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Let

Sn denote the symmetric group on n letters

i.e Sn is the set of all permutations of a set M = {1, 2, . . . , n} equiped with
a composition as the binary operation on Sn

(clearly, the permutations are regarded as bijections from M to itself);
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Let

Sn denote the symmetric group on n letters

i.e Sn is the set of all permutations of a set M = {1, 2, . . . , n} equiped with
a composition as the binary operation on Sn

(clearly, the permutations are regarded as bijections from M to itself);

X = {Xa b | 1 ≤ a, b ≤ n} be a set of n2 commuting variables Xa b;

Rn := C[Xa b | 1 ≤ a, b ≤ n] denote the polynomial ring

i.e the commutative ring of all polynomials in n2 variables Xa b over the set C
with 1 ∈ Rn as a unit element of Rn.
C = the set of complex numbers.

Sn acts on the set X as follows: g.Xa b = Xg(a) g(b).

This action of Sn on X induces the action of Sn on Rn given by

g.p(. . . , Xa b, . . . ) = p(. . . , Xg(a) g(b), . . . )

for every g ∈ Sn and any p ∈ Rn.
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Recall, the usual group algebra

C[Sn] =

{
∑

σ∈Sn

cσσ | cσ ∈ C

}

of the symmetric group Sn is a free vector space (generated with the set
Sn), where the multiplication is given by

(
∑

σ∈Sn

cσσ

)

·

(
∑

τ∈Sn

dττ

)

=
∑

σ,τ∈Sn

(cσdτ )στ.

Here we have used the simplified notation: στ = σ ◦ τ

for the composition σ ◦ τ i.e the product of σ and τ in Sn.

M. Sošić (University of Rijeka) Some identities August 8, 2013 3 / 21



Now we define more general group algebra

A(Sn) := Rn ⋊C[Sn]

a twisted group algebra of the symmetric group Sn with coefficients
in the polynomial ring Rn.

Here ⋊ denotes the semidirect product.
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Now we define more general group algebra

A(Sn) := Rn ⋊C[Sn]

a twisted group algebra of the symmetric group Sn with coefficients
in the polynomial ring Rn.

Here ⋊ denotes the semidirect product.

The elements of the set A(Sn) are the linear combinations

∑

gi∈Sn

pi gi with pi ∈ Rn.

The multiplication in A(Sn) is given by

(p1g1) · (p2g2) := (p1 · (g1.p2)) g1g2

where g1.p2 is defined by: g.p(. . . , Xa b, . . . ) = p(. . . , Xg(a) g(b), . . . )

The algebra A(Sn) is associative but not commutative.
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Let

I(g) = {(a, b) | 1 ≤ a < b ≤ n, g(a) > g(b)}

denote the set of inversions of g ∈ Sn.

Then to every g ∈ Sn we associate a monomial in the ring Rn defined by

Xg :=
∏

(a,b)∈I(g−1)

Xa b



=
∏

a<b, g−1(a)>g−1(b)

Xa b



 ,

which encodes all inversions of g−1 (and of g too).

More generally, for any subset A ⊆ {1, 2, . . . , n} we will use the notation

XA :=
∏

(a,b)∈A×A, a<b

Xa b ·Xb a =
∏

(a,b)∈A×A, a<b

X{a, b},

because
X{a, b} := Xa b ·Xb a.
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Definition

To each g ∈ Sn we assign a unique element g∗ ∈ A(Sn) defined by

g∗ := Xg g.

Theorem

For every g∗1, g
∗
2 ∈ A(Sn) we have

g∗1 · g
∗
2 = X(g1, g2) (g1g2)

∗,

where the multiplication factor is given by

X(g1, g2) =
∏

(a,b)∈I(g−1
1 )\I((g1g2)−1)

X{a, b}

.
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Recall,

X(g1, g2) =
∏

(a,b)∈I(g−1

1
)\I((g1g2)−1)

X{a, b}

Note that
X(g1, g2) = 1

if l(g1g2) = l(g1) + l(g2).

So we have
g∗1 · g∗2 = (g1g2)

∗

where l(g) := Card I(g) is the lenght of g ∈ Sn.
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Recall,

X(g1, g2) =
∏

(a,b)∈I(g−1

1
)\I((g1g2)−1)

X{a, b}

Note that
X(g1, g2) = 1

if l(g1g2) = l(g1) + l(g2).

So we have
g∗1 · g∗2 = (g1g2)

∗

where l(g) := Card I(g) is the lenght of g ∈ Sn.

The factor X(g1, g2) takes care of the reduced number of inversions in the group

product of g1, g2 ∈ Sn.
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Recall, g∗1 · g∗2 = X(g1, g2) (g1g2)
∗ for every g∗1 , g

∗
2 ∈ A(Sn)

Example

Let g1 = 132, g2 = 312 ∈ S3.

Then g1g2 = 213, l(g1) = 1, l(g2) = 2, l(g1g2) = 1.

Note that g−11 = 132, g−12 = 231, so

g∗1 · g
∗
2 =(X2 3 g1) · (X1 3X2 3 g2) = X2 3X1 2X3 2 g1g2 = X{2, 3}X1 2 g1g2.

On the other hand we have: (g1g2)
∗ = X1 2 g1g2,

since (g1g2)
−1 = 213.

Thus we get g∗1 · g
∗
2 = X{2, 3} (g1g2)

∗

and X(g1, g2) = X{2, 3}.
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Recall, g∗1 · g∗2 = X(g1, g2) (g1g2)
∗ for every g∗1 , g

∗
2 ∈ A(Sn)

Example

For g1 = 132, g2 = 231

we have g1g2 = 321, l(g1) = 1, l(g2) = 2, l(g1g2) = 3.

Further g−11 = 132, g−12 = 312 and (g1g2)
−1 = 321,

so we get:

g∗1 · g
∗
2 =(X2 3 g1) · (X1 2X1 3 g2) = X2 3X1 3X1 2 g1g2,

(g1g2)
∗ = X1 2X1 3X2 3 g1g2.

Thus we get g∗1 · g
∗
2 = (g1g2)

∗

and X(g1, g2) = 1.

M. Sošić (University of Rijeka) Some identities August 8, 2013 9 / 21



We denote by

ta,b, 1 ≤ a ≤ b ≤ n the following cyclic permutation in Sn:

ta,b(k) :=







k 1 ≤ k ≤ a− 1 or b+ 1 ≤ k ≤ n

b k = a

k − 1 a+ 1 ≤ k ≤ b

which maps b to b− 1 to b− 2 · · · to a to b and fixes all 1 ≤ k ≤ a− 1 and
b+ 1 ≤ k ≤ n i.e

ta,b =

(
1 . . . a− 1 a a+ 1 . . . b− 1 b b+ 1 . . . n

1 . . . a− 1 b a . . . b− 2 b− 1 b+ 1 . . . n

)
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We denote by

ta,b, 1 ≤ a ≤ b ≤ n the following cyclic permutation in Sn:

ta,b(k) :=







k 1 ≤ k ≤ a− 1 or b+ 1 ≤ k ≤ n

b k = a

k − 1 a+ 1 ≤ k ≤ b

which maps b to b− 1 to b− 2 · · · to a to b and fixes all 1 ≤ k ≤ a− 1 and
b+ 1 ≤ k ≤ n i.e

ta,b =

(
1 . . . a− 1 a a+ 1 . . . b− 1 b b+ 1 . . . n

1 . . . a− 1 b a . . . b− 2 b− 1 b+ 1 . . . n

)

tb,a := t−1a,b i.e

tb,a(k) =







k 1 ≤ k ≤ a− 1 or b+ 1 ≤ k ≤ n

k + 1 a ≤ k ≤ b− 1
a k = b
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Then the sets of inversions are given by

I(ta,b) = {(a, j) | a+ 1 ≤ j ≤ b},

I(tb,a) = {(i, b) | a ≤ i ≤ b− 1}.

so the corresponding elements in A(Sn) have the form:

t∗a,b =




∏

a≤i≤b−1

Xi b



 ta,b t∗b,a =




∏

a+1≤j≤b

Xa j



 tb,a.

Observe: t∗a,a = id, where I(ta,a) = ∅.

Denote: ta = ta,a+1 (= ta+1,a), 1 ≤ a ≤ n− 1

(the transposition of adjacent letters a and a+ 1).

Then: t∗a = Xa a+1 ta, with I(ta) = {(a, a+ 1)}.
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Recall, g∗1 · g∗2 = X(g1, g2) (g1g2)
∗ for every g∗1 , g

∗
2 ∈ A(Sn)

Corollary

For each 1 ≤ a ≤ n− 1 we have (t∗a)
2 = X{a, a+1} id.

Here we have used that tata = id and X{a, a+1} = Xa a+1 ·Xa+1 a.

Corollary

For each g ∈ Sn, 1 ≤ a < b ≤ n we have

g
∗ · t∗b,a =





∏

a<j≤n, g(a)>g(j)

X{g(j), g(a)}



 (gtb,a)
∗
.

In the case g ∈ Sj × Sn−j , 1 ≤ j ≤ k ≤ n we have g∗ · t∗k,j = (gtk,j)
∗
.
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Recall, g∗1 · g∗2 = X(g1, g2) (g1g2)
∗ for every g∗1 , g

∗
2 ∈ A(Sn)

Corollary (Braid relations)

We have

(i) t∗a · t
∗
a+1 · t

∗
a = t∗a+1 · t

∗
a · t
∗
a+1 for each 1 ≤ a ≤ n− 2,

(ii) t∗a · t
∗
b = t∗b · t

∗
a for each 1 ≤ a, b ≤ n− 1 with |a− b| ≥ 2.

Corollary (Commutation rules)

We have

(i) t∗m,k · t
∗
p,k = (t∗k)

2 · t∗p,k+1 · t
∗
m−1,k if 1 ≤ k ≤ m ≤ p ≤ n.

(ii) Let wn(= nn− 1 · · · 2 1) be the longest permutation in Sn. Then for

every g ∈ Sn we have

(gwn)
∗ · w∗n = w∗n · (wng)

∗



=
∏

a<b, g−1(a)<g−1(b)

X{a, b}



 g∗.
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Decompositions (from the left) of certain canonical elements in A(Sn)

Observe first:

for ∀g ∈ Sn ∃ g1 ∈ S1 × Sn−1 and 1 ≤ k1 ≤ n such that

g = g1tk1,1

Then g(k1) = g1(tk1,1(k1)) = g1(1) = 1 implies k1 = g−1(1).
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Decompositions (from the left) of certain canonical elements in A(Sn)

Observe first:

for ∀g ∈ Sn ∃ g1 ∈ S1 × Sn−1 and 1 ≤ k1 ≤ n such that

g = g1tk1,1

Then g(k1) = g1(tk1,1(k1)) = g1(1) = 1 implies k1 = g−1(1).

Subsequently, the permutation g1 ∈ S1 × Sn−1

can be represented uniquely as g1 = g2tk2,2

with g2 ∈ S1 × S1 × Sn−2 and 2 ≤ k2 ≤ n.

Then g1(k2) = g2(tk2,2(k2)) = g2(2) = 2 implies k2 = g−11 (2).

By repeating the above procedure we get the following decomposition:

g = tkn,n · tkn−1,n−1 · · · tkj ,j · · · tk2,2 · tk1,1



=
←∏

1≤j≤n

tkj ,j



 .
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Recall, g = tkn,n · tkn−1,n−1 · · · tkj ,j · · · tk2,2 · tk1,1.

Example

Let S3 = {123, 132, 312, 321, 231, 213} then in A(S3) we have:

123∗ = t∗3,3 · t
∗
2,2 · t

∗
1,1, 132∗ = t∗3,3 · t

∗
3,2 · t

∗
1,1, 312∗ = t∗3,3 · t

∗
3,2 · t

∗
2,1,

321∗ = t∗3,3 · t
∗
3,2 · t

∗
3,1, 231∗ = t∗3,3 · t

∗
2,2 · t

∗
3,1, 213∗ = t∗3,3 · t

∗
2,2 · t

∗
2,1.
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Recall, g = tkn,n · tkn−1,n−1 · · · tkj ,j · · · tk2,2 · tk1,1.

Example

Let S3 = {123, 132, 312, 321, 231, 213} then in A(S3) we have:

123∗ = t∗3,3 · t
∗
2,2 · t

∗
1,1, 132∗ = t∗3,3 · t

∗
3,2 · t

∗
1,1, 312∗ = t∗3,3 · t

∗
3,2 · t

∗
2,1,

321∗ = t∗3,3 · t
∗
3,2 · t

∗
3,1, 231∗ = t∗3,3 · t

∗
2,2 · t

∗
3,1, 213∗ = t∗3,3 · t

∗
2,2 · t

∗
2,1.

Now, assume that
α∗3 =

∑

g∈S3

g∗.

Then we get the following product form:

α∗3 =
(
t∗3,3
)

︸ ︷︷ ︸

β∗

1
=(id)

·
(
t∗3,2 + t∗2,2

)

︸ ︷︷ ︸

β∗

2

·
(
t∗3,1 + t∗2,1 + t∗1,1

)

︸ ︷︷ ︸

β∗

3

of simpler elements β∗
i , 1 ≤ i ≤ 3 of the algebra A(S3).
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The general situation in A(Sn):

Definition

For every 1 ≤ k ≤ n we define

β∗n−k+1 := t∗n,k + t∗n−1,k + · · ·+ t∗k+1,k + t∗k,k



=
←∑

k≤m≤n

t∗m,k



.

Theorem
Let

α∗n =
∑

g∈Sn

g∗.

Then

α∗n = β∗1 · β∗2 · · ·β
∗
n



=

←∏

1≤k≤n−1

β∗n−k+1



.
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In what follows we are going to introduce some new elements in the algebra
A(Sn) by which we will reduce β∗n−k+1, 1 ≤ k ≤ n.

The motivation is to show that the element α∗n ∈ A(Sn) can be expressed in turn
as products of yet simpler elements of the algebra A(Sn).

Definition
For every 1 ≤ k ≤ n− 1 we define

γ∗n−k+1 :=
(
id− t∗n,k

)
·
(
id− t∗n−1,k

)
· · ·
(
id− t∗k+1,k

)
,

δ∗n−k+1 :=
(
id− (t∗k)

2 t∗n,k+1

)
·
(
id− (t∗k)

2 t∗n−1,k+1

)
· · ·
(
id− (t∗k)

2 t∗k+1,k+1

)

Recall, (t∗k)
2 = X{k, k+1} id (= Xk k+1 ·Xk+1 k id) and t∗k+1,k+1 = id.

Theorem
For every 1 ≤ k ≤ n we have the following factorization

β∗n−k+1 = δ∗n−k+1 ·
(
γ∗n−k+1

)−1
.
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Recall, α∗n = β∗1 · β∗2 · · ·β
∗
n with β∗1 = id

β∗n−k+1 = δ∗n−k+1 ·
(
γ∗n−k+1

)−1

γ∗n−k+1 =
(

id− t∗n,k

)

·
(

id− t∗n−1,k

)

· · ·
(

id− t∗k+1,k

)

δ∗n−k+1 =
(

id− (t∗k)
2 t∗n,k+1

)

·
(

id− (t∗k)
2 t∗n−1,k+1

)

· · ·
(

id− (t∗k)
2 t∗k+1,k+1

)

Example (The factorization of α∗2 ∈ A(S2))

We have
α∗2 = β∗2

i.e
α∗2 =

(
id− (t∗1)

2
)
·
(
id− t∗2,1

)−1
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Recall, α∗n = β∗1 · β∗2 · · ·β
∗
n with β∗1 = id

β∗n−k+1 = δ∗n−k+1 ·
(
γ∗n−k+1

)−1

γ∗n−k+1 =
(

id− t∗n,k

)

·
(

id− t∗n−1,k

)

· · ·
(

id− t∗k+1,k

)

δ∗n−k+1 =
(

id− (t∗k)
2 t∗n,k+1

)

·
(

id− (t∗k)
2 t∗n−1,k+1

)

· · ·
(

id− (t∗k)
2 t∗k+1,k+1

)

Example (The factorization of α∗3 ∈ A(S3))

We have
α∗3 = β∗2 · β∗3

where

β∗2 =
(
id− (t∗2)

2
)
·
(
id− t∗3,2

)−1

β∗3 =
(
id− (t∗1)

2 · t∗3,2
)
·
(
id− (t∗1)

2
)
· (id− t2,1∗)

−1 ·
(
id− t∗3,1

)−1
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Recall, α∗n = β∗1 · β∗2 · · ·β
∗
n with β∗1 = id

β∗n−k+1 = δ∗n−k+1 ·
(
γ∗n−k+1

)−1

γ∗n−k+1 =
(

id− t∗n,k

)

·
(

id− t∗n−1,k

)

· · ·
(

id− t∗k+1,k

)

δ∗n−k+1 =
(

id− (t∗k)
2 t∗n,k+1

)

·
(

id− (t∗k)
2 t∗n−1,k+1

)

· · ·
(

id− (t∗k)
2 t∗k+1,k+1

)

Example (The factorization of α∗4 ∈ A(S4))

We have
α∗4 = β∗2 · β∗3 · β∗4

where

β∗2 =
(
id− (t∗3)

2
)
·
(
id− t∗4,3

)−1

β3 =
(
id− (t∗2)

2 · t∗4,3
)
·
(
id− (t∗2)

2
)
·
(
id− t∗3,2

)−1
·
(
id− t∗4,2

)−1
,

β∗4 =
(
id− (t∗1)

2 · t∗4,2
)
·
(
id− (t∗1)

2 · t∗3,2
)
·
(
id− (t∗1)

2
)
·
(
id− t∗2,1

)−1

·
(
id− t∗3,1

)−1
·
(
id− t∗4,1

)−1
.
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Conclusion

In order to replace the matrix factorizations (from the right) given
in 1 by twisted algebra computation, we nead to consider similar
factorizations (but from the left).
Here we used factorizations from the left, because they are more
suitable for computing constants in the algebra of noncommuting
polynomials (this will be elaborated in a fortcoming paper).
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M. Sošić (University of Rijeka) Some identities August 8, 2013 21 / 21


