from degraded image only, than unknown origi-
nal image is test signal for identi�cation procedure. Lower
power in high-frequency components of test signal implicate
less accurate identi�cation of degradation system transfer
function in that frequency range.

Important point is determination of PSF support. As
we already said, PSF support is determined directly from
the sequences where PSF components are estimated. Ap-
pearance of very small or negative values is a signal that
PSF boundaries are reached. In the cases when PSF sup-
port was not properly estimated, restoration results were
also good.

Using described procedure we can accurately estimate
û1h and v̂1h. That is a separable approximation of the true
PSF. In fact, among all separable approximations of the
true PSF, this approximation has the smallest mean square
error. But, this is not valid image restoration criterion.
Nevertheless, from experiments we can conclude that as
S/N ratio goes down, di�erence between true and separable
approximation of PSF becomes less important. The S/N
ratio is the parameter which ultimately limits the restora-
tion quality and need for an accurate PSF model [10]. We
can write:

S=N ratio # )
X
i;j

[F̂h(k;l) � F̂h(k)h(l)]
2 # ; (9)



where F̂h(k;l) is image restored using the true PSF, and

F̂h(k)h(l) is image restored using the separable SVD approx-
imation of the true PSF. When S/N ratio is better than 45
dB, û2h and v̂2h can be estimated from singular vectors in
the vicinity of the r = N=2. In that region singular vectors
contain more higher frequency components, but S/N ratio
is low. In estimation procedure we change value of �R1 in
(6) to -0.15. In this region spectrum of singular vectors has
band-pass characteristic.

Example of real world identi�cation for image restora-
tion is presented in Fig. 2. Image from low-quality airborne
TV sensor was restored using PSF that was estimated using
proposed procedure. There is a signi�cant improvement in
the image resolution. Except for computation of degraded
image SVD , estimation procedure is very fast.

a)

b)

Figure 2: a) Image from low-quality airborne TV
sensor, b) restored image, PSF is estimated using
proposed algorithm.

5. CONCLUSIONS

In the proposed blur identi�cation algorithm components
of SVD decomposition of the unknown PSF are estimated.
First singular vectors (left and right) of the unknown PSF
are estimated using corresponding singular vectors of de-
graded image. Estimated PSF is almost constant in a wide
range of S/N ratios of interest. Main part of the error in
PSF estimation is due to simpli�ed model of non-degraded
image singular vectors. Estimation algorithm does not re-
quire numerical optimization, what implicates fast opera-
tion. Proposed procedure is especially applicable at lower
S/N ratios. Restoration results on simulated and real world
images prove the validity of the approach.
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