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Abstract:  

This study presents a novel approach for electroencephalogram (EEG) signal quantification in which 

the empirical mode decomposition method, a time-frequency method designated for nonlinear and 

non-stationary signals, decomposes the EEG signal into intrinsic mode functions (IMF) with 

corresponding frequency ranges that characterize the appropriate oscillatory modes embedded in the 

brain neural activity acquired using EEG.  

To calculate the instantaneous frequency of IMFs, an algorithm was developed using the Generalized 

Zero Crossing method. From the resulting frequencies, two different novel features were generated: 

the median instantaneous frequencies and the number of instantaneous frequency changes during a 

30 s segment for seven IMFs. The sleep stage classification for the daytime sleep of 20 healthy 

babies was determined using the Support Vector Machine classification algorithm. The results were 

evaluated using the cross-validation method to achieve an approximately 90% accuracy and with 

new examinee data to achieve 80% average accuracy of classification. The obtained results were 

higher than the human experts’ agreement and were statistically significant, which positioned the 

method, based on the proposed features, as an efficient procedure for automatic sleep stage 

classification. 

The uniqueness of this study arises from newly proposed features of the time-frequency domain, 

which bind characteristics of the sleep signals to the oscillation modes of brain activity, reflecting the 
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physical characteristics of sleep, and thus have the potential to highlight the congruency of twin pairs 

with potential implications for the genetic determination of sleep. 
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1. Introduction 

Successful automatic sleep stage classification based on polysomnography (PSG) signals has been a 

constant focus of scientific research due to the practical needs of physicians, who must perform time-

exhaustive procedures of visual classification when studying the functional states of the brain.  

Algorithms for automatic classification generally follow the typical steps of the pattern recognition 

process, including data pre-processing, characteristic feature extraction and classification on the 

basis of extracted features. In the case of automatic sleep classification, the features are extracted 

from PSG data, which has been transformed from analog to digital sequences of the samples. Many 

studies have been performed to identify suitable features for sleep stage classification [1], [2], [3] [4]. 

The most exhaustive study was published by Šušmakova and Krakovska [5], where 73 characteristics 

for various channels and channel combinations were analyzed. 

All sleep stage-related features can be divided into four main groups [6]: time domain features, 

frequency domain features, time-frequency features, and nonlinear features. Features from the time 

and frequency domains are based on a known kernel function that determines signal decomposition 

and appropriate feature values, which are applicable for linear and stationary signals. A widely used 

method is Fourier transform (FT), which requires a time window in which the signal is assumed to be 

stationary. For many natural phenomena with approximation using linear systems, the Fourier 
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components might make mathematical sense but will make little physical sense [7]. The FT provides 

the same frequency resolution over the entire window function. With FT, the time evolution of the 

frequency patterns is lost. Thus, to overcome these limitations, time-frequency methods were 

developed. 

A powerful time-frequency method is the wavelet transform (WT), which decomposes the 

electroencephalogram (EEG) signal into frequency bands that match particular sleep waves, such as 

delta, theta, alpha and beta bands. Usage of the wavelet transform with a specific kernel function 

generates different statistical features that represent the time–frequency distribution of EEG signals. 

These generated features include the wavelet packet coefficients [8], mean quadratic value of 

wavelet packet coefficients for each frequency band [9], center frequency, bandwidth and values at 

the center frequency [10], mean of the absolute values of the coefficients in each sub-band, standard 

deviation of the coefficients in each sub-band [11], and Renyi’s entropy [12], [13].  

The WT is suitable for the processing of non-stationary signals; however, this method is linear. 

Moreover, the wavelet method cannot have a fine frequency resolution if it has a fine time resolution. 

It provides good frequency resolution and poor time resolution at low frequencies. An additional 

difficulty of wavelet analysis is its non-adaptive nature. Once the basic wavelet is selected, it is used 

to analyze all the data.  

Considering the nonlinearity of an EEG signal, there are features extracted on the basis of nonlinear 

approaches that suggest nonlinear dynamic and chaos theory: the largest Lyapunov entropy, 

approximate entropy, Hurst exponent [14] and fractal dimensions [15]. Chaos methods are suitable 

for the processing of nonlinear signals, but have problems with the stationarity of the signal 

examined. 

Our hypothesis was that features that might better describe sleep stage specificities could be 

extracted from an EEG signal if it was decomposed into components that reflected the true physical 
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processing. Thus, the kernel was not known in advance and the nature of the signal was acquired by 

applying the appropriate decomposition mode. 

For the time-frequency method, which was designated for nonlinear and non-stationary signals, the 

empirical mode decomposition method (EMD) was chosen for the basic decomposition procedure 

because it exhibits the basic idea of the proposed hypothesis [16]. It decomposes the signal into 

Intrinsic Mode Functions (IMF), with corresponding frequency ranges that characterize the 

appropriate oscillatory modes embedded in the brain neural activity acquired using EEG [17]. The 

EMD method has been used in the literature [10, 12, 13, 18, 19] for automatic sleep stage scoring, 

with varied success related to the classification accuracy achieved using features extracted from the 

IMF functions alone. Such features include the center frequency, bandwidth and value at the center 

frequency of EEG signals [10]; the energy distribution of the IMFs and ratio of the derived energies 

[18]; total and relative power of the different frequency bands and ratio of the power in two different 

spectral bands [19]; and time-frequency entropy [12], [13].  

The new approach proposed in this study includes the introduction of new EEG features derived 

from IMFs based on instantaneous frequencies calculated using the Generalized Zero Crossing 

(GZC) method.  

 

2. Materials and methods 

2.1. Subjects 

Twenty healthy Croatian babies aged three months were recruited from the well-child nursery in the 

Clinic of Gynecology and Obstetrics at the Clinical Hospital of Split, Croatia. Informed parental 

consent was obtained after a detailed explanation of the method and purpose of the study. The 

procedure was approved by the ethics committee of the Clinical Hospital Split. The study was 

performed according to the Helsinki Declaration.  
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2.2. Procedures 

An electroencephalogram (EEG), two channels of electrooculogram (EOG), one channel of 

electromyogram (EMG), electrocardiogram (ECG) and respirogram were recorded during the babies’ 

daytime sleep. The PSG records were performed during only one sleep cycle, in the absence of the 

wake phase. The EEG channels were sampled at 256 Hz. A high-pass filter of 0.3 Hz, a low-pass 

filter of 70 Hz, a notch filter of 50 Hz and a sensitivity of 7 µV/mm were used to record the EEG. 

EEG caps with 12 gold electrodes, placed according to the International ‘10-20’ system were used, 

with bipolar derivations [20]. In [21], the authors reported that quiet sleep was perceptible mainly on 

the C3 and C4 electrodes and other states on the T3 and T4 electrodes. Thus, the measured signals 

were analyzed only from channels Fp1-C3, Fp2-C4, Fp1- T3 and Fp2-T4. The non-cerebral measures 

were used with the EEG by a sleep specialist to visually score the PSG records using standard 

Guilleminault and Soquet criteria of sleep classification [22] as recommended by the Pediatric Task 

Force of AASM (American Academy of Sleep Medicine). In some recorded EEGs, sleep spindles 

and K-complexes emerged, whereas in other EEGs, such features were not visible even the babies 

were of the same gestation age because the maturity of the brain varied individually. Thus, NREM 

stages could not be separated, so sleep has been scored in two stages, namely REM and NREM 

sleep. The artifact epochs were manually removed during the preprocessing step. 

2.3. Empirical mode decomposition 

The main purpose of this study was to present the efficiency of the automatic sleep stage 

classification based on features of only the EEG signals. The aim was to find a feature that represents 

the time sequence of a signal according to the physical meaning of the sleep stage to identify with the 

signal desired.  

The EMD method is a decomposition method that separates the component of the investigated signal 

demonstrating the highest local instantaneous frequency into a separate intrinsic mode function. The 
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obtained IMFs characterize the appropriate oscillatory modes embedded in the brain neural activity 

acquired using EEG [17]. 

An IMF function has the following two properties: 

1) The number of extrema and number of zero crossings are either equal or differ at most by 

one, 

2) The mean value of two envelopes associated with the local maxima and minima is zero. 

To decompose the EEG signal into IMF functions, a procedure known as sifting is performed. The 

sifting process includes four iterative steps:  

1) To identify all local maximums and all local minimums of the input signal, 

2) To create the upper envelope by interpolation between the maximums and lower envelope by 

interpolation of the minimums, 

3) To calculate the mean value of the upper and lower envelopes, 

4) To subtract the signal obtained after step three from the input signal. 

The resulting signal is an IMF candidate. Next, the IMF candidate is confirmed to determine if it 

satisfies the two properties previously mentioned above for the function to be IMF. If it does not 

satisfy the properties of an IMF, then the process is repeated with the resulting signal as the input. 

After the IMF properties have been fulfilled, the obtained function is declared the IMF and it is 

subtracted from the input signal. The residue of the subtraction constitutes a new input signal, and 

the sifting process begins again. Because each subsequent IMF contains lower frequencies than the 

previous IMF functions, the EMD procedure can be continued until all IMFs are found, or stopped 

when a satisfied number of IMFs is obtained. In this study, the EMD procedure was stopped when an 

EEG signal segment had been decomposed into seven IMFs, discarding the IMFs of frequencies less 

than 0.3 Hz. 
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2.4. Generalized zero crossing 

After the EMD procedure had been performed, the desired numbers of IMF functions were obtained. 

To create the new features for automatic sleep stage classification, it was necessary to calculate the 

instantaneous frequencies of each IMF function. The Generalized Zero Crossing (GZC) method, 

which was patented by Huang in 2006 [23], was employed to calculate the instantaneous frequencies 

based on extrema points. The GZC method is appropriate for nonlinear non-stationary signals, based 

on full and partial periods around the observed point. Zero crossings are the points in which the 

voltage polarity alternated. The GZC method defines all zero crossings and local extrema points as 

critical points. Their number and position are used for signal analysis and decision-making as 

follows: 

For each series of signal points between two successive critical points, seven different period values 

are calculated: 

 Time between two consecutive zero crossings of the same type (positive to negative or 

negative to positive) or between two consecutive maximum or two consecutive minimum 

values can be treated as a single period. For any point on the time axis, four different values 

of this type of period can be determined and marked as P1. 

 The time between two consecutive zero crossings or two consecutive extrema points 

(maximum to minimum or vice versa) are considered half-periods. For any point on the time 

axis, two different values of the half-period can be calculated and marked as P2. 

 Time between the extrema point and zero crossing (or vice versa) can be considered a 

quarter-period. For any point on the time axis, the quarter-period value can be calculated and 

marked as P4. 

For a given series of signal points between two critical points, the instantaneous frequency can be 

computed as: 
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. (1) 

It is argued in [14] that this approach provides localized and the most accurate results. In addition, 

this method can provide a statistical measure of frequency value scattering. Localization is rough, 

down to the quarter-period value, which is considered sufficiently good for most applications [23]. 

2.5. Relative power spectral density feature 

In studies of the discrimination ability of individual PSG measures used for automatic sleep stage 

classification [1], [9], [24], the best single performing measure for distinguishing between sleep 

stages was based on the power spectral density. In studies [9] and [25], the relative power spectral 

density (PSD) of the EEG signal at characteristic frequency bands was selected as the feature that 

had the highest effect on sleep stage classification. Thus, to validate the efficiency of the sleep stage 

classification of our proposed features, the relative PSD was chosen as the reference point. The 

power of the EEG sleep signal could be obtained from either the time or frequency domain using the 

following equation: 

                             (2) 

 

where xi is the samples of EEG sleep signal in time,  N the number of samples of EEG sleep signal in 

time domain of one epoch, M the number of points for fast Fourier transform (FFT) algorithm, and 

Xk(e
j

) samples of EEG signal in the frequency domain, i.e., spectrum frequency of the EEG signal. 

For each epoch of the EEG signal, the relative spectral density (RSD) was calculated as RSDb = 

Pb/Ptotal, where Pb was the energy from one of frequency bands: 0.5 – 4 Hz (delta waves), 4 – 8 Hz 

(theta waves), 8 – 12 Hz (alpha waves), 12 – 16 Hz (sigma waves) and 16 – 20 Hz (beta waves), 

which were calculated using Eq. (2). Ptotal=∑Pb for all five bands. 
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 Based on the idea in [9], to reduce the effect of extreme values that were often observed on the 

physiological variables, each value of RSD in the database was transformed using the following 

nonlinear transformation: 

 arc sin(sqrt(x)), for  and  frequency bands, and (3) 

 log(1+x/1-x), for ,  and  frequency bands. (4) 

After this transformation, each transformed feature x was normalized using z-score normalization: 

  (5) 

where  was the signal recording mean value of the transformed feature x, and SD was its standard 

deviation.  

2.6. Newly proposed features 

Observing the rules defined for the visual scoring of sleep stages, we concluded that the REM sleep 

stages were 'more active' than the NREM sleep stages; there were more changes in the EEG signal 

during REM than during NREM sleep stage. The criteria for visual scoring cannot isolate any 

classical frequency band of the EEG signal (delta, theta, alpha, beta or sigma) as a unique feature to 

distinguish between stages of sleep. In this study, we searched for a feature that revealed the physical 

description of the sleep stages. Thus, we focused on the instantaneous frequency of oscillatory modes 

of brain activity gained from EMD decomposition. 

The algorithm based on the GZC method was developed to calculate the instantaneous frequencies. It 

was applied to the chosen first seven obtained IMFs as functions of higher order – lower frequencies 

were discarded. The median values of the instantaneous frequencies, as observed in the form of a 

vector with seven elements, had higher values for ‘more active’ sleep stages than for ‘more quiet’ 

sleep stages.  
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An additional new feature, which experiments confirmed had an effect on the classification of sleep 

stages, showed that during one 30 s epoch, the EEG signal changed its instantaneous frequency more 

often if it belonged to the REM sleep stage than if it was a NREM sleep stage epoch. Considering 

this frequency dynamic, for each IMF, the number of instantaneous frequency changes during one 30 

s epoch was quantified. Thus, both of the new feature vectors were generated with seven elements. 

To achieve a more accurate automatic classification, a hybrid feature was created by combining two 

different types of EEG features, the spectral feature and time-frequency feature. The newly defined 

hybrid feature vector consisted of 12 elements. Five elements were RSD values for five classical 

frequency bands and seven elements consisted of the number of changes in values of the 

instantaneous frequencies for the first seven IMFs, for a 30 s EEG signal epoch.  

2.7. Stage classification using Support vector machines 

After the feature vectors had been generated, the visually scored class label was attached to each 

epoch feature vector. Considering the nature of this study to classify sleep into two stages, the 

Support Vector Machines (SVM) method was chosen due to its binary classification output. The 

SVM is a nonlinear, nonparametric classification technique that has previously shown good results in 

sleep stage classification [2], [10]. 

The SVM is an algorithm in which the cases of training data belonging to different classes are 

mapped into a higher dimensional space and then separated using a hyperplane chosen to have 

maximal margins from boundary cases [26]. The boundary training instances are called support 

vectors. The hyperplane may be defined by different kernel functions. Basic kernels are linear, 

polynomial and Gaussian radial basis function (RBF). The RBF kernel induces boundaries by 

placing weighted Gaussian functions upon key training instances, defined with input parameter 

gamma. Parameter C defines a measure of misclassified samples, thereby determining the regularity 

(smoothness) and complexity of the classification boundaries. We considered the visual scoring 
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provided by the neurologist as the correct reference class for evaluating the proper function of the 

classifier. The software package LIBSVM [27] (available at 

http://www.csie.ntu.edu.tw/~cjlin/libsvm) was used as a classification algorithm. The RBF kernel 

was chosen and parameter selection was performed on a random half of the entire data set containing 

the same number of epochs for each class. A grid search of the best parameters, using the 10-fold 

cross-validation method, was completed as follows: the chosen data set was divided into ten subsets 

of equal size. The gamma parameter was seriatim taken from the interval 2
-5

 to 2
10

. For each gamma 

value, the value of parameter C was taken across the same interval 2
-5

 to 2
10

. For each (gamma, C) 

pair of parameters, the sequential classification accuracy was obtained for the one data subset 

considered unknown, while the classifier was trained on nine remaining data subsets. After ten 

sequences, the average classification result was calculated. From numerous (gamma, C) pairs of 

parameters, the pair with the best cross-validation accuracy was selected for classification of the 

entire data set. 

3. Experimental results 

The performance of the classification system with the newly proposed features was evaluated on a 

database of infant EEG sleep recordings containing 1414 epochs per EEG channel, all with constant 

length of 30 s. 

The shape of the relative PSD feature is shown in Fig. 1. Five feature vector elements are 

represented as non-linear transformation of relative PSD values in five frequency bands: 1. delta 

(0.5–4 Hz), 2. theta (4-8 Hz), 3. alpha (8-12 Hz), 4. sigma (12-16 Hz) and 5. beta (16-32 Hz), from 

Fp2-T4 EEG channel, for REM and NREM sleep stages. 
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Fig. 1 Feature of relative PSD, where five feature vector elements are represented as non-linear transformation of relative 

PSD values in five frequency bands: 1. delta (0.5–4 Hz), 2. theta (4-8 Hz), 3. alpha (8-12 Hz), 4. sigma (12-16 Hz) and 5. 

beta (16-32 Hz), from the Fp2-T4 EEG channel for REM and NREM sleep stages with bars representing variances of 

each feature element. 

 

The visual differences of the feature values for the REM and NREM sleep stages indicated the 

potential to distinguish between sleep stages using this feature. The accuracy of automatic sleep 

stage classification of infant EEG signals is provided in Tables 1 and 2. The obtained results were 

higher than the results reported in [9] for classification of adult sleep in five stages using only the 

RSD feature. The supposed reasons are the reduced number of sleep stages and the use of the SVM 

classification algorithm.  

For the second feature type, the EMD process was implemented. A result of the applied technique 

that relates the measured EEG signal with oscillatory modes of brain activity is the decomposition of 

EEG signals, which was presented with the first seven IMFs. On the left side of Fig. 2, one sample of 

a 30 s EEG epoch is displayed as the original signal, and its seven IMFs are sorted below it, with an 

amplitude V. On the right side of Fig. 2 there are instantaneous frequencies over a 30 s epoch for 

each of seven IMFs, with a horizontal line marking the median frequency. Higher orders of IMFs, of 

lower frequency ranges (less than 0.3 Hz), were not considered in the calculations. 
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Fig. 2 Left: Analyzed EEG epoch lasting 30 s (from the Fp2-T4 EEG channel) and its seven IMFs 

with amplitude in V. Right: corresponding instantaneous frequencies. Horizontal lines are median 

instantaneous frequencies with values in Hz printed at the end of each line. 

 

The IMFs represent orthogonal functions, which indicates that they are independent, and thus, their 

frequency values in the feature vectors can be scaled using different factors. Because these values are 

input into the classification process, they have been scaled to the same range of values. The main 

advantage of scaling is to avoid elements in greater numeric ranges dominating those in smaller 

numeric ranges. Another advantage is to avoid numerical difficulties during the calculation. Because 

SVM kernel values are usually dependent on the inner products of the feature vectors, large element 

values might cause numerical problems. Due to the calculation of products, linear scaling of each 

element to the range [-1; +1] or [0, 1] is recommended [27]. The same method was used to scale 

training and testing data. To make the data more generalized, our procedure did not look for the 
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maximum value of all elements in the database, but took into consideration only the order of the 

values of the training feature elements. 

 

Our first feature consisted of seven elements that were based on median frequencies from seven 

IMFs. The 7th IMF represented the lowest frequency oscillation band decomposed from EEG 

signals. It was observed throughout the available database that median frequencies of the 6th IMF 

were of the same order as the median frequencies of the 7th IMF. The median frequencies of the 3rd, 

4th and 5th IMF were 10 times greater than those of the 7th IMF, and thus, their values were divided 

by scaling with a factor 10. Finally, the median frequencies of the 1st and 2nd IMF were 100 times 

greater than those of the 7th IMF, and thus these elements were divided by 100. The average values 

of the scaled median instantaneous frequencies of the 1st to 7th IMFs from the Fp2-T4 EEG channel 

for REM and NREM sleep stages with bars representing the variances of each feature element is 

shown in Fig. 3. 

 

Another newly proposed feature contained seven numbers of instantaneous frequency changes 

during 30 s epochs for the first seven IMFs. A scaling, similar to the one previously described for 

median frequencies, was performed using this frequency dynamic feature vector, with the difference 

of two-order values in elements. Here, for the lowest frequency IMFs, the 6th and 7th, elements were 

divided by 100. Elements for the 3rd, 4th and 5th IMF were divided by 1000. Elements for the 1st 

and 2nd IMF were divided by 10000. The average values of the scaled number of instantaneous 

frequency changes in the 1st to 7th IMFs from Fp2-T4 EEG channel for REM and NREM sleep 

stages with bars representing variances of each feature element are shown in Fig. 4. 
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Fig. 3 New feature vector: Median instantaneous frequencies of the 1st to 7th IMFs (scaled, average values) from Fp2-T4 

EEG channel for REM and NREM sleep stages with bars representing variances of each feature element. 

 

From 1414 available epochs per EEG channel, only 476 epochs belonged to NREM sleep stage. 

Therefore, from the remaining 938 epochs that belonged to REM sleep stage, only 476 were chosen 

to avoid classification errors due to class misrepresentation. The REM sleep epochs have been 

chosen randomly and mixed with NREM epochs, generating a database of sleep epochs. Following 

the standard procedure of 10-fold cross validation, 90% of the base content had been used for 

training purposes, whereas the remaining 10% had been used for testing. The approach of random 

separation of the database into training and testing sets usually resulted in the appearance of the 

sample (epochs) belonging to the same person in both sets. Because it is known that every person 

produces a unique EEG signal that can be treated as an imprint of the person’s brain [28], [29], 

epochs belonging to the same person are much more similar among themselves than of epochs 

belonging to a different person. Thus, a 10-fold cross validation procedure always generates better 

automatic classification results compared to those obtained using classifications of data of a new 

examinee.  
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Fig. 4 New feature vector: number of instantaneous frequency changes for the 1st to 7th IMFs (scaled, average values) 

from the Fp2-T4 EEG channel for REM and NREM sleep stages with bars representing variances of each feature 

element. 

 

For this reason, two experimental approaches were utilized and presented in this study. In the first 

experiment, the 10-fold cross validation procedure was applied to the complete data set. In the 

second experiment, the leave-one-out validation procedure was applied, such that the data of 19 

babies were used for system learning, and testing was performed with the data of the remaining baby. 

This process was repeated 20 times. 

Table 1 Accuracy of the automatic sleep stage classification from 10-fold cross validation procedure 

EEG 

channel 

feature vector 

Relative 

Spectral 

Density in 

5 freq. 

bands 

median 

inst. 

frequencie

s of 7 

IMFs 

numbers of 

change in 

inst. freq. 

value of 7 

IMFs 

5 RSD and 

numbers of 

change in 

inst. freq. 

of 7 IMFs 

Fp2–T4 83.61 86.24 87.50 87.18 

Fp1–T3 85.08 86.55 88.24 90.13 

Fp2–C4 84.56 85.92 86.87 89.29 

Fp1–C3 84.03 90.97 87.92 90.96 

mean 84.32 87.42 87.63 89.39 
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Table 2 Accuracy of the automatic sleep stage classification of the new examinee signal (mean value for 20 new 

examinee classification ± SD, in %) 

 

 

 

 

 

 

For the first type of feature validation, when the 10-fold cross validation procedure was applied, the 

classification results for all examinees (expressed as the percentage of agreement with visually 

scored epochs) for all described features are presented in Table 1.  

For the second type of feature validation, the classification was performed using data of a new 

examinee, whose sleep data epochs had not been used during the training phase. Thus, the data 

belonging to the examinee was not affected by the training process, and the final results are 

presented in Table 2. For each of the four channels, the columns presented the classification results, 

which were expressed as the percentage of consistency with the visually scored epochs (mean value 

for 20 new examinees ± SD), based on the RSD for 5 frequency bands and classification results based 

on the new hybrid feature consisting of RSD with dynamics of IMF frequencies, respectively.  In the 

last row of Table 2, there are mean values of the results for all four EEG channels. 

 

4. Discussion and conclusions 

Using the EMD method and applying the GZC method on obtained IMF functions, we generated 

time-frequency features related to the physical character of the oscillatory modes of brain activity 

recorded as EEG signals, namely the median instantaneous frequencies and the number of 

instantaneous frequency changes during 30 s segments for seven IMFs. The presented results were 

derived solely from the characteristics of the proposed features defined for one single epoch, in the 

EEG 

channel 

feature vector 

RSD new hybrid 

Fp2–T4 78.96  ± 9.31 80.45 ± 13.41 

Fp1–T3 76.34 ± 12.93 79.05 ± 14.88 

Fp2–C4 77.71 ± 12.74 81.43 ± 13.02 

Fp1–C3 78.04 ± 9.37 81.73 ± 12.17 

mean 77.76  ± 11.05 80.66 ± 13.19  
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absence of smoothing solutions based on information obtained from adjacent epochs, which would 

enable the avoidance of sudden and inaccurate scoring into the next stage of sleep and thus improve 

classification accuracy. 

This approach involving instantaneous frequency is worth studying because the IMFs relate sleep 

features to oscillatory modes of the EEG signals and thus follow individual characteristics of a 

subject well. Thus, the novelty features are relevant for sleep stage distinction and could be useful in 

the estimation of genetic influence on EEG in sleep. 

To validate the efficiency of sleep stage classification, the results of our proposed features were 

compared with the results of the relative PSD, which is the best single performing measure for 

distinguishing between sleep stages [1], [9], [24]. The results in Table 1 showed that the SVM 

classification algorithm provided distinctive discrimination of the sleep stages in infant EEG sleep 

recordings using the relative PSD in 5 frequency bands; however, better results were achieved using 

newly created feature vectors based on instantaneous frequencies in a single-channel EEG signal. 

The new hybrid feature, a combination of the frequency (spectral) feature and the time-frequency 

feature, increased the classification ability of the automatic sleep stage classifier. For both methods 

of testing the algorithm for automatic classification of sleep signals (cross-validation and for a new 

examinee), results of the classification accuracy were higher for the newly proposed hybrid feature 

(on average: 89.39% for cross-validation method and 80.66% for a new examinee) compared to the 

feature of the relative spectral density of the EEG signal in traditional frequency bands (on average: 

84.32% for cross-validation method and 77.95% for new examinee, as shown in Table 1 and Table 

2, respectively). 

The difference in the results shown in Table 1 and Table 2 confirmed the assumption that the 

accuracy of automatic classification was reduced if no part of the signal of the patient involved in the 

testing set of the classification method had participated in the training set of the classifier. Thus, to 
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correctly evaluate an automated classification system, it is necessary to pay attention to the way the 

dataset was divided into training and testing sets used to obtain accurate results.  

Similarity in the results of the four EEG channels showed that for an acceptable automatic sleep 

staging it was sufficient to record the sleep signal at only one EEG channel. Such a simplification of 

the sleep data acquisition would bring more comfort for the examinee in sleep. This is the most 

important advantage of the proposed features compared with complex PSG recording [9], [21], [30]. 

The validation for the relevance of the channels analyzed has been explained in [31], where these 

four channels were found among five of the highest ranked channel combinations, resulting from 

optimal channel selection for analysis of full-term neonate sleep. 

Sleep was analyzed using recordings of only one EEG channel in several studies. In [32], Jo et al. 

used the normalized relative power of five frequency bands of a single channel EEG recording to 

show the intra- and inter-subject differences and similarities. An 84.6% accuracy of sleep 

classification was achieved, but the genetic fuzzy classifier was trained individually for each subject. 

In [2], Koley et al. selected 21 time, frequency and nonlinear features from 39 features extracted 

from a single EEG signal, and using the SVM classification algorithm, it reached 96.4% accuracy, 

but this approach imposed a large computational burden. In [1], Piryatinska et al. achieved a 

maximal accuracy of 87% using the delta power, the spectral entropy and fractional dimension of a 

single EEG signal. Taken together, more accurate results were achieved when different types of 

domain features were used together. This study differs from previous studies with its newly proposed 

features of the time-frequency domain, which bound characteristics of the sleep signals to the 

oscillation modes of brain activity, reflecting the physical characteristics of sleep and thus have the 

potential to highlight the congruence of twin pairs, indicating the genetic determination of sleep, 

which we plan to address in our future study. 

The EMD method has been previously used for automatic sleep stage scoring in the literature. In 

[10], Tang et al. presented the center frequency, the bandwidth and the value at the center frequency 
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of EEG signals as features with 77.6% accuracy. In [18], Li et al. introduced the energy distribution 

of the IMFs and the ratio of the derived energies, with 81.7% accuracy. In [19], Liu et al. derived 

total and relative power of different frequency bands and the ratio of the power in two different 

spectral bands, with a mean accuracy of 87.3%. In [12] and [13], Fraiwan et al. used time-frequency 

entropy with less than 80% accuracy. These above-mentioned studies used the Hilbert Huang 

transformation (HHT) method; however, we employed the GZC method to calculate instantaneous 

frequencies. From studies that applied the EMD method as a part of the feature extraction algorithm, 

the introduced novelty feature of frequency dynamics reached the highest accuracy results of 

87.63%.  

The database in this study was of artifact-free EEG signals. These no-brain activities affect the EEG 

median frequency values, such that the success of the automatic sleep stage classification algorithm 

still must be validated with diverse EEG signals. The possibility for artifacts to affect the outcome of 

the classification may be reduced by generating the feature vector with values for the seven IMFs 

instead of a value for a single IMF. 

For the newly proposed feature of frequency dynamic, no average value was calculated (except for 

the GZC method characteristic); thus it is expected that the effect of artifacts would be equal on the 

EEG signals of both phases of sleep. Taking into account that most of the artifacts caused by 

movement occur in REM sleep, we predict that the artifacts would only increase the value of the 

frequency dynamic feature vector of REM sleep, which has previously been expected to be higher 

compared to NREM sleep stages.  

The obtained results are higher than the human experts’ agreement [4], [33], which positions the 

proposed method as an efficient procedure for automatic sleep stage classification. However, all of 

the participants in this study ware babies of the same age, and thus the same ratio of feature values 

need to be reaffirmed at older ages. Thus, further research would be useful in that sense. 
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Summary 

There have been numerous studies related with sleep stage classification, which have confirmed that 

feature extraction plays an important role for success of the proposed methods. In addition, more 

than 70 different features have been tested for sleep stage classification [5]. The main purpose of this 

study was to present the efficiency of the automatic sleep stage classification based on features of 

only the electroencephalogram (EEG) signals. The aim was to find a feature that represents the time 

sequence of a signal according to the physical meaning of the sleep stage we wanted to identify the 

signal with. Our hypothesis was that features that better describe sleep stage specificities could be 

extracted from a signal if it was decomposed into components that reflected the true physical 

processing. Thus, the kernel is not known in advance and the nature of the signal is acquired by 

applying the appropriate decomposition mode. 

As a time-frequency method, designated for nonlinear and non-stationary signals, the empirical mode 

decomposition method (EMD) was selected for the basic decomposition procedure because it 

embeds the basic idea of the proposed hypothesis [16]. It decomposes the signal into Intrinsic Mode 

Functions (IMF) with corresponding frequency ranges that characterize well the appropriate 

oscillatory modes embedded in the brain neural activity acquired by EEG [17].  

The new approach presented in this study includes the introduction of new features derived from 

IMFs. To calculate the instantaneous frequency of IMFs, an algorithm was developed using the 

Generalized Zero Crossing method. With the resulting frequencies, we can demonstrated that during 

one 30 s epoch, the EEG signal changes its instantaneous frequency more often if it belonged to an 

active sleep stage than if it belonged to a quite sleep stage epoch. Considering this frequency 
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dynamic, we proposed the new feature, which describes how many times the instantaneous 

frequency changes during one 30 s epoch. An additional new feature affecting the classification of 

sleep stages was the median value of instantaneous frequency, which exhibited higher values in 

REM than in NREM sleep stages in the first seven IMFs contained in the EEG signals. 

The sleep stage classification, based on the novel feature vectors of a single EEG channel, for the 

daytime sleep of 20 healthy babies, was performed using the Support Vector Machine (SVM) 

classification algorithm. The results were evaluated by applying the cross-validation method to 

achieve approximately 90% accuracy and with new examinee data achieving 80% average accuracy 

classification. The obtained results were higher than the human experts’ agreement [4], [33], which 

positioned the method, based on the proposed features, as an efficient procedure for automatic sleep 

stage classification. 
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