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Abstract This paper presents the design and the applica-1

tion of asynchronous models of parallel evolutionary algo-2

rithms. An overview of the existing parallel evolutionary3

algorithm (PEA) models and available implementations is4

given. We present new PEA models in the form of asynchro-5

nous algorithms and implicit parallelization, as well as exper-6

imental data on their efficiency. The paper also discusses the7

definition of speedup in PEAs and proposes an appropriate8

speedup measurement procedure. The described parallel EA9

algorithms are tested on problems with varying degrees of10

computational complexity. The results show good efficiency11

of asynchronous and implicit models compared to existing12

parallel algorithms.13

Keywords Evolutionary algorithms · Parallelization ·14

Asynchronous algorithms15

1 Introduction16

Evolutionary algorithms (EAs) are search algorithms inspired17

by natural selection that have been shown to be very success-18

ful in many applications and in different domains. The use19

of EAs and other metaheuristics meets the need to generate20

acceptable solutions for hard optimization problems, where21

the exact level of satisfiable solution quality must be deter-22

mined for each application in question.23

When utilizing EAs, however, some problems may arise24

which can be effectively solved with some form of paral-25
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lelization: for some applications the data structures involved 26

in order to evaluate solutions may be very large and need to be 27

distributed among processing units for efficient computation. 28

Solution evaluation can be (and usually is) time consuming, 29

which presents a problem for methods that rely on frequent 30

sampling in search space. 31

This paper proposes new models of parallel evolutionary 32

algorithms and compares their efficiency, in terms of evolu- 33

tion speedup, with existing algorithms. The described models 34

allow asynchronous execution where the same data structure 35

- individuals - may be modified by multiple processing ele- 36

ments at the same time. The distinction is also made between 37

explicit parallel algorithms, which correspond to all existing 38

models, and implicit parallelization, in which some portions 39

of a sequential algorithm are executed in parallel. We inves- 40

tigate these models on applications with varying computa- 41

tional demands in different parts of the evolutionary algo- 42

rithm. These applications pose contradictory requirements 43

regarding parallelization, which allows the comparison of 44

various parallelization methods. The results show that asyn- 45

chronous and implicit parallelization methods exhibit perfor- 46

mance that is not worse, and in some conditions better, than 47

the existing models. 48

Furthermore, measurement of the speedup of evolution- 49

ary algorithms is discussed and an adapted speedup measur- 50

ing procedure is proposed. The presented models are imple- 51

mented in an EA framework which allows the deployment 52

of different parallel models without recompilation or code 53

adaptation simply by choosing different configuration para- 54

meters. 55

The paper is organized as follows: the next section dis- 56

cusses categorization of evolutionary algorithms and existing 57

parallel models and architectures. Section 3 describes new 58

parallel models and outlines their implementation. In Sect. 4 59

the applications being solved are presented, and Sect. 5 60
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D. Jackobović et al.

discusses the speedup measuring methodology. Section 661

shows the obtained experimental results and Sect. 7 gives62

a short conclusion and some perspectives for further work.63

2 Parallel evolutionary algorithms64

2.1 Evolutionary algorithm models65

Evolutionary algorithms, whether serial or parallel, can be66

divided in two main subclasses: panmictic and structured67

EAs Alba and Tomassini (2002). In the case of panmictic or68

global evolutionary algorithms, selection takes place glob-69

ally and any individual can compete and mate with any other.70

Unlike the panmictic one, structured evolutionary algorithms71

deal with subpopulations, where the population is divided72

into several subpopulations which may or may not overlap.73

Two popular classes of panmictic EAs are generational74

and steady-state algorithms. In a generational model a whole75

new population of N individuals replaces the old one. Steady-76

state EA, on the other hand, at every step creates one new77

individual which is inserted back into the population. Those78

models may be viewed as two extremes of generation gap79

algorithms: in generation gap algorithms a given number of80

the individuals M (mortality) are replaced with new ones81

(generational EAs have a mortality of M = N and steady-82

state EAs a mortality of M = 1).83

Widely known types of structured EAs are distributed84

(DEAs) and cellular evolutionary algorithms (CEAs). DEAs85

are also called island models or coarse-grained as they deal86

with isolated subpopulations which exchange individuals. On87

the other hand, in a CEA, or fine-grained EA, an individual88

has its own pool of potential mates defined by neighboring89

individuals (one individual may belong to many pools).90

2.2 Parallel evolutionary algorithms and applications91

Parallel evolutionary algorithms (PEAs) can be classified92

into following classes: master-slave or global PEAs, coarse93

grained or fine grained distributed EAs and hybrid models.94

Master-slave or global PEA has a single population and95

usually executes only evaluation in parallel. Nevertheless,96

slaves can perform all or some of genetic operators on the97

subset of population which is defined by the master. Each98

individual may compete (selection) and mate (reproduction)99

with any other, as in the serial EA. If the master does not100

access (use in any way) the subset of the population that a101

slave currently accesses (e.g. evaluates), then the algorithm is102

synchronous. A synchronous master-slave EA has the same103

properties as a serial EA, except the speed of execution.104

Distributed EAs have many names: they are also called105

multiple-deme parallel EAs, island EAs or coarse grained106

EAs. DEAs have a relatively small number of demes with107

many individuals which are occasionally migrated. The 108

migration mechanism requires several additional parame- 109

ters to be defined: communication topology, migration con- 110

dition, number of migrants, migrant selection and integration 111

method. The demes themselves may overlap so the same set 112

of individuals belongs to more than one deme Nowostawski 113

and Poli (1999). 114

Hybrid (or hierarchical) parallel EAs combine some of 115

previously described methods in a single algorithm: exam- 116

ples include multiple-deme models with master-slave algo- 117

rithms run on each deme, demes divides into smaller sub- 118

populations etc. 119

2.3 Related work 120

The above models have been used extensively in a number of 121

applications. Global PEAs have been used on various prob- 122

lems but almost always distributing the evaluation phase only 123

(Cantú-Paz 2007; Cantú-Paz 1998; Borovska 2006), assum- 124

ing it to be the most time consuming. Distributed EAs are a 125

viable choice with numerous computing nodes being highly 126

available (Park et al. 2008; He et al. 2007; Melab et al. 2006; 127

Alba et al. 2002; Nowostawski and Poli 1999; Alba et al. 128

2004), and in this model high speedups were easily attainable. 129

Extended models are presented recently: in (Acampora et 130

al. 2011) the authors apply hierarchical distribution among 131

processor cores and develop a distributed memetic (hybrid) 132

solution for the e-learning experience binding problem, and 133

in (Acampora et al. 2011) apply the model on a distrib- 134

uted system with Gaussian-based migration operator. With- 135

out concentrating primarily on speedup, the structured popu- 136

lation algorithms may help improve the convergence proper- 137

ties, as shown for distributed differential evolution in (Weber 138

et al. 2011). Rather than the population, the local search oper- 139

ators can also be structured in parallel (Caraffini et al. 2013) 140

by randomly choosing the appropriate operator, although 141

experiments with concurrent execution were not reported. 142

The fine-grained parallel EAs, on the other hand, appear 143

in a smaller number, as for their implementation often a spe- 144

cialized hardware platform is needed, such as an FPGA pro- 145

grammable array (Eklund 2004). 146

Considering the available literature, the asynchronous 147

PEA models have not been extensively investigated nor used 148

in practice. To avoid confusion, we will try to clarify the dis- 149

tinction between the synchronous and asynchronous algo- 150

rithm behavior. In a synchronous algorithm, when a data 151

structure (individual) is being accessed by a processing ele- 152

ment, e.g. its fitness is being evaluated or its genetic material 153

changed, this data structure cannot be changed by any other 154

processing element. A common example occurs when the 155

master waits for all the workers to finish evaluating the indi- 156

viduals. 157
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Asynchronous and implicitly parallel evolutionary computation models

An asynchronous algorithm, on the other hand, is any algo-158

rithm that doesn’t comply with the above rule, i.e. if multi-159

ple processing elements (threads, processes) may access the160

same data structure at the same time. For example, this may161

be the use of an individual in crossover or selection (by the162

master) while its fitness is currently being evaluated (by a163

worker). This definition should not be confused with asyn-164

chronous migration between islands in distributed parallel165

EAs (Alba and Troya (2001)), where a a synchronous algo-166

rithm is still employed.167

The described behavior is counterintuitive at the first168

glance, but the motivation may lie in the reduction of169

idle time, which inevitably occurs when a processing ele-170

ment must wait for the data structure to become avail-171

able. The justification of this approach must therefore be172

experimentally verified for any given type of asynchronous173

behavior.174

The usability of a parallel model is often increased if a soft-175

ware implementation is available which the user may apply176

to the specific optimization problem. At the moment, there177

are a number of frameworks available for parallel evolution-178

ary algorithms; some of the more prominent are shown in179

Table 1. Most of the existing frameworks offer parallelism180

only in the form of island models and/or master-slave evalu-181

ation parallelization. The deployment of a hybrid (hierarchi-182

cal) parallel model is generally not readily available with the183

frameworks, at least not without additional intervention in184

code. Furthermore, the only object of parallelization offered185

in master-slave models is the evaluation.186

3 New models of parallel evolutionary algorithm187

This section describes new parallel EA models and states188

main differences to the existing ones. We distinguish two189

parallel algorithm types: explicitly parallel and implicitly190

parallel algorithms.191

3.1 Explicit parallelism 192

An explicitly parallel algorithm presumes execution in more 193

than one instance (more than one process), it may assign 194

different roles to different processes and may use ‘send’ or 195

‘receive’ data operations. Explicit parallel algorithms are 196

usually expressed with message passing paradigm using 197

primitives such as ‘send/receive individuals’, ‘send/receive 198

fitness values’, ‘send/receive control message’, ‘synchro- 199

nize’ etc. They also have predefined roles for which the total 200

number may be constrained – e.g. only one master and mul- 201

tiple slave processes. The explicit parallelism is the most 202

common way of defining a PEA behavior. 203

The implicit parallelism concept, on the other hand, 204

employs a sequential algorithm and, unlike the explicit paral- 205

lelization, it does not define how the evolution is parallelized, 206

but states what parts of the algorithm should be executed in 207

parallel. The latter approach is described in Sect. 3.2. 208

For illustration and comparison purposes, we first give an 209

example of an explicitly parallel algorithm, synchronous gen- 210

erational global parallel EA (SGenGPEA), listed as Algo- 211

rithm 1. This algorithm is a ‘standard’ master-slave PEA, 212

found in almost all PEA implementations, which is coupled 213

with generational selection and distributes only evaluation 214

among slave processes. 215

SGenGPEA defines two roles: one process as the master 216

and one or more processes as workers. The algorithm is con- 217

sidered synchronous since its behavior is equivalent to the 218

sequential generational algorithm it encapsulates (note that 219

it can be used with different variants of generational EAs). 220

It is also considered global (panmictic) since any individual 221

it operates on may interact with any other. The SGenGPEA 222

algorithm will be used as a baseline for further efficiency 223

analysis. 224

In this context, we present a new explicitly parallel algo- 225

rithm that is intended to be used with a steady-state replace- 226

ment mechanism and is denoted as asynchronous elimina- 227

Table 1 Overview of parallel

EA implementations
Framework Parallel models

ParadisEO (Melab et al. (2006), Cahon et al. (2004))

http://paradiseo.gforge.inria.fr/

distributed EA, master-slave with parallel

evaluation, single solution parallel

evaluation

MALLBA http://www.lsi.upc.es/~mallba/ distributed EA

Distributed BEAGLE (Gagne et al. 2003)

http://beagle.gel.ulaval.ca/distributed/

distributed EA, master-slave with parallel

evaluation

JDEAL http://laseeb.isr.ist.utl.pt/sw/jdeal/ master-slave with parallel evaluation

ECJ http://www.cs.gmu.edu/~eclab/projects/ecj/ distributed EA, master-slave with parallel

evaluation, multithreaded evaluation or

operators

EvA2 http://www.ra.cs.uni-tuebingen.de/software/EvA2/ distributed EA

DREAM http://www.dr-ea-m.org/ distributed EA
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D. Jackobović et al.

Algorithm 1 Synchronous generational global parallel EA -

SGenGPEA
Role: MASTER (single)

while evolution not done do

perform one generation of a generational EA (without evaluation)

send jobsize individuals to each WORKER;

while individuals to evaluate do

receive fitness values from a WORKER;

send jobsize individuals to the WORKER;

end while

while all fitness values not received do

receive fitness values from a WORKER;

end while

end while

Role: WORKER (many)

while evolution not done do

receive individuals from MASTER;

evaluate individuals;

send fitness values to MASTER;

end while

Algorithm 2 Asynchronous elimination global parallel EA

- AEliGPEA
Role: MASTER (single)

while evolution not done do

while generation not done do

repeat

perform one iteration of steady-state EA, without evaluation

(i.e. produce and replace one individual)

until jobsize iterations performed;

receive fitness values from a WORKER;

send jobsize individuals to the WORKER;

end while

end while

Role: WORKER (many)

signal ready status to MASTER;

while evolution not done do

receive individuals from MASTER;

evaluate individuals;

send fitness values to MASTER;

end while

tion global parallel EA (AEliGPEA), defined in listing as228

Algorithm 2. The algorithm is asynchronous since the mas-229

ter does not wait for the worker process to return the fitness230

values of new individuals. Hence, the selection operator (in231

a steady-state EA) may use inconsistent individuals that are232

not yet evaluated, i.e. whose fitness is not yet received by the233

master process.234

This raises the question of the correctness of the algorithm:235

there will obviously be situations in which an individual with236

good genotype may be eliminated and an individual with237

bad genotype may be selected for mating. The motivation238

behind this is the reduction of idle time in worker processes239

with respect to the synchronous version: while some of240

the evaluations performed by the workers may indeed be241

wasted (since the individuals in question may already be242

changed/eliminated at the master), the greater amount of time 243

that workers spend computing could remedy the slowed evo- 244

lution process. The effectiveness of this approach is experi- 245

mentally verified in this work. 246

A similar concept, but with multiple threads on a shared- 247

memory parallel architecture, was described in (Golub and 248

Budin 2000 and Golub et al. 2001). This approach is also 249

different from steady-state distributed evaluation as imple- 250

mented in ECJ framework and described in (Sullivan et al. 251

2008), where the individuals to be evaluated do not replace 252

existing ones immediately, but only when they are received 253

from the workers, which is suitable for high latency environ- 254

ments. Furthermore, the experiments with steady-state par- 255

allelization were not performed in (Sullivan et al. 2008). 256

The problems that could benefit from both these algo- 257

rithms are the ones in which the evaluation phase has a high 258

time complexity, which is a common feature of many EA 259

applications. If this is not the case, we propose the use of 260

implicit parallelism, as described in the following section. 261

3.2 Implicit parallelism 262

The implicit parallel model uses a sequential algorithm, but 263

with certain predefined parts of the algorithm being executed 264

in parallel. This is an extension of the master-worker model 265

where the user is expected only to decide what part(s) of the 266

evolution should be performed by the workers. The paral- 267

lelization is implicit since the object of parallelization is not 268

defined within the evolutionary algorithm. 269

This approach is both an algorithmic and an implementa- 270

tion issue, where the goal is that the technique be indepen- 271

dent of the chosen type of evolutionary algorithm. In the EC 272

framework implementation accompanying this work, this is 273

made possible with a high level of abstraction used to imple- 274

ment an algorithm: all evolutionary operators are realized 275

with constructs such as ‘mate individuals’, ‘mutate’, ‘eval- 276

uate’, ‘replace with’ etc. The operator details, such as indi- 277

vidual structure, types of crossover and mutation rates, are 278

specified in the configuration file (algorithm independent). 279

The levels of implicit parallelism explored in this work 280

are: 281

– evaluation: the calculation of fitness is distributed among 282

worker processes; 283

– operators (whether mutation, crossover or a local search 284

operator): the desired genetic operators and subsequent 285

evaluation are executed in parallel. 286

In both cases the procedure is similar: the parallel sub- 287

system intercepts the function calls for evaluation or genetic 288

operators that the sequential algorithm uses. The individuals 289

(data structures) included in the operation are then sent to 290

workers in groups defined by the jobsize parameter (or its 291
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Asynchronous and implicitly parallel evolutionary computation models

default value). When the individuals are returned, their fit-292

ness and/or genotype is updated accordingly. This method293

can be used with any selection mechanism. For example,294

if the evaluation is implicitly parallelized by choice, Algo-295

rithm 3 illustrates what happens every time a new individual296

is sent to implicit evaluation:297

Algorithm 3 Implicit parallelization - evaluation level

store new individual;

if jobsize individuals are stored then

if a worker is ready then

receive evaluated individuals;

send new individuals to worker;

else

evaluate one individual locally;

end if

end if

The described scheme is obviously asynchronous, since298

the sequential algorithm may use the affected individuals in299

the meantime. However, a synchronous implicit parallelism300

is also possible: in this mode the individuals the workers301

will operate on are temporarily removed from the population302

(so the population size temporarily decreases). Removing303

the individuals actually means that they cannot be chosen by304

any selection operator available to the algorithm until they305

are returned to the population. The removal and subsequent306

insertion of individuals take place only during the intercepted307

call to evaluation or genetic operators.308

Of course, the implicit asynchronous method with only309

evaluation in parallel may be functionally equivalent to the310

explicitly asynchronous algorithm if the same steady-state311

EA is used as the base.312

The motivation for implicit parallelism can be justified313

with the reasoning that the average EC user may not always314

be familiar with the details of the evolutionary process, other315

than the applied genetic operators and the fitness function.316

However, if the user has the basic knowledge of the time317

complexity of the problem components – i.e. the evaluation,318

crossover, mutation or local operators – then he may simply319

choose the component that should be executed in parallel.320

Furthermore, the user may encounter a situation where one321

variant of sequential evolutionary algorithm achieves better322

results than the other available evolutionary algorithms. In323

that case the user may want to parallelize that particular algo-324

rithm, for which there may not exist an appropriate explicit325

parallel version. With implicit parallelization we can thus326

avoid writing a customized parallel algorithm for a specific327

problem, and instead just select which algorithm components328

should be distributed. The asynchronous nature may in this329

case obviously lead to a deterioration in the rate of evolution,330

but it can still be useful if the distribution of time consuming331

operations is effective enough, which is investigated in the332

Results.333

Table 2 Parallel evolutionary algorithm models

PEA property variants

algorithm - globally parallel EA (master/slave)

- distributed EA (coarse grained)

- massively parallel EA (fine grained)

- hybrid PEA

model - panmictic (single deme)

- structured (multiple demes)

synchronicity - synchronous

- asynchronous

parallelization - explicit

- implicit

3.3 Extension to multiple deme models 334

The models described in previous sections presume execu- 335

tion on a single deme, i.e. where the population consists of a 336

single set of individuals that may interact freely. In contrast, 337

EAs have been extensively used in multiple demes (struc- 338

tured EA) where each deme evolves independently but with 339

the inclusion of the migration operator that exchanges indi- 340

viduals between different demes. 341

Each of the previously described single deme models 342

can be employed with a multiple-deme population: with a 343

sequential algorithm that runs on each deme, we get what is 344

widely known as a distributed evolutionary algorithm (DEA). 345

If we use an explicitly parallel algorithm, then the same par- 346

allel algorithm operates on each deme. Finally, a sequential 347

algorithm may be specified along with an implicit paralleliza- 348

tion option, which results in that algorithm being parallelized 349

on each deme. The last two cases correspond to a hybrid dis- 350

tributed EA with the deme or island model at the higher 351

and a master-worker algorithm at the lower level. A concise 352

overview of parallel EA properties and corresponding vari- 353

ants is given in Table 2. 354

3.4 Evolutionary computation framework 355

All the parallel models presented in this work are imple- 356

mented as components of the Evolutionary Computation 357

Framework (ECF), a C++ framework for the use and devel- 358

opment of various EC methods. Current version of the frame- 359

work is available at http://gp.zemris.fer.hr. 360

4 Test problems 361

This section covers the applications on which the described 362

parallel models were tested. 363
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D. Jackobović et al.

The distinctive elements of the problems are the geno-364

types, associated operators and the evaluation function, and365

it is these that in most cases guide the selection of an appro-366

priate parallelization method.367

4.1 Evolution of scheduling heuristics with genetic368

programming369

The first application is an example of machine learning with370

the goal of finding a suitable scheduling heuristics. Due to371

inherent problem complexity and variability, a large number372

of scheduling systems employ heuristic scheduling methods.373

Among many available heuristic algorithms, the question374

arises of which heuristic to use in a particular environment,375

given different performance criteria and user requirements. A376

solution to this problem may be provided using genetic pro-377

gramming to create problem specific scheduling algorithms.378

In this application the priority scheduling paradigm is379

used: the jobs (activities) are selected to start based on their380

priority value. Priority values are, in turn, determined with381

a priority function that the user must choose and it is this382

choice that has the greatest impact on the effectiveness of383

scheduling process. The task of genetic programming is to384

find a priority function which is best suited for given user-385

defined criteria and scheduling environment (the solution is386

represented with a tree that embodies the priority function).387

A single priority function, once evolved, is used to schedule388

unseen sets of scheduling problems and thus compared with389

the existing human-made heuristics.390

Although we have experimented with many different391

scheduling criteria and environments (Jakobovic and Budin392

2006; Jakobovic et al. 2007; Jakobovic and Marasovic 2012),393

here we employ static scheduling on one machine with mini-394

mization of weighted tardiness (this is an NP-complete prob-395

lem whose solution can also be used in more complex mul-396

tiple machine environments (Morton and Pentico 1993).397

This problem is a representative of evaluation-critical398

applications, since each GP tree must be interpreted many399

times to generate schedules for all the test cases: every time400

a job is to be scheduled, the same tree is used to calculate pri-401

orities of all the unscheduled jobs. It is expected that this will402

favor the parallel models that distribute evaluation among the403

processors.404

4.2 Game strategy evolution using genetic programming405

In this application the goal of GP is to evolve a game strategy406

for a card game (blackjack in this case). The automated com-407

puter player must decide upon the next action in the game,408

which may be ‘hit’, ‘stand’, ‘double-down’ or ‘split’. The409

decision is based on the current state of the player cards and410

a single visible dealer’s card. Genetic programming builds a411

separate decision tree for the first two actions (‘hit’ or ‘stand’)412

and an additional tree for the other options. The tree func- 413

tions are based on logical and arithmetic operators, whereas 414

the terminals describe the player’s or dealer’s card values. 415

The fitness function is expressed as the normalized score the 416

simulated player achieved in a predefined number of games. 417

Unlike the other two applications, this example is a maxi- 418

mization problem. 419

This application also spends the most of the processor time 420

in evaluation, although not as much as in the previous exam- 421

ple. It is therefore expected that the distribution of evaluation 422

would still be the best option for parallelization. 423

4.3 Function approximation using genetic algorithm 424

The third application is a GA example of function approx- 425

imation (Schneburg et al. 1995; Golub and Posavec 1997). 426

The task to be solved is to interpolate the given function g 427

through an arbitrary time series T = (x1, y1), (x2, y2), . . ., 428

(xn, yn) where n is the number of points and yi < ymax . The 429

approximation function g is given as: 430

g(x) = a0 + a1x +

NS
∑

i=1

[

a3i−1 · sin (a3i x + a3i+1)
]

, (1) 431

where NS is the number of sine elements. 432

The problem can be stated as finding the minimal sum of 433

squares of deviations for the function g and the given time 434

series T . Therefore, the goal function to be minimized is: 435

f (a0, a1, ..., a3NS+2) =

n
∑

i=1

[g(xi ) − yi ]
2 (2) 436

In this example the GA implementation includes a local 437

search procedure that takes place every time after an indi- 438

vidual has been mutated. The local search loops over every 439

coefficient of the individual and calculates the fitness values 440

with a small change in each direction (similar to a pattern 441

search). If a better value is found, the coefficient is simply 442

updated. 443

This problem does not pose great time complexity on fit- 444

ness evaluation (Golub 2001), but mutation with the local 445

search operator is the most time critical component since it 446

includes additional evaluations. 447

5 Experimental setup 448

5.1 Properties of speedup for parallel evolutionary 449

algorithms 450

One goal of our experiments was to measure the effectiveness 451

of presented parallel models when applied to different prob- 452

lems, and the most usual measure is the achieved speedup. 453
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Asynchronous and implicitly parallel evolutionary computation models

Although speedup is is a well-accepted way of measuring par-454

allel algorithm’s efficiency, its definition and interpretation455

for evolutionary algorithms has been vague and sometimes456

controversial. The traditional definition of speedup relates457

the execution time of the best sequential algorithm T1 to that458

of the parallel algorithm being run on m processors Tm as459

Sm =
T1
Tm

.460

Speedup value equal to the number of processors is con-461

sidered linear; smaller value indicates sub-linear speedup462

and greater value super-linear speedup. In evolutionary com-463

putation the execution time is considered stochastic, so the464

obvious adaptation to the traditional definition is the use of465

average execution times over independent runs. But this def-466

inition doesn’t cover the following issues: what variants of467

sequential and parallel EA should be compared and what is468

the adequate termination condition of those algorithms?469

To answer these questions, we must further explore the470

variants of speedup measure. The traditional speedup is con-471

sidered strong (or absolute) if a parallel algorithm is com-472

pared against the best available sequential algorithm for473

the problem and weak (or relative) otherwise, i.e. against a474

sequential algorithm that solves the problem but is not proved475

to be the optimal. In the context of EC, the only practical476

way is to use the weak speedup, since the strong definition477

requires the researcher to be aware of the fastest algorithm478

solving any of the problems being tackled. In other words,479

weak speedup usually means comparing against a sequential480

evolutionary algorithm.481

Another point to consider is the type of sequential algo-482

rithm: the traditional definition of speedup presumes that483

the sequential algorithm is equivalent to the parallel version484

being run on a single processor. For instance, if the parallel485

algorithm is a multiple deme model, than the sequential ver-486

sion should be an identical evolutionary algorithm: in order to487

have a fair and meaningful speedup, we need to consider the488

same algorithm and then only change the number of proces-489

sors from 1 to m.490

Finally, we need to decide upon the stopping criterion of491

the algorithms: a simple approach would impose a predefined492

number of iterations or a predefined number of evaluations493

to both. These methods are not considered fair (Alba and494

Tomassini 2002), since they may compare two algorithms495

that are producing solutions of different quality. The obvi-496

ous adaptation is to stop the algorithms when a solution of497

the same quality had been found, usually an optimal solu-498

tion. This is, in fact, the recommended way of measuring the499

speedup for parallel EAs (Alba and Tomassini 2002; Alba500

2002), where the tested measure is convergence rate instead501

of execution time.502

However, since in most real-world problems (including503

the ones presented in this paper) no known optimal solution504

may exist, we are left with the option of using a predefined505

solution quality as a termination criterion. This raises the506

question of choosing a particular quality for the given prob- 507

lem, since it is obvious that using different quality levels 508

may result in different speedups. Furthermore, having the 509

same fitness value as termination condition for every run 510

may prove impractical, since for the majority of problems 511

the evolutionary algorithm is not guaranteed to converge to 512

a particular solution in a finite amount of time. In any case, 513

we might be forced to average over greatly varying values of 514

execution times to calculate the speedup. 515

5.2 Speedup definition and measurement 516

For these reasons, we propose the following speedup mea- 517

surement procedure: for each problem being solved and the 518

employed parallel algorithm, we have to define an acceptable 519

quality level that we want the algorithm to reach – the one 520

close but usually not equal to the optimum (if it is known), 521

or the one found by previous experiments in the field. Then, 522

the algorithm being tested - either sequential or parallel - is 523

to be started in a number of instances (runs) that are termi- 524

nated only when the median of the current fitness values of 525

best individuals in each instance reaches the desired quality 526

level. The obtained termination time is then recorded as algo- 527

rithm execution time Tm and used to calculate the speedup. 528

In other words, it is not the execution time that is averaged, 529

but the solution quality of the algorithm in question, over 530

multiple algorithm runs. 531

This definition of speedup measurement does not exclude 532

the one where all the algorithms are stopped when they reach 533

the same quality level. Note that different quality levels may 534

be defined for different evolutionary algorithms even on the 535

same problem, since the algorithms may exhibit very differ- 536

ent convergence properties. For example, one algorithm may 537

not be able to converge to the fitness value that the other 538

achieves - and is therefore not a good choice for the problem 539

– but the weak (relative) speedup can still be determined. 540

5.3 Speedup measure–a case study 541

To justify the proposed speedup definition, an example is 542

shown that demonstrates the properties of different speedup 543

measures. The example compares two explicitly parallel 544

algorithms, the synchonous SGenPEA (Algorithm 1) as a 545

baseline and the asynchronous AEliGPEA (Algorithm 2), 546

both applied to the GP scheduling problem (4.1). The SGen- 547

PEA is compared to the generational sequential algorithm, 548

and the AEliGPEA to the equivalent elimination one. 549

The first issue that must be considered is the convergence 550

properties of the algorithms, since for this problem they dif- 551

fer by a considerable margin. The sequential algorithms are 552

compared for the same number of evaluations (50000) and 553

in 30 independent runs for both; the generational algorithm 554

achieves the mean best fitness result of 464.1 with a stan- 555
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dard deviation σ = 1.9, whereas the elimination algorithm556

achieves 460.4 with σ = 0.7. The t-test on the results rejects557

the probability of those two populations originating from the558

same distribution with p value <0.0001. This may be another559

indicator in favor of the implicit parallelization approach,560

since we would obviously like to parallelize the more effec-561

tive baseline sequential algorithm, for which an equivalent562

parallel implementation may not be available.563

Secondly, we have to define an appropriate fitness value564

for each of the algorithms. In practice, this includes choosing565

an acceptable level of quality, but in our experiments we566

used the following metric: for every parallel algorithm, the567

average best fitness value of the corresponding sequential568

algorithm is increased (for minimization problems) by the569

standard deviation, and the resulting value is used. In our570

example, the value of 466 is used for the generational, and571

the value 461.1 for the elimination parallel algorithm.572

Finally, the speedup of both algorithms is calculated using573

the following measures:574

1. time ratio for the same number of generations (100);575

2. time ratio for the same number of evaluations (50000);576

3. the proposed measure based on the median of best indi-577

viduals.578

The additional measure, where each run is stopped only579

when the algorithm reaches the same fitness value, was580

not applicable for this problem, since not every algorithm581

instance was able to converge to the desired level in a rea-582

sonable amount of time. Even if we discard the runs that583

didn’t converge, the resulting execution times can vary from584

less than an hour to several days, which is clearly not a good585

basis for comparison.586

The speedup results for both algorithms are given in Fig. 1587

and 2 and in Table 3 (the dotted line in the figures indicates the588

linear speedup level). For the synchronous generational algo-589

rithm, the first two measures give the same results, but may590

yield slightly different values for the asynchronous one (since591

the master doesn’t wait for the workers, number of genera-592

tions may not be related to the number of evaluations). It can593

be seen that for the asynchronous algorithm the first two mea-594

Fig. 1 Speedup results for AEliGPEA, different speedup measures

Fig. 2 Speedup results for SGenGPEA, different speedup measures

sures are not adequate and don’t show the actual progress in 595

solution quality; the proposed median based measure is in this 596

case more reliable. At the same time, the speedups obtained 597

with the median based measure exhibit similar properties as 598

the traditional measures for the synchronous algorithm. 599

To further explore the proposed speedup definition, we 600

compared the obtained sets of best values at the moment 601

the median value reaches the designated threshold. In other 602

words, the set of best values that an algorithm produces on 603

a given number of processors is compared to the set that the 604

same algorithm produces on different number of processors, 605

at the moment of reaching the same median. The sets obtained 606

in this way should not be statistically different, because they 607

describe the algorithm’s convergence rate at a given moment. 608

A pairwise comparison of all sets for both parallel algorithms 609

and for every tested number of processors is performed. In 610

the case of AEliGPEA, the tests show no significant differ- 611

ence with p values of at least 0.25, and for SGenGPEA the 612

corresponding p values are greater than 0.43. 613

In the remainder of the text, only the median based mea- 614

sure will therefore be used. 615

6 Results 616

This section gives the experimental results on the described 617

problems and presented models of parallel algorithms. In all 618

the experiments the implementation has been compiled and 619

executed using the MPICH2 library with the socket commu- 620

nication channel. By default, one MPI process is assigned to 621

a single processor in all experiments. In all the experiments 622

the ‘jobsize’ parameter was set depending on the number of 623

workers so that approximately a quarter of the population is 624

deployed at the workers at any time (e.g. for population size 625

of 500 with 5 workers, the ‘jobsize’ parameter equals 25). 626

For the speedup measurement, every point in the following 627

graphs is generated from at least 30 algorithm runs on each 628

number of processors. 629

6.1 GP Scheduling problem 630

The first set of experiments for this problem considers the 631

two explicitly parallel algorithms (see Sect. 3.1). Using the 632

123

Journal: 500 MS: 1140 TYPESET DISK LE CP Disp.:2013/9/30 Pages: 12 Layout: Large

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Asynchronous and implicitly parallel evolutionary computation models

Table 3 Case study - different

speedup measures
algorithm SGenGPEA AEliGPEA

num. proc. 2 4 6 8 12 16 2 4 6 8 12 16

measure 1 1.9 3.4 4.7 6.0 7.1 10.0 2.1 4.6 6.3 7.8 12.4 14.7

measure 2 1.9 3.4 4.7 6.0 7.1 10.0 1.9 4.1 5.9 7.3 11.6 13.9

measure 3 1.6 3.8 4.3 5.6 9.9 10.4 1.8 3.1 3.9 4.3 7.5 8.2

method described in the previous section, each parallel algo-633

rithm speedup is computed with comparison to the appro-634

priate baseline sequential algorithm; synchronous genera-635

tional algorithm (SGenGPEA) is compared to a genera-636

tional roulette-wheel algorithm and asynchronous steady-637

state algorithm (AEliGPEA) to a steady-state 3-tournament638

worst elimination algorithm.639

Different fitness values are used as termination criterion640

for those algorithms (see Sect. 5.3) since the steady-state641

algorithm (both sequential and parallel) yielded significantly642

better results. It is of course possible that with some other643

combination of parameters the generational algorithm would644

achieve better results, but we didn’t perform a detailed para-645

meter state analysis in this context. Furthermore, the differ-646

ence in absolute performance may be another motivation for647

the use of a specific type of parallel algorithm (asynchronous648

one in this case).649

For the speedup measurement, the sequential algorithm is650

run until the median of the best individuals’ fitness values651

reached the designated quality value and then the same pro-652

cedure is repeated for the parallel algorithm with different653

number of processors. The population size for this problem654

was set to 500. The speedups for both algorithms are pre-655

sented in Fig. 3 (note that these are the same values as in Fig.656

1 and 2, measure 3). It can be seen that the asynchronous657

parallel algorithm scales similarly to the synchronous ver-658

sion for this problem, besides providing better convergence.659

Although in asynchronous algorithm a portion of evalu-660

ations performed by the workers is wasted, it makes up for661

this by reducing the idle time at worker processes. Since the662

master process doesn’t wait for all the workers to finish, it663

can proceed with evolution and generate new work packets664

for the workers to evaluate. For instance, at 8 processors, the665

average worker idle time is about 15 % for the SGenGPEA,666

and only 3 % for the AEliGPEA.667

Another set of experiments for this problem was con-668

ducted with implicit parallelization, where parts of the algo-669

rithm are conducted in parallel (by choice through a parame-670

ter in the configuration file). Since the implicit parallelization671

requires a sequential algorithm, experiments are performed672

with steady-state algorithm as the basis for comparison. In673

this problem we applied parallelization of evaluation, which674

is the most time consuming operation in this example. The675

implicit parallel generational algorithm is run in asynchro-676

nous and synchronous mode (Sect. 3.2) and the results for677

Fig. 3 Speedup results for SGenGPEA and AEliGPEA, GP scheduling

Fig. 4 Speedup results for implicit parallelization, GP scheduling

both versions are shown in Fig. 4. It can be perceived that 678

the implicit parallel evaluation achieved results similar to the 679

AEliGPEA, with an advantage for the synchronous version. 680

6.2 GP game strategy 681

For this application we experimented with explicitely paral- 682

lel algorithms, SGenGPEA and AEliGPEA, and the number 683

of individuals was set to 500 for all algorithms. The first step 684

includes defining the quality levels to be used as median val- 685

ues for algorithm termination. Again the performance was 686

varying depending on the selection method: the generational 687

sequential algorithm achieved mean best value of 19.2 with 688

σ = 1.6 and the steady-state algorithm yielded the value 689

of 22.4 with σ = 2.1 (the results exhibit a statistically sig- 690

nificant difference with p value <0.001). According to the 691

described approach, we chose the fitness values that corre- 692

spond to the mean best value, decreased (since this is a maxi- 693

mization problem) by the standard deviation. In other words, 694

the quality level was set at 17.6 for the SGenGPEA and at 695

20.3 for the AEliGPEA. 696
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Fig. 5 Speedup results for SGenGPEA and AEliGPEA, GP game strat-

egy

The parallel algorithms were run on multiple processors,697

in at least 30 instances for each number of processors, until698

the median of best individuals reaches the designated level.699

The results for both algorithms are shown in Fig. 5. It can be700

seen that the speedup values are somewhat lower than those701

in the previous example, which is due to a lesser complexity702

of the evaluation function. Nevertheless, the asynchronous703

parallel algorithm scaled similarly to the synchronous vari-704

ant.705

6.3 GA Approximation problem706

For the approximation problem, the fitness value is repre-707

sented as a summed square error over the points of the time708

series. This problem is an example of application where the709

evaluation does not stand out in time complexity as compared710

to other elements of the algorithm. In fact, previous analysis711

has shown (Golub 2001) that the most part of processor time712

may be spent on mutation and local search, depending on the713

parameters.714

Although the local search operator slows down the algo-715

rithm, its effects are most beneficial: the average best fitness716

without local search is 128.4 with σ = 45, whereas with717

local search the obtained value reaches 19.8 with σ = 41;718

statictically significant difference is confirmed with p value719

<0.0001.720

In speedup experiments the desired quality level was721

hence set to 60, equal to the mean value increased by the722

deviation. It should be mentioned that the convergence of723

EA for this problem varies greatly over the runs: we were724

able to achieve fitness values as low as 0.01, but on some725

runs the algorithm didn’t reach below several hundred.726

With these conditions, the explicit algorithms that paral-727

lelize only evaluation take a longer time than the sequen-728

tial version of the algorithm. For instance, the synchro-729

nous SGenGPEA run on 4 processors shows that an average730

worker will spend 1.6 % time on communication (including731

reading and writing the individuals), 93.5 % idle time and732

only 4.9 % time doing useful work - evaluation. This exam-733

Fig. 6 Speedup results for implicit parallel mutation and local search,

GA approximation

ple serves as a test case to which the usual parallel imple- 734

mentations may not be well adapted. 735

Therefore, we applied the implicit parallelization method 736

with mutation and local search distributed among the worker 737

processes, since these operations were identified as the 738

most time consuming. In this model, the workers also per- 739

form evaluation on the received individuals before they are 740

returned to the master. The speedup measurement was made 741

using the steady-state 3-tournament elimination sequential 742

algorithm as the basis for comparison, and the same algo- 743

rithm was implicitly parallelized. The speedup results are 744

shown in Fig. 6. 745

Implicit parallelization achieves good results for a smaller 746

number of processors, but its scalability is clearly limited in 747

this case: the population size of 300 and number of proces- 748

sors greater than 8 results in a relatively small amount of 749

computation for a single job and high communication load 750

at the master process. For example, at 8 processors, the work- 751

ers spend about 10 % time for communication, 37 % time for 752

computation and are idle 53 % of the time. 753

On the other hand, a hybrid distributed EA may overcome 754

this limitation. For illustration purposes, with a hybrid DEA 755

with 3 demes and implicit parallelization in 4 processes on 756

each deme (a total of 12 processors) we obtained a speedup 757

value of 10.7. 758

7 Conclusions and future work 759

This paper describes new parallel evolutionary algorithm 760

models, an asynchronous parallel algorithm and implicit par- 761

allelization, that offer additional options for problems where 762

existing master-slave models may not achieve the desired 763

level of efficiency. 764

An emphasis is put on asynchronous parallel algorithms 765

where the selection can act on individuals whose fitness does 766

not match the current genotype. While this may obviously 767

impair the convergence rate, the experiments show that the 768

overall speedup is comparable to that of the synchronous 769

algorithms. At the same time, an asynchronous algorithm 770
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may show better convergence depending on the problem at771

hand.772

The concept of implicit parallelization is also introduced,773

in which the desired algorithm elements are distributed to774

worker processes. The main motivation behind the approach775

is twofold: the user should not be limited with the choice776

of existing parallel algorithms when he wants to speed up a777

sequential algorithm with good convergence properties. The778

second issue is the possibility of identification of the most779

time consuming element of the algorithm and its automatic780

parallelization (without additional implementation), whether781

in synchronous or asynchronous manner.782

Both new parallel models have the same disadvantage783

that all master-slave models share: at some point the master784

process will become a bottleneck as the number of processes785

is increased. A hybrid DGA with master-slave algorithm at786

every node may in that case still perform efficiently.787

The main contributions of this paper could be summarized788

as follows: (1) asynchronous parallel algorithms are shown to789

be a viable alternative to traditional models; (2) the implicit790

parallelization concept is introduced and tested; and (3) an791

appropriate speedup measure for evolutionary algorithms is792

defined based on the convergence rate.793

Although in our implementation the parallel algorithms794

are implemented with message passing between processes,795

the presented models can also be realized using multithread-796

ing technology on multi-core machines that are widely avail-797

able, which could reduce the communication cost. The com-798

bination of multiple demes distributed on workstations where799

each deme runs a (possibly asynchronous) multithreaded800

PEA could prove most efficient and is hence a future area801

of research.802

References803

Acampora G, Gaeta M, Loia V (2011) Combining multi-agent para-804

digm and memetic computing for personalized and adaptive learning805

experiences. Comput Intell 27(2):141–165806

Acampora G, Gaeta M, Loia V (2011) Hierarchical optimization of807

personalized experiences for e-learning systems through evolution-808

ary models. Neural Comput. Appl. 20(5):641–657. doi:10.1007/809

s00521-009-0273-z810

Alba E (2002) Parallel evolutionary algorithms can achieve super-linear811

performance. Inf Process Lett 82:7–13812

Alba E, Luna F, Nebro AJ (2004) Parallel heterogeneous genetic algo-813

rithms for continuous optimization. Parallel Comput 14:2004814

Alba E, Nebro AJ, Troya JM (2002) Heterogeneous computing and815

parallel genetic algorithms. J Parallel Distrib Comput 62(9):1362–816

1385817

Alba E, Tomassini M (2002) Parallelism and evolutionary algorithms.818

IEEE Trans Evol Comput 6:443–462819

Alba E, Troya JM (2001) Analyzing synchronous and asynchronous820

parallel distributed genetic algorithms. Future Gener Comput Syst821

17(4):451–465822

Borovska, P (2006).: Solving the travelling salesman problem in parallel823

by genetic algorithm on multicomputer cluster. In: international con-824

ference on computer systems and technologies – CompSysTech06, 825

pp. 11–1-11-6. 826

Cahon, S., Melab, N., Talbi, E.G (2004) Building with paradiseo 827

reusable parallel and distributed evolutionary algorithms. Parallel 828

Computing 30(5–6), 677–697. Parallel and nature-inspired compu- 829

tational paradigms and applications. 830

Cantú-Paz, E (1998) Designing efficient master-slave parallel genetic 831

algorithms. In: genetic programming 1998: proceedings of the third 832

annual conference, Morgan Kaufmann, University of Wisconsin, 833

USA, pp 455. 834

Cantú-Paz, E (2007) Parameter setting in parallel genetic algorithms. 835

In: Parameter setting in evolutionary algorithms, pp. 259–276. 836

Caraffini F, Neri F, Iacca G, Mol A (2013) Parallel memetic structures. 837

Inf Sci 227:60–82 838

Eklund, S.E (2004) A massively parallel architecture for distributed 839

genetic algorithms. Parallel computing 30(5–6), 647–676. (Parallel 840

and nature-inspired computational paradigms and applications). 841

Gagne, C., Parizeau, M., Dubreuil, M (2003) Distributed beagle: an 842

environment for parallel and distributed evolutionary computations. 843

In: proceedings 17th annual international symposium of high per- 844

formance computing systems and applications (HPCS). 845

Golub, M (2001) Improving the efficiency of parallel genetic algo- 846

rithms, Ph.D. thesis, Faculty of Electrical Engineering and Com- 847

puting, Zagreb, Croatia. 848

Golub, M., Budin, L (2000) An asynchronous model of global paral- 849

lel genetic algorithms. In: C. Fyfe (ed.) Proceedings of 2nd ICSC 850

Symposium on Engineering of Intertnational Systems, EIS2000, 851

pp. 353–359. ICSC Academic Press, UK. 852

Golub, M., Jakobovic, D., Budin, L (2001) Parallelization of elimination 853

tournament selection without synchronization. In: proceedings of the 854

5th IEEE international conference on intelligent engineering systems 855

INES 2001, pp. 85–89. Institute of Production Engineering, Helsinki, 856

Finland. 857

Golub, M., Posavec, A.B (1997) Using genetic algorithms for adapting 858

approximation functions. In: proceedings of the international con- 859

ference ITI ’97, University Computing Centre, University of Zagreb, 860

Pula, pp. 451–456. 861

He H, Skora O, Salagean A, Mkinen E (2007) Parallelisation of genetic 862

algorithms for the 2-page crossing number problem. J Parallel Distrib 863

Comput 67(2):229–241 864

Jakobovic D, Budin L (2006) Dynamic scheduling with genetic pro- 865

gramming. Lect Notes Comput Sci 3905:73 866
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