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Abstract

The poster presents one polynomial variant of the problem of Diophantus, described
by A. Jurasić [16], and ilustrates that results with some examples from the paper
of A. Dujella and A. Jurasić [12]. We proved that there does not exist a set with
more than 98 nonzero polynomials in Z[X], such that the product of any two of
them plus a quadratic polynomial n is a square of a polynomial from Z[X] (we
exclude the possibility that all elements of such set are constant multiples of a
linear polynomial p ∈ Z[X] such that p2|n). Specially, we prove that if such a set
contains only polynomials of odd degree, then it has at most 18 elements.
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1 Diophantine m-tuples

Diophantus of Alexandria [2] first studied the problem of finding sets with the
property that the product of any two of its distinct elements increased by one
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is a perfect square. Such a set consisting of m elements is therefore called
a Diophantine m-tuple. Diophantus found the first Diophantine quadruple
of rational numbers { 1

16
, 33

16
, 17

4
, 105

16
}, while the first Diophantine quadruple

of integers {1, 3, 8, 120} was found by Fermat. Many generalizations of this
problem were considered since then, for example by adding a fixed integer
n instead of 1, looking at kth powers instead of squares, or considering the
problem over other domains than Z or Q.

Definition 1.1 Let n be a nonzero integer. A set of m different positive
integers {a1, a2, ..., am} is called a Diophantine m-tuple with the property D(n)
or simply D(n)-m-tuple if the product aiaj + n is a perfect square for all
1 ≤ i < j ≤ m.

Diophantus [2] found the first such quadruple {1, 33, 68, 105} with the
property D(256). The first D(1)-quadruple is the above mentioned Fermat’s
set. The folklore conjecture is that there does not exist a D(1)-quintuple.
Baker and Davenport [1] proved that Fermat’s set cannot be extended to a
D(1)-quintuple. Dujella [6] proved that there does not exist a D(1)-sextuple
and there are only finitely many D(1)-quintuples. But, for example, the set
{1, 33, 105, 320, 18240} has the property D(256) [4], and D(2985984) is the
property of the set {99, 315, 9920, 32768, 44460, 19534284} [13]. The natural
question is to find upper bounds for the numbers Mn defined by

Mn = sup{|S| : S has the property D(n)}
where |S| denotes the number of elements in the set S. Dujella [5,3] proved
that Mn ≤ 31 for |n| ≤ 400, and Mn < 15.476 log |n| for |n| > 400.

The first polynomial variant of the above problem was studied by Jones
[15,14] and it was for the case n = 1.

Definition 1.2 Let n ∈ Z[X] and let {a1, a2, ..., am} be a set of m nonzero
polynomials with integer coefficients. We assume that there does not ex-
ist a polynomial p ∈ Z[X] such that a1

p
,...,am

p
and n

p2 are integers. The set

{a1, a2, ..., am} is called a polynomial D(n)-m-tuple if for all 1 ≤ i < j ≤ m
the following holds: ai · aj + n = b2

ij where bij ∈ Z[X].

For n ∈ Z the assumption concerning the polynomial p means that not
all elements of {a1, a2, ..., am} are allowed to be constant. In analogy to the
above results we are interested in the size of

Pn = sup{|S| : S is a polynomial D(n)-tuple}.
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Dujella and Fuchs [7] proved that P−1 = 3 and their result from [8] implies
that P1 = 4. Moreover, from [11, Theorem 1] it follows that Pn ≤ 7 for all
n ∈ Z\{0}. It is an improvement of the previous bound Pn ≤ 22, which
follows from [5, Theorem 1]. Dujella and Fuchs, jointly with Tichy [9] and
later with Walsh [10], considered the case n = μ1X + μ0 with integers μ1 �= 0
and μ0. They defined

L = sup{|S| : S is a polynomial D(μ1X+μ0)-tuple for some μ1 �= 0, μ0 ∈ Z},

and they denoted by Lk the number of polynomials of degree k in a polynomial
D(μ1X +μ0)-tuple S. The results from [10] are sharp bounds L0 ≤ 1, L1 ≤ 4,
Lk ≤ 3 for all k ≥ 2, and finally L ≤ 12.

2 Diophantine m-tuples for quadratic polynomials

We handled the case where n is a quadratic polynomial in Z[X], which is more
complicated than the case with linear n, mostly because quadratic polynomials
need not be irreducible. Let us define

Q = sup{|S| : S is a polynomial D(μ2X
2 + μ1X + μ0)-tuple

for some μ2 �= 0, μ1, μ0 ∈ Z}.
Let us also denote by Qk the number of polynomials of degree k in a polynomial
D(μ2X

2 + μ1X + μ0)-tuple S. We proved the following theorem:

Theorem 2.1 There are at most 98 elements in a polynomial D(n)-tuple for
a quadratic polynomial n, i.e.

Q ≤ 98.

In the proof of Theorem 2.1, we also proved the following statement.

Corollary 2.2 If a polynomial D(n)-m-tuple for a quadratic n contains only
polynomials of odd degree, then m ≤ 18.

In the proof of Theorem 2.1, we followed the strategy used in [9] and [10]
for linear n. First, we estimated the numbers Qk of polynomials of degree k.
We proved:

Proposition 2.3

1.) Q0 ≤ 2.

2.) Q1 ≤ 4.
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Proposition 2.3 completely solves the problem for constant and linear poly-
nomials because, for example, the set {3, 5} is a polynomial D(9X2+24X+1)-
pair, and the set

{2X, 10X + 20, 4X + 14, 2X + 8}
is a polynomial D(−4X2 − 16X + 9)-quadruple. By further analysis, we got:

Proposition 2.4

1.) Q2 ≤ 81.

2.) Q3 ≤ 5.

3.) Q4 ≤ 6.

4.) Qk ≤ 3 for k ≥ 5.

Let us mention that it is not obvious that the number Q2 is bounded, so
the result from Proposition 2.4 1.) is nontrivial. Quadratic polynomials have
the major contribution to the bound from Theorem 2.1. The bound from
Proposition 2.4 4.) is sharp. For example, the set

{X2l−1 + X, X2l−1 + 2X l + 2X, 4X2l−1 + 4X l + 5X}

is a polynomial D(−X2)-triple for any integer l ≥ 2, and the set

{X2l + X l, X2l + X l + 4X, 4X2l + 4X l + 8X}

is a polynomial D(4X2)-triple for any integer l ≥ 1.

The poster also presents some other examples of the polynomial D(n)-
triples and quadruples, where n is a quadratic polynomial. These examples
show that several auxiliary results from the proofs of the cases k = 2, 3, 4
from Proposition 2.4 are sharp, i.e. in the situations when the existence of
Diophantine triples with certain properties cannot be excluded, such triples
indeed exist.
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A. Jurasić / Electronic Notes in Discrete Mathematics 43 (2013) 21–2524



Author's personal copy

References

[1] Baker A., and H. Davenport, The equations 3x2 − 2 = y2 and 8x2 − 7 = z2,
Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137.

[2] Diophantus of Alexandria, “Arithmetics and the Book of Polygonal Numbers”,
(I. G. Bashmakova, Ed.) (Nauka 1974), 85–86, 215–217.

[3] Dujella, A., Bounds for the size of sets with the property D(n), Glas. Mat. Ser.
III 39 (2004), 199–205.

[4] Dujella, A., On Diophantine quintuples, Acta Arith. 81 (1997), 69–79.

[5] Dujella, A., On the size of Diophantine m-tuples, Math. Proc. Cambridge
Philos. Soc. 132 (2002), 23–33.

[6] Dujella, A., There are only finitely many Diophantine quintuples, J. Reine
Angew. Math. 566 (2004), 183–214.

[7] Dujella, A., and C. Fuchs, A polynomial variant of a problem of Diophantus
and Euler, Rocky Mountain J. Math. 33 (2003), 797–811.

[8] Dujella, A., and C. Fuchs, Complete solution of the polynomial version of a
problem of Diophantus, J. Number Theory 106 (2004), 326–344.

[9] Dujella, A., C. Fuchs, and R. F. Tichy, Diophantine m-tuples for linear
polynomials, Period. Math. Hungar. 45 (2002), 21–33.

[10] Dujella, A., C. Fuchs, and G. Walsh, Diophantine m-tuples for linear
polynomials. II. Equal degrees, J. Number Theory 120 (2006), 213–228.
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