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In a multiagent system (MAS), agents can have different opinions about a given problem. In order to solve the problem collectively
they have to reach consensus about the ontology of the problem. A solution to probabilistic reasoning in such an environment by
using a social network of trust is given. It is shown that frame logic can be annotated and amalgamated by using this approachwhich
gives a foundation for collective ontology development in MAS. Consider the following problem: a set of agents in a multiagent
system (MAS) model a certain domain in order to collectively solve a problem. Their opinions about the domain differ in various
ways.The agents are connected into a social network defined by trust relations.The problem to be solved is how to obtain consensus
about the domain.

1. Introduction

To formalize the problem let 𝐴 = {𝑎
1
, . . . , 𝑎

𝑛
} be a set of

agents, let 𝜏 be a trust relation defined over 𝐴 × 𝐴, and let
𝐷 = {𝑜

1
, . . . , 𝑜

𝑚
} be a problem domain consisting of a set

of objects. Let further 𝑆 be a set of all possible statements
about 𝐷, and let 𝑂 be a relation over 𝐴 × 𝑆. We will denote
by 𝑂 the social ontology expressed by the agents. What is
the probability that a certain statement from the expressed
statements in 𝑂 is true?

Bymodeling some domains of interest (using a formalism
like ontologies, knowledge bases, or other models) a person
expresses his/her knowledge about it. Thus the main concept
of interest inmodeling any domain is knowledge.Nonaka and
Takeuchi once defined knowledge as a “justified true belief ”
[1] whereby this definition is usually credited to Plato. This
means that the modeling person implicitly presumes that the
expressed statements in his/her model are true. On the other
hand if one asks the important question what is the truth?,
we arrive at one of the fundamental philosophical questions.
Nietzsche once argued in [2] that a person is unable to prove
the truth of a statement which is nothing more than the
invention of fixed conventions for merely practical purposes,
like repose, security, and/or consistence. According to this

view, no one can prove that this paper is not just a fantasy
of the reader reading it.

The previously outlined definition of knowledge includes,
intentionally or not, two more crucial concepts: justified and
belief. An individual will consider something to be true that
he believes in, and, from that perspective, the overall truth
will be a set of statements that the community believes in.This
mutual belief makes this set of statements justified. The truth
was once that the Earth was the center of the universe until
philosophers and scientists started to question that theory.
The Earth was also once a flat surface residing on the back
of an elephant. So an interesting fact about the truth, from
this perspective, is that it evolves depending on the different
beliefs of a certain community.

In an environment where a community of agents col-
laborates in modeling a domain there is a chance that there
will be disagreements about the domain which can yield
certain inconsistencies in the model. A good example of such
disagreements is the so-called “editor wars” onWikipedia the
popular free online encyclopedia. A belief about the war in
ex-Yugoslaviawill likely differ between aCroat and a Serb, but
they will probably share the same beliefs about fundamental
mathematical algebra.
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Following this perspective, our conceptualization of state-
ments as units of formalized knowledge will consider the
probability of giving a true statement amatter of justification.
An agent is justified if other members of a social system
believe in his statements. Herein we would like to outline
a social network metric introduced by Bonacich [3] called
eigenvector centrality which calculates the centrality of a
node based on the centrality’s of its adjacent nodes. Eigen-
vector centrality assigns relative values to all nodes of a social
network based on the principle that connections to nodes
with high values contribute more to the value of the node in
question than equal connections to nodes with low values. In
a way, if we interpret the network under consideration as a
network of trust, it yields an approximation of the probability
that a certain agent will say the truth in a statement as
perceived by the other agents of the network. The use of
eigenvector centrality here is arbitrary; any other metric with
the described properties could be used as well.

In order to express knowledge about a certain domain,
one needs an adequate language. Herein we will use frame
logic or F-logic introduced by [4], which is an object-
oriented, deductive knowledge base and ontology language.
The use of F-logic here is arbitrary, and any other formal
(or informal) language could be used that allows expressing
an ontology of a given domain. Nevertheless, F-logic allows
us to reason about concepts (classes of objects), objects
(instances of classes), attributes (properties of objects) and
methods (behavior of objects), by defining rules over the
domain, which makes it much more user friendly than other
approaches.

2. Introducing Frame Logic

The syntax of F-logic is defined as follows [4].

Definition 1. The alphabet ΣF of an F-logic language LF

consists of the following:

(i) a set of object constructors,F;

(ii) an infinite set of variables,V;

(iii) auxiliary symbols, such as, (, ), [, ], → , 󴀀󴀤, ∙→ , ∙󴀀󴀤,⇒,
and⇒⇒; and

(iv) usual logical connectives and quantifiers, ∨, ∧, ¬, ←,
∀, and ∃.

Object constructors (the elements of F) play the role of
function symbols in F-logic whereby each function symbol
has an arity. The arity is a nonnegative integer that represents
the number of arguments the symbol can take. A constant
is a symbol with arity 0, and symbols with arity ≥1 are used
to construct larger terms out of simpler ones. An id term is
a usual first-order term composed of function symbols and
variables, as in predicate calculus.The set of all variable free or
ground id terms is denoted by𝑈(F) and is commonly known
as Herbrand Universe. Id terms play the role of logical object
identities in F-logic which is a logical abstraction of physical
object identities.

A language in F-logic consists of a set of formulae
constructed out of alphabet symbols. The simplest formulae
in F-logic are called F-molecules.

Definition 2. A molecule in F-logic is one of the following
statements:

(i) an is-a assertion of the form 𝐶 :: 𝐷 (𝐶 is a nonstrict
subclass of 𝐷) or of the form 𝑂 : 𝐶 (𝑂 is a member
of class 𝐶), where 𝐶,𝐷, and 𝑂 are id terms;

(ii) an object molecule of the form O [a “;” separated list
of method expressions], where 𝑂 is an id term that
denotes an object. A method expression can be either
a noninheritable data expression, an inheritable data
expression, or a signature expression.

(a) Noninheritable data expressions can be in either
of the following two forms.
(1) A non-inheritable scalar expression

ScalMethod@𝑄
1
, . . . , 𝑄

𝑘
→ 𝑇, (𝑘 ⩾ 0).

(2) A non-inheritable set-valued expression
SetMethod@𝑅

1
, . . . , 𝑅

𝑙
󴀀󴀤 {𝑆

1
, . . . , 𝑆

𝑚
}

(𝑙, 𝑚 ⩾ 0).
(b) Inheritable scalar and set-valued expression are

equivalent to their non-inheritable counterparts
except that → is replaced with ∙→ and 󴀀󴀤 with
∙󴀀󴀤.

(c) Signature expression can also take two different
forms.
(1) A scalar signature expression

ScalMethod@𝑉
1
, . . . , 𝑉

𝑛
⇒ (𝐴

1
, . . . , 𝐴

𝑟
),

(𝑛, 𝑟 ⩾ 0).
(2) A set-valued signature expression

SetMethod@𝑊
1
, . . . ,𝑊

𝑠
⇒⇒ (𝐵

1
, . . . , 𝐵

𝑡
)

(𝑠, 𝑡 ⩾ 0).

All methods’ left hand sides (e.g., 𝑄
𝑖
, 𝑅
𝑖
, 𝑉
𝑖
, and 𝑊

𝑖
)

denote arguments, whilst the right hand sides (e.g., 𝑇, 𝑆
𝑖
,

𝐴
𝑖
, and 𝐵

𝑖
) denote method outputs. Single-headed arrows

(→, ∙→ , and ⇒) denote scalar methods, and double-headed
arrows (󴀀󴀤, ∙󴀀󴀤, and⇒⇒) denote set-valued methods.

As in a lot of other logic, F-formulae are built out of
simpler ones by using the usual logical connectives and
quantifiers mentioned above.

Definition 3. A formula in F-logic is defined recursively:

(i) F-molecules are F-formulae;
(ii) 𝜑∨𝜓, 𝜑∧𝜓, and ¬𝜑 are F-formulae if so are 𝜑 and 𝜓;
(iii) ∀ 𝑋𝜑 and ∃𝑌𝜓 are F-formulae if so are 𝜑 and 𝜓, and

𝑋 and 𝑌 are variables.

F-logic further allows us to define logic programs. One of
the popular class of logic programs is Horn programs.

Definition 4. A Horn F-program consists of Horn rules,
which are statements of the form

ℎ𝑒𝑎𝑑 ←󳨀 𝑏𝑜𝑑𝑦. (1)
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Whereby ℎ𝑒𝑎𝑑 is an F-molecule, and 𝑏𝑜𝑑𝑦 is a con-
junction of F-molecules. Since the statement is a clause, we
consider all variables to be implicitly universally quantified.

For our purpose these definitions of F-logic are sufficient,
but the interested reader is advised to consult [4] for profound
logical foundations of object-oriented and frame based lan-
guages.

3. Introducing Social Network Analysis

A formal approach to defining social networks is graph theory
[5].

Definition 5. A graph G is the pair (N,A) whereby N
represents the set of verticles or nodes andA ⊆ N×N the set
of edges or arcs connecting pairs fromN.

A graph can be represented with the so-called adjacency
matrix.

Definition 6. Let G be a graph defined with the set of nodes
{𝑛
1
, 𝑛
2
, . . . , 𝑛

𝑚
} and edges {𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑙
}. For every 𝑖, 𝑗 (1 ⩽

𝑖 ⩽ 𝑚 and 1 ⩽ 𝑗 ⩽ 𝑚) one defines

𝑎
𝑖𝑗
= {

1, if there is an edge between nodes 𝑛
𝑖
and 𝑛

𝑗
,

0, otherwise.
(2)

Matrix 𝐴 = [𝑎
𝑖𝑗
] is then the adjacency matrix of graphG.

The matrix 𝑖 is symmetric since if there is an edge between
nodes 𝑛

𝑖
and 𝑛
𝑗
, then clearly there is also an edge between 𝑛

𝑗

and 𝑛
𝑖
. Thus 𝐴 = [𝑎

𝑖𝑗
] = [𝑎

𝑗𝑖
].

The notion of directed and valued-directed graphs is of
special importance to our study.

Definition 7. A directed graph or digraphG is the pair (N,A),
whereby N represents the set of nodes and A ⊆ N × N the
set of ordered pairs of elements from N that represents the
set of graph arcs.

Definition 8. A valued or weighted digraph GV is the triple
(N,A,V)wherebyN represents the set of nodes or verticles,
A ⊆ N ×N the set of ordered pairs of elements fromN that
represent the set of graph arcs, andV : N → R a function
that attaches values or weights to nodes.

A social network can be represented as a graph G =

(N,A) whereN denotes the set of actors andA denotes the
set of relations between them [6]. If the relations are directed
(e.g. support, influence, message sending, trust, etc.), we can
conceptualize a social network as a directed graph. If the
relations additionally can be measured in a numerical way,
social networks can be represented as valued digraphs.

One of the main applications of graph theory to social
network analysis is the identification of the “most important”
actors inside a social network. There are lots of different
methods and algorithms that allow us to calculate the impor-
tance, prominence, degree, closeness, betweenness, informa-
tion, differential status, or rank of an actor. As previously
mentioned we will use the eigenvector centrality to annotate
agents’ statements.

Definition 9. Let 𝑝
𝑖
denote the value or weight of node 𝑛

𝑖
, and

let [𝑎
𝑖𝑗
] be the adjacency matrix of the network. For node 𝑛

𝑖

let the centrality value be proportional to the sum of all values
of nodes which are connected to it. Hence

𝑝
𝑖
=

1

𝜆
⋅ ∑

𝑗∈𝑀(𝑗)

𝑝
𝑗
=

1

𝜆
⋅

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
⋅ 𝑝
𝑗
, (3)

where 𝑀(𝑖) is the set of nodes that are connected to the 𝑖th
node, 𝑁 is the total number of nodes, and 𝜆 is a constant. In
vector notation this can be rewritten as

𝑝 =
1

𝜆
⋅ 𝐴 ⋅ 𝑝 or as the eigenvector equation 𝐴 ⋅ 𝑝 = 𝜆 ⋅ 𝑝.

(4)

PageRank is a variant of the eigenvector centrality
measure, which we decided to use herein. PageRank was
developed by Google or more precise by Larry Page (from
where the word play PageRank comes from) and Sergey Brin.
They used this graph analysis algorithm, for the ranking of
web pages on a web search engine. The algorithm uses not
only the content of a web page but also the incoming and
outgoing links. Incoming links are hyperlinks from other web
pages pointing to the page under consideration, and outgoing
links are hyperlinks to other pages to which the page under
consideration points.

PageRank is iterative and starts with a random page
following its outgoing hyperlinks. It could be understood as a
Markov process in which states are web pages, and transitions
(which are all of equal probability) are the hyperlinks between
them. The problem of pages which do not have any outgoing
links, as well as the problemof loops, is solved through a jump
to a random page. To ensure fairness (because of a huge base
of possible pages), a transition to a random page is added to
every page which has the probability 𝑞 and is in most cases
0.15. The equation which is used for rank calculation (which
could be thought of like the probability that a random user
will open this particular page) is as follows:

PageRank (𝑝
𝑖
) =

𝑞

𝑁
+ (1 − 𝑞) ∑

𝑝𝑗∈𝑀(𝑝𝑖)

PageRank (𝑝
𝑗
)

𝐿 (𝑝
𝑗
)

,

(5)

where 𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑁
are nodes under consideration, 𝑀(𝑝

𝑖
)

the set of nodes pointing to𝑝
𝑖
,𝐿(𝑝
𝑖
) the number of arcs which

come from node 𝑝
𝑗
, and𝑁 the number of all nodes [7, 8].

A very convenient feature of PageRank is that the sum of
all ranks is 1.Thus, semantically, we can interpret the ranking
value of agents (or actors in the social network) participating
in a given MAS as the probability that an agent will say the
truth in the perception of the others. In the following we will
use the ranking, obtained through such an algorithm in this
sense.

4. Probability Annotation

As shown in Section 2 there are basically three types of
statements agents can make: (1) is-a relations, (2) object
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molecules, and (3) Horn rules. While is-a relations and Horn
rules can be considered atomic, object molecules can be
compound since object molecules of the form

𝑜 [𝑎
1
󳨀→ V
1
; . . . ; 𝑎

𝑛
󳨀→ V
𝑛
]

𝑜 [𝑎
1
󳨀→→ V

1
; . . . ; 𝑎

𝑛
󳨀→→ V

𝑛
]

𝑜 [𝑎
1
∙󳨀→ V
1
; . . . ; 𝑎

𝑛
∙󳨀→ V
𝑛
]

𝑜 [𝑎
1
∙󴀀󴀤 V
1
; . . . ; 𝑎

𝑛
∙󴀀󴀤 V
𝑛
]

𝑜 [𝑎
1
󳨐⇒ V
1
; . . . ; 𝑎

𝑛
󳨐⇒ V
𝑛
]

𝑜 [𝑎
1
󳨐⇒⇒ V

1
; . . . ; 𝑎

𝑛
󳨐⇒⇒ V

𝑛
]

(6)

can be rewritten as corresponding atomic F-molecules

𝑜 [𝑎
1
󳨀→ V
1
] ⋅ ⋅ ⋅ 𝑜 [𝑎

𝑛
󳨀→ V
𝑛
]

𝑜 [𝑎
1
󳨀→→ V

1
] ⋅ ⋅ ⋅ 𝑜 [𝑎

𝑛
󳨀→→ V

𝑛
]

𝑜 [𝑎
1
∙󳨀→ V
1
] ⋅ ⋅ ⋅ 𝑜 [𝑎

𝑛
∙󳨀→ V
𝑛
]

𝑜 [𝑎
1
∙󴀀󴀤 V
1
] ⋅ ⋅ ⋅ 𝑜 [𝑎

𝑛
∙󴀀󴀤 V
𝑛
]

𝑜 [𝑎
1
󳨐⇒ V
1
] ⋅ ⋅ ⋅ 𝑜 [𝑎

𝑛
󳨐⇒ V
𝑛
]

𝑜 [𝑎
1
󳨐⇒⇒ V

1
] ⋅ ⋅ ⋅ 𝑜 [𝑎

𝑛
󳨐⇒⇒ V

𝑛
] .

(7)

Wewill consider in the following that all F-molecule state-
ments are atomic. Now we are able to define the annotation
scheme of agent statements as follows.

Definition 10. Let 𝑆 = {𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑛
} be a set of statements,

let 𝐴 = {𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
} be a set of agents, let 𝑂 : 𝑆 × 𝐴

be a corresponding social ontology, let 𝜏 be a trust relation
between agents over 𝐴 × 𝐴, and let 𝜙 : 𝐴 → [0, 1] be a
function that assigns ranks to agents based on 𝜏. Then the
annotation ∧ of the statements is defined as follows:

𝑠 ∧ 𝜋, 𝜋 = ∑

(𝑎,𝑠)∈𝑂

𝜙 (𝑎) . (8)

An extension to such a probability annotation is the
situation when statements can have a negative valency. This
happens when a particular agent disagrees to a statement
of another agent. Such an annotation would be defined as
follows.

Definition 11. Let 𝑆 = {𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑛
} be a set of signed

statements, let 𝐴 = {𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
} be a set of agents, let

𝑂 : 𝑆 × 𝐴 be a corresponding social ontology, let 𝜏 be a trust
relation between agents over𝐴×𝐴, and let 𝜙 : 𝐴 → [0, 1] be
a function that assigns ranks to agents based on 𝜏. Then the
annotation ∧ of the statements is defined as follows:

𝑠 ∧ 𝜋, 𝜋

=

{{{

{{{

{

∑

(𝑎,𝑠)∈𝑂

𝜙 (𝑎) − ∑

(𝑎,−𝑠)∈𝑂

𝜙 (𝑎) if ∑

(𝑎,𝑠)∈𝑂

𝜙 (𝑎) > ∑

(𝑎,−𝑠)∈𝑂

𝜙 (𝑎) ,

0 if ∑

(𝑎,𝑠)∈𝑂

𝜙 (𝑎) ⩽ ∑

(𝑎,−𝑠)∈𝑂

𝜙 (𝑎) .

(9)

Such a definition is needed in order to avoid possible
negative probability (the case when disagreement is greater
than approvement).

5. Query Execution

In a concrete system we need to provide a mechanism for
query execution that will allow agents to issue queries of the
following form:

𝑄
𝑝
: 𝐹 ∧ 𝑝, (10)

where 𝐹 is any formula in frame logic and 𝑝 a probability.
The semantics of the query is: does the formula 𝐹 hold with
probability 𝑝 with regard to the social ontology?

The solution of this problem is equivalent to finding the
probabilities of all possible solutions of query 𝐹

𝑄 : 𝐹. (11)

Definition 12. Let 𝑅
𝑄

= {𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑛
} be a set of solutions

to query 𝑄; then 𝑅
𝑄𝑝

is a subset of 𝑅
𝑄
consisting of those

solutions from 𝑅
𝑄
which probability is greater or equal to 𝑝

and represents the set of solutions to query 𝑄
𝑝
.

The probability of a solution 𝑝(𝑟
𝑖
) is obtained by a set of

production rules.

Rule 1. If 𝑟
𝑖
is a conjunction of two formulas 𝑟

𝑖1
and 𝑟
𝑖2
, then

𝑝(𝑟
𝑖
) = 𝑝(𝑟

𝑖1
) ⋅ 𝑝(𝑟

𝑖2
).

Rule 2. If 𝑟
𝑖
is a disjunction of two formulas 𝑟

𝑖1
and 𝑟
𝑖2
, then

𝑝(𝑟
𝑖
) = 𝑝(𝑟

𝑖1
) + 𝑝(𝑟

𝑖2
).

Rule 3. If 𝑟
𝑖
is an F-molecule if the form is 𝑖[𝑎𝑛 → 𝑎V], then

𝑝(𝑟
𝑖
) = min(𝑝(𝑎𝑛), 𝑝(𝑎V)).

The implications of these three definitions are given in the
following four theorems.

Theorem 13. If 𝑟
𝑖
is an F-molecule of the form 𝑖[𝑎𝑛

1
→

𝑎V
1
, . . . , 𝑎𝑛

𝑛
→ 𝑎V

𝑛
], then 𝑝(𝑟

𝑖
) = ∏

𝑛

𝑖=1
min(𝑝(𝑎𝑛

𝑖
), 𝑝(𝑎V

𝑖
)).

Proof. Since 𝑟
𝑖
in this case can be written as:

𝑖 [𝑎𝑛1 󳨀→ 𝑎V
1] ∧ ⋅ ⋅ ⋅ ∧ 𝑖 [𝑎𝑛V 󳨀→ 𝑎VV] , (12)

and due to Rule 3 the probabilities of the compo-
nents of this conjunction are min(𝑝(𝑎𝑛

1
), 𝑝(𝑎V

1
)),. . . ,

min(𝑝(𝑎𝑛
𝑛
), 𝑝(𝑎V

𝑛
)). Due to Rule 1 the probability of a

conjunction is the product of the probabilities of its elements
which yields∏𝑛

𝑖=1
min(𝑝(𝑎𝑛

𝑖
), 𝑝(𝑎V

𝑖
)).

Theorem 14. If 𝑟
𝑖
is an F-molecule of the form 𝑖 : 𝑐[𝑎𝑛

1
→

𝑎V
1
, . . . , 𝑎𝑛

𝑛
→ 𝑎V

𝑛
], then 𝑝(𝑟

𝑖
) = 𝑝(𝑖 : 𝑐) ⋅

∏
𝑛

𝑖=1
min(𝑝(𝑎𝑛

𝑖
), 𝑝(𝑎V

𝑖
)).

Proof. Since the given F-molecule can be written as

𝑖 : 𝑐 ∧ 𝑖 [𝑎𝑛1 󳨀→ 𝑎V
1] ∧ ⋅ ⋅ ⋅ ∧ 𝑖 [𝑎𝑛𝑛 󳨀→ 𝑎V

𝑛] , (13)

the proof is analogous to the proof of Theorem 13.
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Theorem 15. If 𝑟
𝑖
is a statement of generalization of the form

𝑐
1
:: 𝑐
2
, if 𝑃 is the set of all paths between 𝑐

1
and 𝑐
2
, and if 󳶳 is

the relation of immediate generalization, then

𝑝 (𝑟
𝑖
) = ∑

𝑝𝑎∈𝑃

∏

𝑐𝑗󳶳𝑐𝑖∈𝑝𝑎

𝑝 (𝑐
𝑗
󳶳 𝑐
𝑖
) . (14)

Proof. Since any class hierarchy can be presented as a directed
graph, it is obvious that there has to be at least one path from
𝑐
1
to 𝑐
2
. If the opposite was true, the statement would not hold

and thus wouldn’t be in the initial solution set.
For the statement 𝑐

1
:: 𝑐
2
to hold, at least one path

statement of the form

𝑝𝑎
𝑥
= 𝑐
1
󳶳 𝑐
𝑥1

∧ 𝑐
𝑥1

󳶳 𝑐
𝑥2

∧ ⋅ ⋅ ⋅ ∧ 𝑐
𝑥𝑛

󳶳 𝑐
2 (15)

has to hold as well. This yields according to Rule 1 that the
probability of one path would be

𝑝 (𝑝𝑎
𝑥
) = ∏

𝑐𝑗󳶳𝑐𝑖∈𝑝𝑎

𝑝 (𝑐
𝑗
󳶳 𝑐
𝑖
) . (16)

Since there is a probability that there are multiple paths
which are alternative possibilities for proving the same
premise, it holds that

𝑝𝑎
1
∨ 𝑝𝑎
2
∨ ⋅ ⋅ ⋅ ∨ 𝑝𝑎

𝑚
. (17)

Thus from Rule 2 we get

𝑝 (𝑐
1
:: 𝑐
2
) = ∑

𝑝𝑎∈𝑃

∏

𝑐𝑗󳶳𝑐𝑖∈𝑝𝑎

𝑝 (𝑐
𝑗
󳶳 𝑐
𝑖
) (18)

what we wanted to prove.

Theorem 16. If 𝑟
𝑖
is a statement of classification of the form

𝑖 : 𝑐, then

𝑝 (𝑟
𝑖
) = 𝑝 (𝑖) ⋅ ∑

𝑝𝑎∈𝑃

∏

𝑐𝑗󳶳𝑐𝑖∈𝑝𝑎

𝑝 (𝑐
𝑗
󳶳 𝑐
𝑖
) . (19)

Proof. Since the statement 𝑟
𝑖
can be written as

𝑟
𝑖
= 𝑖 : 𝑐

1
∧ 𝑐
1
:: 𝑐, (20)

the given probability is a consequence of Rule 1 and
Theorem 15.

A special case of query execution is when the social
ontology contains Horn rules. Such rules are also subject to
probability annotation. Thus we have

rule : 𝐻𝑒𝑎𝑑 ←󳨀 𝐵𝑜𝑑𝑦∧𝑝, (21)

where 𝑝 is the annotated probability of the rule. In order to
provide a mechanism to deal with such probability annotated
rules, we will establish an extended definition by using an
additional counter predicate for each Horn rule. Thus, each
rule is extended as

𝐻𝑒𝑎𝑑 ←󳨀 𝐵𝑜𝑑𝑦 ∧ 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, (22)

whereby 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 is a predicate which will count
the number of times the particular rule has been successfully
executed for finding a given solution.

The query execution scheme has to be altered as well.
Instead of finding only the solutions from formula 𝐹 an
additional variable for every rule in the social ontology is
added to the formula. For 𝑛 rules we would thus have

𝑄 : 𝐹 ∧ 𝑐𝑜𝑢𝑛𝑡 (?𝑟
1
) ∧ 𝑐𝑜𝑢𝑛𝑡 (?𝑟

2
) ∧ ⋅ ⋅ ⋅ ∧ 𝑐𝑜𝑢𝑛𝑡 (?𝑟

𝑛
) .

(23)

In order to calculate the probability of a result obtained
by using some probability annotated rule we establish the
following definition.

Definition 17. Let 𝑟 be a result obtained with probability 𝑝
𝐹

by query 𝐹 from a social ontology, let 𝑝
𝑟
be the probability of

rule 𝑅, and let 𝑐 be the number of times rule 𝑅 was executed
during the derivation of result 𝑟. The final probability of 𝑟 is
then defined as

𝑝 (𝑟) = 𝑝
𝐹
⋅ 𝑝
𝑐

𝑟
. (24)

This definition is intuitive since for the obtainment of
result 𝑟 the rule 𝑅 has to hold 𝑐 times. Thus if a social
ontology contains 𝑛 rules (𝑅

1
, . . . , 𝑅

𝑛
) their corresponding

annotated probabilities are 𝑝
𝑟1
, . . . , 𝑝

𝑟𝑛
, and numbers of

execution during derivation of result 𝑟 are 𝑐
1
, . . . , 𝑐

𝑛
, then the

final probability is defined as

𝑝 (𝑟) = 𝑝
𝐹
⋅

𝑛

∏

𝑖=1

𝑝
𝑐𝑖

𝑟𝑖
. (25)

6. Annotated Reasoning Example

In order to demonstrate the approach we will take the
following (imaginary) example of anMAS (all images, names,
and motives are taken from the 1968 movie “Yellow Subma-
rine” produced by United Artists (UA) and King Features
Syndicate). Presume we have a problem domain entitled
“Pepperland” with objects entitled “Music” and “Purpose of
life.” Let us further presume that we have six agents col-
laborating on this problem, namely, “John,” “Paul,” “Ringo,”
“George,” “Max,” and “Glove.”

Another intelligent agent “Jeremy Hilary Boob Ph.D
(Nowhere man)” tries to reason about the domain, but as
it comes out, the domain is inconsistent. Table 1 shows the
different viewpoints of agents.

Due to the disagreement on different issues a normal
query would yield at least questionable results. For instance,
if the disagreement statements are ignored in frame logic
syntax, the domain would be represented with a set of
sentences similar to the following:

𝑜Music : evil noise

𝑜Music : harmonious sounds

𝑜Purpose of life [main purpose 󴀀󴀤

{glove, love, drums}] .

(26)
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Table 1: Viewpoints of “Pepperland” agents.

Music Purpose of life
John : harmonious sounds Main purpose → love
Paul : harmonious sounds Main purpose → love
Ringo : harmonious sounds Main purpose → drums
George Disagrees to (: evil noise) Main purpose → love
Max : evil noise Disagrees to (main purpose → love)
Glove : evil noise Main purpose → glove

John George

Ringo

Paul

Max

Glove

Figure 1: Social network of “Pepperland.”

Thus a query asking for the class to which the object
entitled “Music” belongs

? − 𝑜Music : ?𝑐𝑙𝑎𝑠𝑠 (27)

would yield two valid answers, namely, “evil noise” and “har-
monious sounds.” Likewise if querying for the value of the
“main purpose” attribute of object 𝑜Purpose of life, for example,

? − 𝑜Purpose of life [main purpose 󳨀→ ?𝑝𝑢𝑟𝑝𝑜𝑠𝑒] (28)

the valid answers would be “glove,” “love,” and “drums.” But,
these answers do not reflect the actual state of theMAS, since
one answer is more meaningful to it than the others.

Nowhere man thinks hard and comes up with a solution.
The agents form a social network of trust are shown in
Figure 1.

The figure reads as follows: Ringo trusts Paul and John,
Paul trusts John, John trusts George, George trusts John,Max
trusts Glove, and Glove does not trust anyone. Using the
previously described PageRank algorithm Nowhere man was
able to order the agents by their respective rank (Table 2).

Now, Nowhere man uses these rankings to annotate the
statements given by the agents:

𝑝 (evil noise) = Rank (Max)
+ Rank (Glove)
− Rank (George)

= 0.065609.

(29)

As we can see the probability that object 𝑜Music is and “evil
noise” is equal to the sumof agents’ rankingswho agree to this

Table 2: Trust ranking of the “Pepperland” agents.

Agent Ranking
John 0.303391
Glove 0.289855
George 0.267724
Paul 0.060667
Max 0.043478
Ringo 0.034884

statement (Glove andMax)minus the sumof agents’ rankings
who disagree (George). Note that if an agent had expressed
the same statement twice with the same attribute name, his
ranking would be counted only once. Also note that, if an
agent would have agreed and disagreed to a statement, his
sum would be zero, since he would be at the agreed and
disagreed side.

From this probability calculation Nowhere man is able to
conclude that the formula 𝑜Music : evil noise holds with
probability 0.065609. Likewise he calculates the probability
of 𝑜Music : harmonious sounds

𝑝 (harmonious sounds) = Rank (John)
+ Rank (Paul)
+ Rank (Ringo)
= 0.398942.

(30)

He can now conclude that 𝑜Music : harmonious sounds
holds more likely than 𝑜Music : evil noise with regard to the
social network of agents. From these calculations Nowhere
man concludes that the final solutions to query ? − 𝑜Music :

?𝑐𝑙𝑎𝑠𝑠 are

?𝑐𝑙𝑎𝑠𝑠 = evil noise∧ 0.065609

?𝑐𝑙𝑎𝑠𝑠 = harmonious sounds∧ 0.398942.

(31)

Nowhere man continues reasoning and calculates the
probabilities for the other queries

𝑝 (main purpose) = Rank (John)
+ Rank (Paul)
+ Rank (Ringo)
+ Rank (George)
− Rank (Max)
+ Rank (Glove)
= 0.913043,
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𝑝 (love) = Rank (John)

+ Rank (Paul)

+ Rank (George)

− Rank (Max)

= 0.588304,

𝑝 (glove) = Rank (Glove)

= 0.289855,

𝑝 (drums) = Rank (Ringo)

= 0.034884.

(32)
From these calculations Nowhere man concludes that

𝑜Purpose of life [main purpose → love] is most likely to hold
with 𝑝 = 0.588304. The final result of the query

? − 𝑜Purpose of life [main purpose 󳨀→ ?𝑝𝑢𝑟𝑝𝑜𝑠𝑒] (33)
is then

?𝑝𝑢𝑟𝑝𝑜𝑠𝑒 = 𝑙𝑜V𝑒 ∧ 0.588304

?𝑝𝑢𝑟𝑝𝑜𝑠𝑒 = 𝑔𝑙𝑜V𝑒 ∧ 0.289855

?𝑝𝑢𝑟𝑝𝑜𝑠𝑒 = 𝑑𝑟𝑢𝑚𝑠 ∧ 0.034884.

(34)

Now we can complicate things a bit to see the other
parts of the approach in action. Assume now that John has
expressed a statement that relates the object entitled “Music”
to the object entitled “Purpose of life” andnamed the attribute
“has to do with.” We would now have the following social
ontology:

𝑜Music : evil noise

𝑜Music : harmonious sounds

𝑜Music [󳨀→ 𝑜Purpose of life]

𝑜Purpose of life [main purpose 󴀀󴀤 {glove; love, drums}] .
(35)

Now suppose that Nowhere man wants to issue the
following query:

?− ?𝑜1 : ?𝑐 [?𝑎 󳨀→?𝑜2] ∧ ?𝑜2 [main purpose 󳨀→?𝑝] .

(36)
The solutions using “normal” frame logic are

𝑠
1
:

?𝑜1 = 𝑜Music

?𝑐 = evil noise

?𝑎 = has to do with

?𝑜2 = 𝑜Purpose of life

?𝑝 = glove,

𝑠
2
:

?𝑜1 = 𝑜Music

?𝑐 = evil noise

?𝑎 = has to do with

?𝑜2 = 𝑜Purpose of life

?𝑝 = love,

𝑠
3
:

?𝑜1 = 𝑜Music

?𝑐 = evil noise

?𝑎 = has to do with

?𝑜2 = 𝑜Purpose of life

?𝑝 = drums,

𝑠
4
:

?𝑜1 = 𝑜Music

?𝑐 = harmonious sounds

?𝑎 = has to do with

?𝑜2 = 𝑜Purpose of life

?𝑝 = glove,

𝑠
5
:

?𝑜1 = 𝑜Music

?𝑐 = harmonious sounds

?𝑎 = has to do with

?𝑜2 = 𝑜Purpose of life

?𝑝 = love,
𝑠
6
:

?𝑜1 = 𝑜Music

?𝑐 = harmonious sounds

?𝑎 = has to do with

?𝑜2 = 𝑜Purpose of life

?𝑝 = drums.
(37)

To calculate the probabilities Nowhere man uses the fol-
lowing procedure. The variables in the query are exchanged
with the actual values for a given solution:

s
1
: 𝑜Music : evil noise [has to do with 󳨀→

𝑜Purpose of life] ∧ 𝑜Purpose of life[main purpose 󳨀→

glove],
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s
2
: 𝑜Music : evil noise [has to do with 󳨀→

𝑜Purpose of life] ∧ 𝑜Purpose of life[main purpose 󳨀→

love],

s
3
: 𝑜Music : evil noise [has to do with 󳨀→

𝑜Purpose of life] ∧ 𝑜Purpose of life[main purpose 󳨀→

drums],

s
4
: 𝑜Music : harmonious sounds [has to do with 󳨀→

𝑜Purpose of life] ∧ 𝑜Purpose of life[main purpose 󳨀→

glove],

s
5
: 𝑜Music : harmonious sounds [has to do with 󳨀→

𝑜Purpose of life] ∧ 𝑜Purpose of life[main purpose 󳨀→

love],

s
6
: 𝑜Music : harmonious sounds [has to do with 󳨀→

𝑜Purpose of life] ∧ 𝑜Purpose of life[main purpose 󳨀→

drums].

Now according to rule 1 the conjunction becomes

𝑝 (𝑠
1
) = 𝑝 (𝑜Music : evil noise [has to do with

󳨀→ 𝑜Purpose of life])

⋅ 𝑝 (𝑜Purpose of life [main purpose 󳨀→ glove]) ,

𝑝 (𝑠
2
) = 𝑝 (𝑜Music : evil noise [has to do with

󳨀→ 𝑜Purpose of life])

⋅ 𝑝 (𝑜Purpose of life [main purpose 󳨀→ love]) ,

𝑝 (𝑠
3
) = 𝑝 (𝑜Music : evil noise [has to do with

󳨀→ 𝑜Purpose of life])

⋅ 𝑝 (𝑜Purpose of life [main purpose 󳨀→ drums]) ,

𝑝 (𝑠
4
) = 𝑝 (𝑜Music : harmonious sounds

[has to do with 󳨀→ 𝑜Purpose of life])

⋅ 𝑝 (𝑜Purpose of life [main purpose 󳨀→ glove]) ,

𝑝 (𝑠
5
) = 𝑝 (𝑜Music : harmonious sounds

[has to do with 󳨀→ 𝑜Purpose of life])

⋅ 𝑝 (𝑜Purpose of life [main purpose 󳨀→ love]) ,

𝑝 (𝑠
6
) = 𝑝 (𝑜Music : harmonious sounds

[has to do with 󳨀→ 𝑜Purpose of life])

⋅ 𝑝 (𝑜Purpose of life [main purpose 󳨀→ drums]) .
(38)

The second parts of the equationswere already calculated,
and according to Theorem 14 the first parts of the equations
become

𝑝 (𝑠
1
) = 𝑝 (𝑜Music : evil noise)

⋅min (𝑝 (has to do with) , 𝑝 (𝑜Purpose of life))

⋅ 0.289855,

𝑝 (𝑠
2
) = 𝑝 (𝑜Music : evil noise)

⋅min (𝑝 (has to do with) , 𝑝 (𝑜Purpose of life))

⋅ 0.588304,

𝑝 (𝑠
3
) = 𝑝 (𝑜Music : evil noise)

⋅min (𝑝 (has to do with) , 𝑝 (𝑜Purpose of life))

⋅ 0.034884,

𝑝 (𝑠
4
) = 𝑝 (𝑜Music : harmonious sounds)

⋅min (𝑝 (has to do with) , 𝑝 (𝑜Purpose of life))

⋅ 0.289855,

𝑝 (𝑠
5
) = 𝑝 (𝑜Music : harmonious sounds)

⋅min (𝑝 (has to do with) , 𝑝 (𝑜Purpose of life))

⋅ 0.588304,

𝑝 (𝑠
6
) = 𝑝 (𝑜Music : harmonious sounds)

⋅min (𝑝 (has to do with) , 𝑝 (𝑜Purpose of life))

⋅ 0.034884.

(39)

We already know the probabilities of the is-a statement,
and since

𝑝 (has to do with) = 𝑝 (𝑜Purpose of life)

= 𝜙 (John) = 0.303391,

(40)

the equations become

𝑝 (𝑠
1
) = 0.065609 ⋅ 0.303391 ⋅ 0.289855,

𝑝 (𝑠
2
) = 0.065609 ⋅ 0.303391 ⋅ 0.588304,

𝑝 (𝑠
3
) = 0.065609 ⋅ 0.303391 ⋅ 0.034884,

𝑝 (𝑠
4
) = 0.398942 ⋅ 0.303391 ⋅ 0.289855,

𝑝 (𝑠
5
) = 0.398942 ⋅ 0.303391 ⋅ 0.588304,

𝑝 (𝑠
6
) = 0.398942 ⋅ 0.303391 ⋅ 0.034884,

(41)



ISRN Artificial Intelligence 9

and finally

𝑝 (𝑠
1
) = 0.005770,

𝑝 (𝑠
2
) = 0.011710,

𝑝 (𝑠
3
) = 0.000694,

𝑝 (𝑠
4
) = 0.035083,

𝑝 (𝑠
5
) = 0.071206,

𝑝 (𝑠
6
) = 0.004222.

(42)

7. Amalgamation

To provide a mechanism for agents to query multiple anno-
tated social ontologies we decided to use the principles of
amalgamation. The model of knowledge base amalgamation
which is based on online querying of underlaying sources is
described in [9]. The intention of amalgamation is to show if
a given solution holds in any of the underlaying sources.

Since the local annotations of different ontologies that are
subject to amalgamation donot necessarily hold for the global
ontology, we need to introduce a mechanism to integrate
the ontologies in a coherent way which will yield global
annotations. Since the set of ontologies is a product of a set
of respective social agent networks surrounding them, we
decided to firstly integrate the social networks in order to
provide the necessary foundation for global annotation.

Definition 18. The integration of 𝑛 social networks
represented with the valued digraphs (N

1
,A
1
,V
1
),. . . ,

(N
𝑛
,A
𝑛
,V
𝑛
) is given as the valued digraph

(N
1
∪ ⋅ ⋅ ⋅ ∪ N

𝑧
,A
1
∪ ⋅ ⋅ ⋅ ∪ A

𝑛
,V), where V is a function

V : N
1
∪ ⋅ ⋅ ⋅ ∪N

𝑛
→ R that attaches values to nodes.

In particular V will be a social network analysis metric
or in our case a variant of the eigenvector centrality. Now we
can define the integration of ontologies as follows.

Definition 19. Let 𝑂
1
, . . . , 𝑂

𝑛
be sets of statements as defined

above representing particular social ontologies. The integra-
tion is given as 𝑂

1
∪ ⋅ ⋅ ⋅ ∪ 𝑂

𝑛
.

What remains is to provide the annotation that is at the
same time the amalgamation scheme.

Definition 20. Let (N
1
∪ ⋅ ⋅ ⋅ ∪ N

𝑛
,A
1
∪ ⋅ ⋅ ⋅ ∪ A

𝑛
,V) be the

integration of 𝑛 social networks of agents, let 𝑂
1
∪ ⋅ ⋅ ⋅ ∪ 𝑂

𝑛

be the integration of their corresponding social ontologies,
let 𝜏 be a trust relation between agents, and let 𝜙 : 𝐴 →

[0, 1] be a function that assigns ranks to agents based on 𝜏;
then the amalgamated annotation scheme ∧ of the metadata
statements is defined as follows:

𝑠 ∧ 𝜋, 𝜋 = ∑

(𝑎,𝑠)∈𝑂1∪⋅⋅⋅∪𝑂𝑛

𝜙 (𝑎) . (43)

John

George

Ringo

Paul

Young Fred

Figure 2: Social network of “Yellow submarine.”

8. Amalgamated Annotated
Reasoning Example

To demonstrate the amalgamation approach proposed here
let us again assume that our intelligent agent “Jeremy Hilary
Boob Ph.D. (Nowhere man)” tries to reason about the “Pep-
perland” domain, but this time he wants to draw conclusions
from the domain “Yellow submarine” as well. The “Yellow
submarine” domain is being modeled by “Ringo,” “John,”
“Paul,” “George,” and “Young Fred” which form the social
network shown in Figure 2. Since the contents of this domain
as well as the particular ranks of the agents in it will not be
used further in the example, they have been left out.

Since Nowhere man wants to reason about both domains
he needs to find a way to amalgamate these two domains.

Again he thinks hard and comes up with the following
solution. All he needs to do is to integrate the two social
networks together and recalculate the ranks of all agents of
this newly established social network in order to reannotate
the metainformation in both domains.

Since the networks of “Pepperland” and “Yellow subma-
rine” can be represented as the following sets of tuples:

GPepperland = {

(Ringo, John) ,

(Ringo,Paul) ,

(Paul, John) ,

(John,George) ,

(George, John) ,

(Max,Glove)

} ,

(44)
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GYellow submarine = {

(Ringo, John) ,

(Ringo,Young Fred) ,

(John,Paul) ,

(Young Fred,Ringo) ,

(Young Fred,George)

} ,

(45)

all he needs is to find G
𝐴

= GPepperland ∪ GYellow submarine and
recalculate the ranks of this new network. Thus

G
𝐴
= {

(Ringo, John) ,

(Ringo,Paul) ,

(Paul, John) ,

(John,George) ,

(George, John) ,

(Max,Glove)

(Ringo,Young Fred) ,

(John,Paul) ,

(Young Fred,Ringo) ,

(Young Fred,George)

} .

(46)

The newly established integrated social network is shown
in Figure 3.

Now Nowhere man calculates the ranks of this new
network and uses the previously described procedure to
annotate the meta information (Section 4) and reason about
the amalgamated domain (Section 5).

9. Towards a Distributed Application

As we could see from the previous examples, in order to gain
accurate knowledge and accurate probabilities about a certain
domain, we had to introduce an all-knowing agent (Nowhere
man). This agent had to be aware of all knowledge of each
agent and all trust relations they engage in. Such a scenario
is not feasible for large-scale MAS (LSMAS). Thus we need
to provide a mechanism to let agents reason in a distributed
manner and still get accurate enough results.

This problem consists of two parts; namely, an agent
needs (1) to acquire an accurate approximation of the ranks
of each agent in its network and (2) to acquire knowledge
about the knowledge of other agents. The first part deals
with annotation and the second with amalgamation of the
ontology.

John

George

Ringo

Paul

Max

Glove

Young Fred

Figure 3: The integration of two social networks.

A solution to the first problemmight be to calculate ranks
in a distributed manner, as has been shown in [10]. In this
way agents acquire approximate knowledge about the ranks
of their neighbouring agents.

The second problem could be used by the proposed algo-
rithm for amalgamation. Each agent can ask agents it trusts
about their knowledge and then amalgamate their ontology
with its own. In this way the agent acquires continuously
better knowledge about its local environment. We could have
easily considered Nowhere man in the last example to be
doing the just described procedure—asking one agent after
another about their knowledge.

10. Possible Application areas

In order to provide a practical example, consider a network of
store-and-forward e-mail routing agents in which spam bots
try to send unsolicitedmessages. Some routers (agents)might
be under the control of spam bots and send out messages
which might be malicious to users and other routers. The
domain these agents reason about is the domain of spam
messages—for example, which message from which user
forwarded by which router and what kind of content is spam
and should be discarded.

This scenario can be modeled by using the previously
described approach: agents form trust relations and mutually
exchange new rules about spam filtering. An agent will
amalgamate rules (ontologies) of other agents with its own
but will decide about a message (using an adequate query)
based not only on the given rules but also on the probability
annotation given by the network of trust.

11. Related Work

Alternative approaches to measuring trust in the form of the
reputation inference and the SUNNYalgorithmare presented
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in [11, 12], respectively. Both of these could have been used
instead of PageRank in the approach outlined herein. A
much more elaborated system of measuring reputation and
likewise trust in MAS called the Regret system is presented
in [13]. It is based on three different dimensions of reputation
(individual, social, and ontological) and allows formeasuring
several types of reputation in parallel. The approach is partly
incompatible with our approach, but several adjustments
would allow us to combine both approaches.

A different approach to a similar problem related to
trust management in the Semantic Web is presented in [14].
It provides a profound model based on path algebra and
inspired by Markov models. It provides a method of deriving
the degree of belief in a statement that is explicitly asserted by
one ormore individuals in a network of trust, whilst a calculus
for computing the belief in derived statements is left to future
research. Herein a formalism for deriving the belief in any
computable statement is presented for F-logic.

12. Conclusion

When agents have to solve a problem collectively, they have
to reach consensus about the domain since their opinions
can differ. Especially when agents are self-interested, their
goals in a given situation can vary quite intensively. Herein
an approach to reaching this consensus based on a network
of trust between agents has been presented which is a
generalization of the work done in [15, 16] which dealt
with semantic wiki systems and semantic social networks,
respectively. By using a network analysis trust ranks of
agents can be calculated which can be interpreted as an
approximation of the probability that a certain agent will say
the truth. Using this interpretation an annotation scheme
for F-logic based Horn programs has been developed which
allows agents to reason about the modeled domain and make
decisions based on the probability that a certain statement
(derived or explicit) is true. Based on this annotation scheme
and the network of trust an amalgamation scheme has
been developed as well, which allow agents to reason about
multiple domains.

Still, there are open questions: how does the approach
scale in fully decentralized environments like LSMAS? What
are the implications of self-interest or could agents develop
strategies to “lie” on purpose to attain their goals? These and
similar questions are subject to our future research.
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