Some Identities in the Twisted Group Algebra of Symmetric Groups

Milena Sošić
Department of Mathematics
University of Rijeka
Radmile Matejčić 2, Rijeka 51000, Croatia
msosic@math.uniri.hr
August 8, 2013

- S_{n} denote the symmetric group on n letters
i.e S_{n} is the set of all permutations of a set $M=\{1,2, \ldots, n\}$ equiped with a composition as the binary operation on S_{n} (clearly, the permutations are regarded as bijections from M to itself);
- S_{n} denote the symmetric group on n letters
i.e S_{n} is the set of all permutations of a set $M=\{1,2, \ldots, n\}$ equiped with a composition as the binary operation on S_{n} (clearly, the permutations are regarded as bijections from M to itself);
- $X=\left\{X_{a b} \mid 1 \leq a, b \leq n\right\}$ be a set of n^{2} commuting variables $X_{a b}$;
- S_{n} denote the symmetric group on n letters
i.e S_{n} is the set of all permutations of a set $M=\{1,2, \ldots, n\}$ equiped with a composition as the binary operation on S_{n} (clearly, the permutations are regarded as bijections from M to itself);
- $X=\left\{X_{a b} \mid 1 \leq a, b \leq n\right\}$ be a set of n^{2} commuting variables $X_{a b}$;
- $R_{n}:=\mathbb{C}\left[X_{a b} \mid 1 \leq a, b \leq n\right]$ denote the polynomial ring
i.e the commutative ring of all polynomials in n^{2} variables $X_{a b}$ over the set \mathbb{C} with $1 \in R_{n}$ as a unit element of R_{n}.
$\mathbb{C}=$ the set of complex numbers.
- S_{n} denote the symmetric group on n letters
i.e S_{n} is the set of all permutations of a set $M=\{1,2, \ldots, n\}$ equiped with a composition as the binary operation on S_{n}
(clearly, the permutations are regarded as bijections from M to itself);
- $X=\left\{X_{a b} \mid 1 \leq a, b \leq n\right\}$ be a set of n^{2} commuting variables $X_{a b}$;
- $R_{n}:=\mathbb{C}\left[X_{a b} \mid 1 \leq a, b \leq n\right]$ denote the polynomial ring
i.e the commutative ring of all polynomials in n^{2} variables $X_{a b}$ over the set \mathbb{C} with $1 \in R_{n}$ as a unit element of R_{n}.
$\mathbb{C}=$ the set of complex numbers.
- S_{n} acts on the set X as follows:

$$
g \cdot X_{a b}=X_{g(a) g(b)} .
$$

- S_{n} denote the symmetric group on n letters
i.e S_{n} is the set of all permutations of a set $M=\{1,2, \ldots, n\}$ equiped with a composition as the binary operation on S_{n}
(clearly, the permutations are regarded as bijections from M to itself);
- $X=\left\{X_{a b} \mid 1 \leq a, b \leq n\right\}$ be a set of n^{2} commuting variables $X_{a b}$;
- $R_{n}:=\mathbb{C}\left[X_{a b} \mid 1 \leq a, b \leq n\right]$ denote the polynomial ring
i.e the commutative ring of all polynomials in n^{2} variables $X_{a b}$ over the set \mathbb{C} with $1 \in R_{n}$ as a unit element of R_{n}.
$\mathbb{C}=$ the set of complex numbers.
- S_{n} acts on the set X as follows:

$$
g \cdot X_{a b}=X_{g(a) g(b)} .
$$

- This action of S_{n} on X induces the action of S_{n} on R_{n} given by

$$
g \cdot p\left(\ldots, X_{a b}, \ldots\right)=p\left(\ldots, X_{g(a) g(b)}, \ldots\right)
$$

for every $g \in S_{n}$ and any $p \in R_{n}$.

Recall, the usual group algebra

$$
\mathbb{C}\left[S_{n}\right]=\left\{\sum_{\sigma \in S_{n}} c_{\sigma} \sigma \mid c_{\sigma} \in \mathbb{C}\right\}
$$

of the symmetric group S_{n} is a free vector space (generated with the set S_{n}), where the multiplication is given by

$$
\left(\sum_{\sigma \in S_{n}} c_{\sigma} \sigma\right) \cdot\left(\sum_{\tau \in S_{n}} d_{\tau} \tau\right)=\sum_{\sigma, \tau \in S_{n}}\left(c_{\sigma} d_{\tau}\right) \sigma \tau
$$

Here we have used the simplified notation: $\quad \sigma \tau=\sigma \circ \tau$ for the composition $\sigma \circ \tau$ i.e the product of σ and τ in S_{n}.

Now we define more general group algebra

$$
\mathcal{A}\left(S_{n}\right):=R_{n} \rtimes \mathbb{C}\left[S_{n}\right]
$$

a twisted group algebra of the symmetric group S_{n} with coefficients in the polynomial ring R_{n}.

- Here \rtimes denotes the semidirect product.

Now we define more general group algebra

$$
\mathcal{A}\left(S_{n}\right):=R_{n} \rtimes \mathbb{C}\left[S_{n}\right]
$$

a twisted group algebra of the symmetric group S_{n} with coefficients in the polynomial ring R_{n}.

- Here \rtimes denotes the semidirect product.
- The elements of the set $\mathcal{A}\left(S_{n}\right)$ are the linear combinations

$$
\sum_{g_{i} \in S_{n}} p_{i} g_{i} \quad \text { with } \quad p_{i} \in R_{n}
$$

Now we define more general group algebra

$$
\mathcal{A}\left(S_{n}\right):=R_{n} \rtimes \mathbb{C}\left[S_{n}\right]
$$

a twisted group algebra of the symmetric group S_{n} with coefficients in the polynomial ring R_{n}.

- Here \rtimes denotes the semidirect product.
- The elements of the set $\mathcal{A}\left(S_{n}\right)$ are the linear combinations

$$
\sum_{g_{i} \in S_{n}} p_{i} g_{i} \quad \text { with } \quad p_{i} \in R_{n}
$$

- The multiplication in $\mathcal{A}\left(S_{n}\right)$ is given by

$$
\left(p_{1} g_{1}\right) \cdot\left(p_{2} g_{2}\right):=\left(p_{1} \cdot\left(g_{1} \cdot p_{2}\right)\right) g_{1} g_{2}
$$

where $g_{1} \cdot p_{2}$ is defined by: $\quad g \cdot p\left(\ldots, X_{a b}, \ldots\right)=p\left(\ldots, X_{g(a) g(b)}, \ldots\right)$

Now we define more general group algebra

$$
\mathcal{A}\left(S_{n}\right):=R_{n} \rtimes \mathbb{C}\left[S_{n}\right]
$$

a twisted group algebra of the symmetric group S_{n} with coefficients in the polynomial ring R_{n}.

- Here \rtimes denotes the semidirect product.
- The elements of the set $\mathcal{A}\left(S_{n}\right)$ are the linear combinations

$$
\sum_{g_{i} \in S_{n}} p_{i} g_{i} \quad \text { with } \quad p_{i} \in R_{n}
$$

- The multiplication in $\mathcal{A}\left(S_{n}\right)$ is given by

$$
\left(p_{1} g_{1}\right) \cdot\left(p_{2} g_{2}\right):=\left(p_{1} \cdot\left(g_{1} \cdot p_{2}\right)\right) g_{1} g_{2}
$$

where $g_{1} \cdot p_{2}$ is defined by: $\quad g \cdot p\left(\ldots, X_{a b}, \ldots\right)=p\left(\ldots, X_{g(a) g(b)}, \ldots\right)$

- The algebra $\mathcal{A}\left(S_{n}\right)$ is associative but not commutative.

$$
I(g)=\{(a, b) \mid 1 \leq a<b \leq n, g(a)>g(b)\}
$$

denote the set of inversions of $g \in S_{n}$.
Then to every $g \in S_{n}$ we associate a monomial in the ring R_{n} defined by

$$
X_{g}:=\prod_{(a, b) \in I\left(g^{-1}\right)} X_{a b}\left(=\prod_{a<b, g^{-1}(a)>g^{-1}(b)} X_{a b}\right)
$$

which encodes all inversions of g^{-1} (and of g too).
More generally, for any subset $A \subseteq\{1,2, \ldots, n\}$ we will use the notation

$$
X_{A}:=\prod_{(a, b) \in A \times A, a<b} X_{a b} \cdot X_{b a}=\prod_{(a, b) \in A \times A, a<b} X_{\{a, b\}},
$$

because

$$
X_{\{a, b\}}:=X_{a b} \cdot X_{b a} .
$$

Definition

To each $g \in S_{n}$ we assign a unique element $g^{*} \in \mathcal{A}\left(S_{n}\right)$ defined by

$$
g^{*}:=X_{g} g .
$$

Theorem

For every $g_{1}^{*}, g_{2}^{*} \in \mathcal{A}\left(S_{n}\right)$ we have

$$
g_{1}^{*} \cdot g_{2}^{*}=X\left(g_{1}, g_{2}\right)\left(g_{1} g_{2}\right)^{*},
$$

where the multiplication factor is given by

$$
X\left(g_{1}, g_{2}\right)=\prod_{(a, b) \in I\left(g_{1}^{-1}\right) \backslash I\left(\left(g_{1} g_{2}\right)^{-1}\right)} X_{\{a, b\}}
$$

Recall,

$$
X\left(g_{1}, g_{2}\right)=\prod_{(a, b) \in I\left(g_{1}^{-1}\right) \backslash I\left(\left(g_{1} g_{2}\right)^{-1}\right)} X_{\{a, b\}}
$$

- Note that

$$
X\left(g_{1}, g_{2}\right)=1
$$

if $\quad l\left(g_{1} g_{2}\right)=l\left(g_{1}\right)+l\left(g_{2}\right)$.
So we have

$$
g_{1}^{*} \cdot g_{2}^{*}=\left(g_{1} g_{2}\right)^{*}
$$

where $l(g):=\operatorname{Card} I(g)$ is the lenght of $g \in S_{n}$.

Recall,

$$
X\left(g_{1}, g_{2}\right)=\prod_{(a, b) \in I\left(g_{1}^{-1}\right) \backslash I\left(\left(g_{1} g_{2}\right)^{-1}\right)} X_{\{a, b\}}
$$

- Note that

$$
X\left(g_{1}, g_{2}\right)=1
$$

if $\quad l\left(g_{1} g_{2}\right)=l\left(g_{1}\right)+l\left(g_{2}\right)$.
So we have

$$
g_{1}^{*} \cdot g_{2}^{*}=\left(g_{1} g_{2}\right)^{*}
$$

where $l(g):=\operatorname{Card} I(g)$ is the lenght of $g \in S_{n}$.

- The factor $X\left(g_{1}, g_{2}\right)$ takes care of the reduced number of inversions in the group product of $g_{1}, g_{2} \in S_{n}$.

Recall, $\quad g_{1}^{*} \cdot g_{2}^{*}=X\left(g_{1}, g_{2}\right)\left(g_{1} g_{2}\right)^{*} \quad$ for every $g_{1}^{*}, g_{2}^{*} \in \mathcal{A}\left(S_{n}\right)$

Example

Let $\quad g_{1}=132, \quad g_{2}=312 \in S_{3}$.
Then $\quad g_{1} g_{2}=213, \quad l\left(g_{1}\right)=1, \quad l\left(g_{2}\right)=2, \quad l\left(g_{1} g_{2}\right)=1$.
Note that $g_{1}^{-1}=132, \quad g_{2}^{-1}=231$, so

$$
g_{1}^{*} \cdot g_{2}^{*}=\left(X_{23} g_{1}\right) \cdot\left(X_{13} X_{23} g_{2}\right)=X_{23} X_{12} X_{32} g_{1} g_{2}=X_{\{2,3\}} X_{12} g_{1} g_{2} .
$$

On the other hand we have:

$$
\left(g_{1} g_{2}\right)^{*}=X_{12} g_{1} g_{2}
$$

since $\left(g_{1} g_{2}\right)^{-1}=213$.
Thus we get
and

$$
X\left(g_{1}, g_{2}\right)=X_{\{2,3\}}
$$

Recall, $\quad g_{1}^{*} \cdot g_{2}^{*}=X\left(g_{1}, g_{2}\right)\left(g_{1} g_{2}\right)^{*} \quad$ for every $g_{1}^{*}, g_{2}^{*} \in \mathcal{A}\left(S_{n}\right)$

Example

For $\quad g_{1}=132, \quad g_{2}=231$
we have $\quad g_{1} g_{2}=321, \quad l\left(g_{1}\right)=1, \quad l\left(g_{2}\right)=2, \quad l\left(g_{1} g_{2}\right)=3$.
Further $\quad g_{1}^{-1}=132, \quad g_{2}^{-1}=312 \quad$ and $\quad\left(g_{1} g_{2}\right)^{-1}=321$, so we get:

$$
\begin{gathered}
g_{1}^{*} \cdot g_{2}^{*}=\left(X_{23} g_{1}\right) \cdot\left(X_{12} X_{13} g_{2}\right)=X_{23} X_{13} X_{12} g_{1} g_{2}, \\
\left(g_{1} g_{2}\right)^{*}=X_{12} X_{13} X_{23} g_{1} g_{2} .
\end{gathered}
$$

Thus we get
$g_{1}^{*} \cdot g_{2}^{*}=\left(g_{1} g_{2}\right)^{*}$
and

$$
X\left(g_{1}, g_{2}\right)=1
$$

We denote by

- $t_{a, b}, \quad 1 \leq a \leq b \leq n \quad$ the following cyclic permutation in S_{n} :

$$
t_{a, b}(k):=\left\{\begin{array}{lc}
k & 1 \leq k \leq a-1 \text { or } \quad b+1 \leq k \leq n \\
b & k=a \\
k-1 & a+1 \leq k \leq b
\end{array}\right.
$$

which maps b to $b-1$ to $b-2 \cdots$ to a to b and fixes all $1 \leq k \leq a-1$ and $b+1 \leq k \leq n$ i.e
$t_{a, b}=\left(\begin{array}{ccccccccccc}1 & \ldots & a-1 & a & a+1 & \ldots & b-1 & b & b+1 & \ldots & n \\ 1 & \ldots & a-1 & b & a & \ldots & b-2 & b-1 & b+1 & \ldots & n\end{array}\right)$

We denote by

- $t_{a, b}, \quad 1 \leq a \leq b \leq n$ the following cyclic permutation in S_{n} :

$$
t_{a, b}(k):=\left\{\begin{array}{lc}
k & 1 \leq k \leq a-1 \text { or } \quad b+1 \leq k \leq n \\
b & k=a \\
k-1 & a+1 \leq k \leq b
\end{array}\right.
$$

which maps b to $b-1$ to $b-2 \cdots$ to a to b and fixes all $1 \leq k \leq a-1$ and $b+1 \leq k \leq n$ i.e
$t_{a, b}=\left(\begin{array}{ccccccccccc}1 & \ldots & a-1 & a & a+1 & \ldots & b-1 & b & b+1 & \ldots & n \\ 1 & \ldots & a-1 & b & a & \ldots & b-2 & b-1 & b+1 & \ldots & n\end{array}\right)$

- $t_{b, a}:=t_{a, b}^{-1} \quad$ i.e

$$
t_{b, a}(k)=\left\{\begin{array}{lc}
k & 1 \leq k \leq a-1 \text { or } b+1 \leq k \leq n \\
k+1 & a \leq k \leq b-1 \\
a & k=b
\end{array}\right.
$$

Then the sets of inversions are given by

$$
\begin{gathered}
I\left(t_{a, b}\right)=\{(a, j) \mid a+1 \leq j \leq b\}, \\
I\left(t_{b, a}\right)=\{(i, b) \mid a \leq i \leq b-1\} .
\end{gathered}
$$

so the corresponding elements in $\mathcal{A}\left(S_{n}\right)$ have the form:

$$
t_{a, b}^{*}=\left(\prod_{a \leq i \leq b-1} X_{i b}\right) t_{a, b} \quad t_{b, a}^{*}=\left(\prod_{a+1 \leq j \leq b} X_{a j}\right) t_{b, a} .
$$

Observe: $\quad t_{a, a}^{*}=i d, \quad$ where $\quad I\left(t_{a, a}\right)=\emptyset$.
Denote: $\quad t_{a}=t_{a, a+1} \quad\left(=t_{a+1, a}\right), \quad 1 \leq a \leq n-1$
(the transposition of adjacent letters a and $a+1$).
Then:

$$
t_{a}^{*}=X_{a a+1} t_{a}, \quad \text { with } \quad I\left(t_{a}\right)=\{(a, a+1)\} .
$$

Recall, $\quad g_{1}^{*} \cdot g_{2}^{*}=X\left(g_{1}, g_{2}\right)\left(g_{1} g_{2}\right)^{*} \quad$ for every $g_{1}^{*}, g_{2}^{*} \in \mathcal{A}\left(S_{n}\right)$

Corollary

For each $1 \leq a \leq n-1$ we have $\quad\left(t_{a}^{*}\right)^{2}=X_{\{a, a+1\}} i d$.

Here we have used that $t_{a} t_{a}=i d$ and $\quad X_{\{a, a+1\}}=X_{a a+1} \cdot X_{a+1 a}$.

Corollary

For each $g \in S_{n}, 1 \leq a<b \leq n$ we have

$$
g^{*} \cdot t_{b, a}^{*}=\left(\prod_{a<j \leq n, g(a)>g(j)} X_{\{g(j), g(a)\}}\right)\left(g t_{b, a}\right)^{*} .
$$

In the case $g \in S_{j} \times S_{n-j}, 1 \leq j \leq k \leq n$ we have $g^{*} \cdot t_{k, j}^{*}=\left(g t_{k, j}\right)^{*}$.

Recall, $\quad g_{1}^{*} \cdot g_{2}^{*}=X\left(g_{1}, g_{2}\right)\left(g_{1} g_{2}\right)^{*} \quad$ for every $g_{1}^{*}, g_{2}^{*} \in \mathcal{A}\left(S_{n}\right)$

Corollary (Braid relations)

We have
(i) $t_{a}^{*} \cdot t_{a+1}^{*} \cdot t_{a}^{*}=t_{a+1}^{*} \cdot t_{a}^{*} \cdot t_{a+1}^{*} \quad$ for each $\quad 1 \leq a \leq n-2$,
(ii) $t_{a}^{*} \cdot t_{b}^{*}=t_{b}^{*} \cdot t_{a}^{*} \quad$ for each $1 \leq a, b \leq n-1$ with $|a-b| \geq 2$.

Corollary (Commutation rules)

We have
(i) $t_{m, k}^{*} \cdot t_{p, k}^{*}=\left(t_{k}^{*}\right)^{2} \cdot t_{p, k+1}^{*} \cdot t_{m-1, k}^{*} \quad$ if $\quad 1 \leq k \leq m \leq p \leq n$.
(ii) Let $w_{n}(=n n-1 \cdots 21)$ be the longest permutation in S_{n}. Then for every $g \in S_{n}$ we have

$$
\left(g w_{n}\right)^{*} \cdot w_{n}^{*}=w_{n}^{*} \cdot\left(w_{n} g\right)^{*}\left(=\prod_{a<b, g^{-1}(a)<g^{-1}(b)} X_{\{a, b\}}\right) g^{*}
$$

Decompositions (from the left) of certain canonical elements in $\mathcal{A}\left(S_{n}\right)$

- Observe first:

$$
\text { for } \forall g \in S_{n} \quad \exists g_{1} \in S_{1} \times S_{n-1} \text { and } 1 \leq k_{1} \leq n \text { such that }
$$

Then $g\left(k_{1}\right)=g_{1}\left(t_{k_{1}, 1}\left(k_{1}\right)\right)=g_{1}(1)=1 \quad$ implies $\quad k_{1}=g^{-1}(1)$.

Decompositions (from the left) of certain canonical elements in $\mathcal{A}\left(S_{n}\right)$

- Observe first:

$$
\text { for } \forall g \in S_{n} \quad \exists g_{1} \in S_{1} \times S_{n-1} \quad \text { and } \quad 1 \leq k_{1} \leq n \text { such that }
$$

$$
g=g_{1} t_{k_{1}, 1}
$$

Then $g\left(k_{1}\right)=g_{1}\left(t_{k_{1}, 1}\left(k_{1}\right)\right)=g_{1}(1)=1 \quad$ implies $\quad k_{1}=g^{-1}(1)$.

- Subsequently, the permutation $g_{1} \in S_{1} \times S_{n-1}$
can be represented uniquely as $g_{1}=g_{2} t_{k_{2}, 2}$ with $g_{2} \in S_{1} \times S_{1} \times S_{n-2}$ and $2 \leq k_{2} \leq n$.
Then $g_{1}\left(k_{2}\right)=g_{2}\left(t_{k_{2}, 2}\left(k_{2}\right)\right)=g_{2}(2)=2$ implies $k_{2}=g_{1}^{-1}(2)$.

Decompositions (from the left) of certain canonical elements in $\mathcal{A}\left(S_{n}\right)$

- Observe first:

$$
\text { for } \forall g \in S_{n} \quad \exists g_{1} \in S_{1} \times S_{n-1} \quad \text { and } \quad 1 \leq k_{1} \leq n \text { such that }
$$

$$
g=g_{1} t_{k_{1}, 1}
$$

Then $g\left(k_{1}\right)=g_{1}\left(t_{k_{1}, 1}\left(k_{1}\right)\right)=g_{1}(1)=1 \quad$ implies $\quad k_{1}=g^{-1}(1)$.

- Subsequently, the permutation $g_{1} \in S_{1} \times S_{n-1}$
can be represented uniquely as $g_{1}=g_{2} t_{k_{2}, 2}$ with $g_{2} \in S_{1} \times S_{1} \times S_{n-2}$ and $2 \leq k_{2} \leq n$.
Then $g_{1}\left(k_{2}\right)=g_{2}\left(t_{k_{2}, 2}\left(k_{2}\right)\right)=g_{2}(2)=2$ implies $k_{2}=g_{1}^{-1}(2)$.
- By repeating the above procedure we get the following decomposition:

$$
g=t_{k_{n}, n} \cdot t_{k_{n-1}, n-1} \cdots t_{k_{j}, j} \cdots t_{k_{2}, 2} \cdot t_{k_{1}, 1}\left(=\prod_{1 \leq j \leq n}^{\overleftarrow{ }} t_{k_{j}, j}\right) .
$$

$$
g=t_{k_{n}, n} \cdot t_{k_{n-1}, n-1} \cdots t_{k_{j}, j} \cdots t_{k_{2}, 2} \cdot t_{k_{1}, 1}
$$

Example

- Let $S_{3}=\{123,132,312,321,231,213\}$ then in $\mathcal{A}\left(S_{3}\right)$ we have:

$$
\begin{array}{lll}
123^{*}=t_{3,3}^{*} \cdot t_{2,2}^{*} \cdot t_{1,1}^{*}, & 132^{*}=t_{3,3}^{*} \cdot t_{3,2}^{*} \cdot t_{1,1}^{*}, & 312^{*}=t_{3,3}^{*} \cdot t_{3,2}^{*} \cdot t_{2,1}^{*}, \\
321^{*}=t_{3,3}^{*} \cdot t_{3,2}^{*} \cdot t_{3,1}^{*}, & 231^{*}=t_{3,3}^{*} \cdot t_{2,2}^{*} \cdot t_{3,1}^{*}, & 213^{*}=t_{3,3}^{*} \cdot t_{2,2}^{*} \cdot t_{2,1}^{*} .
\end{array}
$$

Recall, $\quad g=t_{k_{n}, n} \cdot t_{k_{n-1}, n-1} \cdots t_{k_{j}, j} \cdots t_{k_{2}, 2} \cdot t_{k_{1}, 1}$.

Example

- Let $S_{3}=\{123,132,312,321,231,213\}$ then in $\mathcal{A}\left(S_{3}\right)$ we have:

$$
\begin{array}{lll}
123^{*}=t_{3,3}^{*} \cdot t_{2,2}^{*} \cdot t_{1,1}^{*}, & 132^{*}=t_{3,3}^{*} \cdot t_{3,2}^{*} \cdot t_{1,1}^{*}, & 312^{*}=t_{3,3}^{*} \cdot t_{3,2}^{*} \cdot t_{2,1}^{*} \\
321^{*}=t_{3,3}^{*} \cdot t_{3,2}^{*} \cdot t_{3,1}^{*}, & 231^{*}=t_{3,3}^{*} \cdot t_{2,2}^{*} \cdot t_{3,1}^{*}, & 213^{*}=t_{3,3}^{*} \cdot t_{2,2}^{*} \cdot t_{2,1}^{*}
\end{array}
$$

- Now, assume that

$$
\alpha_{3}^{*}=\sum_{g \in S_{3}} g^{*} .
$$

Then we get the following product form:

$$
\alpha_{3}^{*}=\underbrace{\left(t_{3,3}^{*}\right)}_{\beta_{1}^{*}=(i d)} \cdot \underbrace{\left(t_{3,2}^{*}+t_{2,2}^{*}\right)}_{\beta_{2}^{*}} \cdot \underbrace{\left(t_{3,1}^{*}+t_{2,1}^{*}+t_{1,1}^{*}\right)}_{\beta_{3}^{*}}
$$

of simpler elements $\beta_{i}^{*}, 1 \leq i \leq 3$ of the algebra $\mathcal{A}\left(S_{3}\right)$.

The general situation in $\mathcal{A}\left(S_{n}\right)$:

Definition

For every $1 \leq k \leq n$ we define

$$
\beta_{n-k+1}^{*}:=t_{n, k}^{*}+t_{n-1, k}^{*}+\cdots+t_{k+1, k}^{*}+t_{k, k}^{*}\left(=\sum_{k \leq m \leq n}^{\leftarrow} t_{m, k}^{*}\right)
$$

Theorem

Let

$$
\alpha_{n}^{*}=\sum_{g \in S_{n}} g^{*}
$$

Then

$$
\alpha_{n}^{*}=\beta_{1}^{*} \cdot \beta_{2}^{*} \cdots \beta_{n}^{*}\left(=\prod_{1 \leq k \leq n-1}^{\leftarrow} \beta_{n-k+1}^{*}\right)
$$

In what follows we are going to introduce some new elements in the algebra $\mathcal{A}\left(S_{n}\right)$ by which we will reduce $\beta_{n-k+1}^{*}, 1 \leq k \leq n$.
The motivation is to show that the element $\alpha_{n}^{*} \in \mathcal{A}\left(S_{n}\right)$ can be expressed in turn as products of yet simpler elements of the algebra $\mathcal{A}\left(S_{n}\right)$.

Definition

For every $1 \leq k \leq n-1$ we define

$$
\begin{gathered}
\gamma_{n-k+1}^{*}:=\left(i d-t_{n, k}^{*}\right) \cdot\left(i d-t_{n-1, k}^{*}\right) \cdots\left(i d-t_{k+1, k}^{*}\right) \\
\delta_{n-k+1}^{*}:=\left(i d-\left(t_{k}^{*}\right)^{2} t_{n, k+1}^{*}\right) \cdot\left(i d-\left(t_{k}^{*}\right)^{2} t_{n-1, k+1}^{*}\right) \cdots\left(i d-\left(t_{k}^{*}\right)^{2} t_{k+1, k+1}^{*}\right)
\end{gathered}
$$

Recall, $\quad\left(t_{k}^{*}\right)^{2}=X_{\{k, k+1\}} i d\left(=X_{k k+1} \cdot X_{k+1 k} i d\right) \quad$ and $\quad t_{k+1, k+1}^{*}=i d$.

Theorem

For every $1 \leq k \leq n$ we have the following factorization

$$
\beta_{n-k+1}^{*}=\delta_{n-k+1}^{*} \cdot\left(\gamma_{n-k+1}^{*}\right)^{-1}
$$

$$
\alpha_{n}^{*}=\beta_{1}^{*} \cdot \beta_{2}^{*} \cdots \beta_{n}^{*}
$$

with $\quad \beta_{1}^{*}=i d$

$$
\begin{aligned}
& \beta_{n-k+1}^{*}=\delta_{n-k+1}^{*} \cdot\left(\gamma_{n-k+1}^{*}\right)^{-1} \\
& \gamma_{n-k+1}^{*}=\left(i d-t_{n, k}^{*}\right) \cdot\left(i d-t_{n-1, k}^{*}\right) \cdots\left(i d-t_{k+1, k}^{*}\right) \\
& \delta_{n-k+1}^{*}=\left(i d-\left(t_{k}^{*}\right)^{2} t_{n, k+1}^{*}\right) \cdot\left(i d-\left(t_{k}^{*}\right)^{2} t_{n-1, k+1}^{*}\right) \cdots\left(i d-\left(t_{k}^{*}\right)^{2} t_{k+1, k+1}^{*}\right)
\end{aligned}
$$

Example (The factorization of $\alpha_{2}^{*} \in \mathcal{A}\left(S_{2}\right)$)

We have

$$
\alpha_{2}^{*}=\beta_{2}^{*}
$$

i.e

$$
\alpha_{2}^{*}=\left(i d-\left(t_{1}^{*}\right)^{2}\right) \cdot\left(i d-t_{2,1}^{*}\right)^{-1}
$$

$$
\alpha_{n}^{*}=\beta_{1}^{*} \cdot \beta_{2}^{*} \cdots \beta_{n}^{*}
$$

with $\quad \beta_{1}^{*}=i d$

$$
\begin{aligned}
& \beta_{n-k+1}^{*}=\delta_{n-k+1}^{*} \cdot\left(\gamma_{n-k+1}^{*}\right)^{-1} \\
& \gamma_{n-k+1}^{*}=\left(i d-t_{n, k}^{*}\right) \cdot\left(i d-t_{n-1, k}^{*}\right) \cdots\left(i d-t_{k+1, k}^{*}\right) \\
& \delta_{n-k+1}^{*}=\left(i d-\left(t_{k}^{*}\right)^{2} t_{n, k+1}^{*}\right) \cdot\left(i d-\left(t_{k}^{*}\right)^{2} t_{n-1, k+1}^{*}\right) \cdots\left(i d-\left(t_{k}^{*}\right)^{2} t_{k+1, k+1}^{*}\right)
\end{aligned}
$$

Example (The factorization of $\alpha_{3}^{*} \in \mathcal{A}\left(S_{3}\right)$)

We have

$$
\alpha_{3}^{*}=\beta_{2}^{*} \cdot \beta_{3}^{*}
$$

where

$$
\begin{aligned}
& \beta_{2}^{*}=\left(i d-\left(t_{2}^{*}\right)^{2}\right) \cdot\left(i d-t_{3,2}^{*}\right)^{-1} \\
& \beta_{3}^{*}=\left(i d-\left(t_{1}^{*}\right)^{2} \cdot t_{3,2}^{*}\right) \cdot\left(i d-\left(t_{1}^{*}\right)^{2}\right) \cdot\left(i d-t_{2,1^{*}}\right)^{-1} \cdot\left(i d-t_{3,1}^{*}\right)^{-1}
\end{aligned}
$$

$$
\alpha_{n}^{*}=\beta_{1}^{*} \cdot \beta_{2}^{*} \cdots \beta_{n}^{*}
$$

with $\quad \beta_{1}^{*}=i d$

$$
\begin{aligned}
& \beta_{n-k+1}^{*}=\delta_{n-k+1}^{*} \cdot\left(\gamma_{n-k+1}^{*}\right)^{-1} \\
& \gamma_{n-k+1}^{*}=\left(i d-t_{n, k}^{*}\right) \cdot\left(i d-t_{n-1, k}^{*}\right) \cdots\left(i d-t_{k+1, k}^{*}\right) \\
& \delta_{n-k+1}^{*}=\left(i d-\left(t_{k}^{*}\right)^{2} t_{n, k+1}^{*}\right) \cdot\left(i d-\left(t_{k}^{*}\right)^{2} t_{n-1, k+1}^{*}\right) \cdots\left(i d-\left(t_{k}^{*}\right)^{2} t_{k+1, k+1}^{*}\right)
\end{aligned}
$$

Example (The factorization of $\alpha_{4}^{*} \in \mathcal{A}\left(S_{4}\right)$)

We have

$$
\alpha_{4}^{*}=\beta_{2}^{*} \cdot \beta_{3}^{*} \cdot \beta_{4}^{*}
$$

where

$$
\begin{aligned}
\beta_{2}^{*}= & \left(i d-\left(t_{3}^{*}\right)^{2}\right) \cdot\left(i d-t_{4,3}^{*}\right)^{-1} \\
\beta_{3}= & \left(i d-\left(t_{2}^{*}\right)^{2} \cdot t_{4,3}^{*}\right) \cdot\left(i d-\left(t_{2}^{*}\right)^{2}\right) \cdot\left(i d-t_{3,2}^{*}\right)^{-1} \cdot\left(i d-t_{4,2}^{*}\right)^{-1}, \\
\beta_{4}^{*}= & \left(i d-\left(t_{1}^{*}\right)^{2} \cdot t_{4,2}^{*}\right) \cdot\left(i d-\left(t_{1}^{*}\right)^{2} \cdot t_{3,2}^{*}\right) \cdot\left(i d-\left(t_{1}^{*}\right)^{2}\right) \cdot\left(i d-t_{2,1}^{*}\right)^{-1} \\
& \cdot\left(i d-t_{3,1}^{*}\right)^{-1} \cdot\left(i d-t_{4,1}^{*}\right)^{-1} .
\end{aligned}
$$

Conclusion

In order to replace the matrix factorizations (from the right) given in ${ }^{1}$ by twisted algebra computation, we nead to consider similar factorizations (but from the left).
Here we used factorizations from the left, because they are more suitable for computing constants in the algebra of noncommuting polynomials (this will be elaborated in a fortcoming paper).

1
S. Meljanac, D. Svrtan, Determinants and inversion of Gram matrices in Fock representation of $q_{k l}$-canonical commutation relations and applications to hyperplane arrangements and quantum groups. Proof of an extension of Zagier's conjecture, arXiv:math-ph/0304040vl, 26 Apr 2003.
S. Meljanac, D. Svrtan, Study of Gram matrices in Fock representation of multiparametric canonical commutation relations, extended Zagier's conjecture, hyperplane arrangements and quantum groups, Math.
Commun., 1 (1996), 1 - 24.

