
Hill Climbing and Simulated Annealing in Large
Scale Next Release Problem

Goran Mauša #1, Tihana Galinac Grbac #2, Bojana Dalbelo Bašić ∗3, Mario-Osvin Pavčević ∗4

Faculty of Engineering, University of Rijeka

Vukovarska 58, 51000 Rijeka, Croatia
1 goran.mausa@riteh.hr

2 tihana.galinac@riteh.hr
∗ Faculty of Electrical Engineering and Computing, University of Zagreb

Unska 3, 10000 Zagreb, Croatia
3 bojana.dalbelo@fer.hr
4 mario.pavcevic@fer.hr

Abstract—Next release problem is a software engineering
problem, lately often solved using heuristic algorithms. It deals
with selecting a subset of requirements that should appear
in next release of a software product. The problem lies in
satisfying various parts interested in project development with
acceptable costs. This paper compares two rather simple, but
often used and efficient heuristic algorithms: Hill Climbing and
Simulated Annealing. The aim of this paper was to compare
the performance of these algorithms and their modifications on
a large scale problem. We investigated the differences between
four variations of Hill Climbing and two variations of Simulated
Annealing, while Random Search was used to verify the benefit
of using a heuristic algorithm. The evaluation was performed
in terms of finding the best solution for a given budget and
in calculating the proportion of non-dominated solutions that
form the joint Pareto-optimal front. Our research was done on
publicly available realistic datasets that were obtained mining
the bug repositories. The results indicate Simulated Annealing
as the more successful algorithm but point out that Simulated
Annealing together with Hill Climbing provides a more thorough
insight into the problem search space.

Index Terms—next release problem, Hill Climbing, Simulated
Annealing, large scale problem, realistic dataset

I. INTRODUCTION

In this paper we address the next release problem (NRP),
a problem present in requirements engineering. This task of
choosing a subset of possible requirements often meets more
than a couple of contradictory demands. That is why this prob-
lem falls into the domain of multi-objective problems, often
solved using search based software engineering algorithms [1].
Satisfying as many of the contradictory demands is not the
only constraint under which this problem is dealt with. There
is also the problem of budget, i.e. limited financial resources
available in the project [2]. The mere concept of trying to
satisfy the highest number of stakeholders or customers while
spending the lowest amount of resources in the process is a
contradictory demand which leads to a necessary trade-off.

The NRP is very similar to the Knapsack problem and
often has a very large search space due to a greater num-
ber of possible requirement configurations [3]. That is why
exhaustive search cannot solve the problem efficiently and

metaheuristics are used instead. Using search based software
engineering in such a multi-objective problem does not always
give one optimal solution to the problem. It usually gives
several incomparable or equally good solutions that should
provide an insight into the search space of candidate solutions.
Therefore, the final decision is left to an expert [4].

There are several research questions that drive our study.
Examining the related work we noticed a rare use of Hill
Climbing algorithm when dealing with NRP. Although Sim-
ulated Annealing algorithm usually outperforms other local
search algorithms, the comparison was never performed with
realistic data. Research performed by Xuan et. al [5] made
such a dataset publicly available. This research gap motivates
our first research question:
RQ1: Does Simulated Annealing algorithm outperform Hill
Climbing algorithm in realistic large scale NRP?

We also noticed that the comparison of Hill Climbing
algorithm and Simulated Annealing algorithm was never per-
formed in terms of forming the Pareto-optimal front of non-
dominated solutions, which provide a more thorough insight
into the problem search space and are more informative for the
decision maker. That brings us to the second research question:
RQ2: How does Hill Climbing perform in forming the Pareto-
optimal front of non-dominated solutions in realistic large
scale NRP?

The realistic datasets we used in our research are instances
of a large scale problem with number of stakeholders in
range between 300 and 800 and number of requirements
between 2000 and 4500. Many other studies used smaller
datasets, like the one proposed by Greer and Ruhe and adopted
by other studies which contain only 20 requirements and 5
stakeholders. We believe the huge search space in our research
makes the algorithms with thorough search of neighbourhood
solutions like Steepest Ascent Hill Climbing unable to adopt
more than a couple of solutions and therefore makes them
inappropriate for dealing with such a problem. We also wanted
to investigate how the order of neighbourhood search influ-
ences the algorithms’ results. One way of neighbourhood was
purely randomized, while the other one followed the order of

EuroCon 2013 • 1-4 July 2013 • Zagreb, Croatia

452978-1-4673-2232-4/13/$31.00 ©2013 IEEE

requirements in the dataset. Finally, we present the last two
research questions:
RQ3: Does large scale problem make Steepest Ascent Hill
Climbing algorithm incapable of efficiently solving the NRP?
RQ4: Does order of neighbourhood search influence the local
search heuristic algorithm in finding the optimal solution in
large scale NRP?

This paper consists of six sections. Next section explains
the motivation for our choice of algorithms and evaluation
criteria examining the related work. Following section contains
some basic information about heuristic algorithms in general
and presents the Hill Climbing and the Simulated Annealing
algorithms. Section IV describes our case study in details: how
the NRP is structured, which are the datasets we had used to
compare the two algorithms and finally which are the results
we have obtained. The answers to our 4 research questions,
along with future work are concluded in the final section.

II. BACKGROUND

The fitness function and search space are the only two
requirements for usage of a heuristic algorithm. The mere sim-
plicity of requirements and the fact that fitness function may
be defined in any possible way make the search based software
engineering applicable to a very large number of problem
domains. The choice of using heuristic algorithm instead of
exhaustive search may be defined by the problem itself. Many
problems have too large search space for the exhaustive search
to finish in reasonable time and for some of them a ”near
optimal” solution is sufficient. The heuristic algorithms can
also rather quickly give an insight to problems where the
configuration of the search space and its candidate solutions is
unknown. All of these advantages make heuristic algorithms
used in all stages of software product life cycle and form the
area also known as search based software engineering (SBSE).
The most often used algorithms are genetic algorithms, genetic
programming, Hill Climbing and Simulated Annealing [7],
[18]. The latter two are used in this paper.

Solving the NRP in software engineering using heuristic al-
gorithms was first proposed by Bagnall et al. [6] in 2001. Their
study compared three instances of Hill Climbing (Steepest
Ascent, First Found and Sampling), two instances of Simulated
Annealing and a greedy algorithm upon 5 randomly generated
datasets. The evaluation criterion was best solution found by
an algorithm for a determined budget constraint. The results
showed the Simulated Annealing to be the most successful
algorithm.

Hill Climbing was rarely used in dealing with the NRP.
Besides Bagnall et. al [6], there were only a few other
researches performed using this algorithm. Lu et. al [7] used
two instances of Hill Climbing algorithm and compared them
in terms of finding one best solution and calculating time
consumed for that task. However, their focus was the fitness
landscape analysis and the improvement it could bring to the
heuristic algorithm. Jiang et. al [8] proposed greedy climbing
search, a Hill Climbing algorithm based on greedy strategy and
stated that Simulated Annealing proved to be efficient only for

the small scale NRP. Their study compared the approximate
backbone based multilevel algorithm, greedy Hill Climbing
and Simulated Annealing algorithms in terms of best profit
for determined budget and time consumption. Xuan et. al [5]
are the last ones to have used the Hill Climbing algorithm,
but they used it only for the fitness landscape analysis. There
are other heuristic algorithm often used in NRP, like NSGA-
II [1], [3], [4], [9]–[14], Ant Colony [2], MOCell [3], [11],
Greedy algorithm [4], [6], Two-archive algorithm [9], [10] and
Simulated Annealing [2], [6], [11], [13]. However, we find
only the Simulated Annealing algorithm similar enough to be
compared with the Hill Climbing algorithm and it showed to
be one of the best algorithms in other studies.

Due to lack of publicly available real world data, majority
of studies that deals with solving the NRP using heuristic
algorithms used synthetic, randomly generated instances [1]–
[3], [6]–[12], [14], [15]. Even the Xuan et. al [5] used synthetic
datasets, which were named as classical. One of the most
popular such datasets is the one proposed by Greer and
Ruhe [15] in 2004. Even though it was a randomly generated
dataset, they presented all the values that constitute it so
other researchers like Sagrado et. al [2], Zhang et. al [9]
and Finkelstein et. al [10] used the same values. However,
they could not compare the results because the information
regarding the cost of each requirement was missing. The
missing values were generated randomly, with the range [10,
1100], following Gaussian distribution but the dataset was not
identical. The only non-synthetic dataset was provided by a
large telecom company [4], [9], [13] and most likely due to
confidentiality agreement it was never made publicly available.

The research done by Bagnall et al. [6] influenced the
research of Xuan et. al [5] and our own as well. While Bagnall
et al. used randomly generated datasets, we used the realistic
ones from [16]. To our knowledge, this is the first time the
Hill Climbing algorithm is evaluated in term of forming the
Pareto-optimal front, which could provide a better insight to
the problem and possible solutions that having just the highest
value of profit or satisfaction for a limited budget. The Pareto-
optimal front is a subset of non-dominated solutions. A non-
dominated solution is superior to other examined solutions
in terms of objectives we are optimizing. In our case, the
objectives are to minimize the decision cost DC and to
maximize the profit. For each solution present in Pareto-
optimal front we can say that no other examined solution can
improve one objective without worsening the other objective.
We also did not encounter any study that compared the Hill
Climbing and Simulated Annealing algorithms using realistic
data.

”Ordered” and ”Random” procedures of the neighbourhood
search are presented both in Hill Climbing and Simulated
Annealing. We had not encountered a case study that deals
with this question so far. We believe the differences they
provide to the algorithm results would be insignificant for
the small scale problems. With reasonably high number of
maximal iterations cmax both procedures would cover most
of the solutions. However, with the same value of cmax they

EuroCon 2013 • 1-4 July 2013 • Zagreb, Croatia

453978-1-4673-2232-4/13/$31.00 ©2013 IEEE

would cover a lot less than total number of possible solutions
for a large scale problem. With limited span of solutions
they could cover, the difference in the neighbourhood search
procedure could lead to different subsets of solutions they
would examine. That is why we focused our research to this
topic in our RQ4 as well.

III. THE NEXT RELEASE PROBLEM

Next release problem can be represented with following
input parameters:

• A set of m stakeholders whose demands are to be
considered in the requirements engineering phase

S =
{
s1 s2 . . . sm

}
(1)

• A set of n requirements that are possible for the next
release of a software product

R =
{
r1 r2 . . . rn

}
(2)

• A set of n costs that denote the resources needed for the
proper implementation of each requirement

C =
{
c1 c2 . . . cn

}
(3)

• A set of m x n values that quantify the satisfaction of a
stakeholder by choosing a specific requirement or binary
values that represent which of n requirements are desired
by each of the m stakeholders

V =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v1,1 v1,2 . . . v1,n
v2,1 v2,2 . . . v2,n

...
...

. . .
...

vm,1 vm,2 . . . vm,n

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4)

• A set of m values that represent the potential profit from
each stakeholder or their importance weight

P =
{
p1 p2 . . . pm

}
(5)

Besides these four parameters that characterize the multi-
objective problem we are dealing with, there are some addi-
tional internal parameters:

• The budget available at the start of project, often repre-
sented as percentage β of total costs needed to implement
all of the requirements

B = β
n∑

i=1

ci (6)

• A decision vector of n binary values that represent a
Solution, with value of 1 for the requirements that ought
to be implemented and with the value of 0 for those that
ought to be excluded

X =
{
x1 x2 . . . xn

}
(7)

• The decision cost as the amount of resources needed to
implement the decision under consideration

DC =
n∑

i=1

cixi (8)

• The level of profit the decision under consideration would
bring from all of the m stakeholders. The profit from
each stakeholder is obtained only if all of his demanding
requirements are included in the decision vector.

From these internal parameters, the objective of the NRP
can be summed up to make a final decision Xbest ={
x1 x2 . . . xn

}
, that would produce a level of satisfac-

tion or profit as high as possible while retaining the costs
below the budget constraint DC<B.

IV. HEURISTIC ALGORITHMS

Heuristic algorithms are a group of optimization algorithms
and techniques that use a certain degree of randomness. They
are used for large scale problems for which we have no insight
what the optimal solutions looks like and where exhaustive
search proved to be too slow. The application of randomness
speeds up the search process and it can be described as
proceeding by trial and error. There are several general terms
common to any heuristic algorithm:
The Search Space is the whole range of parameters’ values
that presents solutions to the problem. In our case, the search
space is any possible combination of requirements proposed
to be included in the next release of a software product, i.e.
any solution X.
The Fitness Function is a quantitative representation of
solution’s quality. In our case, the fitness function is the level
of profit a solution would provide.
The Feasible Solution is a solution X that implies a decision
cost DC below the budget B constraint for the NRP.
The Optimal Solution is a feasible solution Xbest that
provides highest level of profit for encountered decision cost
DC.
The Candidate Solution is a feasible solution X that is under
consideration for becoming the optimal solution Xbest.
The Neighbourhood consists of all solutions that are close to
the candidate solution. In our case, the neighbourhood of the

candidate solution X are all the solutions that have only one
bit flipped.
Ordered Search Procedure means the neighbourhood is to
be searched in repeating incrementing order from the first
requirement to the last, following the same order as is given
by the dataset.
Random Search Procedure performs the neighbourhood
search in randomized order.
Random Restart is used if the algorithm stops before it is
supposed to. Then it restarts from another randomly selected
candidate solution.

The first Candidate Solution is usually a randomly chosen
feasible solution from the search space at the initialization
phase of a heuristic algorithm. The second phase is the quality
check of candidate solution. It implies the calculation of its
fitness function. The fitness function is defined by the problem
we are dealing with and it quantifies the quality of a candidate
solution [17]. The following phases of a heuristic algorithm
are included in an iterative procedure. The modification phase
examines the solutions in the neighbourhood of the candidate

EuroCon 2013 • 1-4 July 2013 • Zagreb, Croatia

454978-1-4673-2232-4/13/$31.00 ©2013 IEEE

solution searching for the optimal solution. After the quality
check of examined solutions in the neighbourhood we get
to the decision phase. It decides which candidate solution

proceeds to the following iteration, taking fitness function into
account. The search stops when it reaches a solution that is
good enough, a non-dominated solution or if it exceeds the
predefined maximal number of iterations. In our case, the
stopping criterion of all algorithms is the predefined maximal
number of iterations cmax. The algorithm randomly restarts
until the value cmax is achieved.

There are two major differentiation factors that classify the
heuristic algorithms in one of the following groups:

• Single State vs. Population Based Algorithms - de-
pending on the number of candidate solutions examined
simultaneously,

• Local vs. Global Search - depending whether the algo-
rithm finds local or global optima.

While single state algorithms analyze only one candidate

solution at the time, the population based algorithms analyze
a whole span of solutions at each iteration. The local search

algorithms have the disadvantage of becoming trapped in
a local maximum of the search space. The global search

algorithms, on the other hand, overcome that disadvantage but
at the cost of higher computation time.

A. Hill Climbing

Hill Climbing is a local search, single state heuristic algo-
rithm. The trade-off between efficiency and effectiveness can
be noticed in such an algorithm. Due to the simplicity of the
algorithm it is very fast, but it has the potential disadvantage
of becoming trapped in a locally optimal solution [19]. The
algorithm is presented in Table I. It starts with random
choice of a feasible solution. It begins the iterative procedure
searching for another feasible solution in the neighbourhood.
Finally it selects the solution with highest fitness function as
its next candidate solution.

TABLE I
HILL CLIMBING ALGORITHM

Hill climbing (cmax)

Input: neighbourhood(), Profit()
Select a feasible solution X ∈ χ
c ← 0
Xbest ← X
searching ← true
while c < cmax & searching
do

Y ← neighbourhood(X)
if Y �= Fail
then

X ← Y
if Profit(X) > Profit(Xbest)
then Xbest ← X

else
searching ← false

c ← c + 1
return (Xbest)

Four instances of Hill Climbing algorithm that we used in
our research are different in the way they search for a better
solution in the neighbourhood:

1) Steepest Ascent
The Steepest Ascent looks for the best solution in the whole
neighbourhood before moving to the following solution.

2) First Found - Ordered
The First Found neighbourhood search is a much faster
procedure than the Steepest Ascent. As it finds a solution that
is superior to the current one, it immediately adopts it as next
candidate solution. The supplement Örderedı̈s our label for
one type of neighbourhood we want to compare in RQ4.

3) First Found - Random
This is another First Found neighbourhood search procedure,
with a difference from the previous one that the order of
neighbourhood search is not influenced by dataset, but is en-
tirely random. ”Random” is the second type of neighbourhood
search procedure compared in RQ4.

4) Sampling
The Sampling procedure does not search the whole neighbour-
hood, but instead examines only a randomly selected subset
of neighbouring solutions and takes the best one among them
as its next candidate solution. We encountered the algorithm
in [6] and noticed the subset size remained unexplained. Our
intention was to make the subset size linked to the number
of requirements present in a dataset. Since the number of
requirements varies between 2000 and 4500, we looked for
a way to minimize this large range. Drawing the motivation
from the random forest algorithm we determined the subset
size to be equal to square value of number of requirements,
i.e. number of neighbouring solutions. This approach provided
us with equal order of magnitude of subset size for each dataset
as the one given in [6].

B. Simulated Annealing

The Simulated Annealing algorithm is another local, single
state heuristic algorithm. Unlike Hill Climbing, the Simulated
Annealing has the possibility of choosing a solution inferior
to the previous one. The probability of choosing the inferior
solution is determined through additional parameter T. The in-
ferior solution will be chosen if r < e(Profit(Y)−Profit(X))/T ,
where r is a randomly chosen number in range [0,1] and
(Profit(Y)-Profit(X)) is the difference between profit of the in-
ferior and the current candidate solution. With each following
iteration, the parameter T is reduced by a factor α and the
chance of choosing an inferior solution is decreased. This
enhancement sometimes enables the algorithm to escape from
the locally optimal solutions in the beginning and reach a more
optimal solution at the end of the search procedure. When
dealing with NRP, the value of parameter T0 is usually set to
100 and the value of parameter α is set close to 1 [6], [17].
For higher values of these two parameters, it will take longer
time before the algorithm starts to reject the inferior solutions
completely. The algorithm is presented in Table II.

There are two instances of Simulated Annealing we used
in our research. Like in the case of Hill Climbing, they are

EuroCon 2013 • 1-4 July 2013 • Zagreb, Croatia

455978-1-4673-2232-4/13/$31.00 ©2013 IEEE

TABLE II
SIMULATED ANNEALING ALGORITHM

Simulated annealing (cmax, T0, α)

Input: Neighbourhood(), Random(), Profit()
c ← 0
T ← T0

Select a feasible solution X ∈ χ
Xbest ← X
while c < cmax

do
Y ← neighbourhood(X)
if Y �= Fail

then if Profit(Y) > Profit(X)
then X ← Y

if Profit(X) > Profit(Xbest)
then Xbest ← X

else r ← Random(0,1)
if r < e(Profit(Y)−Profit(X))/T

then X ← Y
c ← c + 1
T ← α T

return (Xbest)

different in the neighbourhood search procedure and both are
in focus of RQ4:

1) Simulated Annealing - Ordered
2) Simulated Annealing - Random

C. Random Search

The Random Search algorithm was used merely as a sanity
check to verify the benefit and the need of using a heuristic
algorithm. In contrast to previous heuristic algorithms, this one
is neither a local nor a global algorithm. It is the most basic
search algorithm, analogous to pure guessing. In each iteration
it looks for one feasible solution and calculates its profit and
decision cost DC. Like other algorithms, it is limited with
maximal number of iterations cmax.

V. CASE STUDY

A. Dataset

The datasets we used in our research are realistic datasets,
mined from bug report repositories. Bugs are linked to re-
quirements, user’s comments to stakeholders, severity of bugs
to requirements’ cost and only the profit of each stakeholder
was generated randomly. Table III gives the basic information
of the datasets, while further details can be found in [5].

B. Evaluation

There are several ways of evaluating the results when
dealing with NRP. The first one is the simplest and most
often used. It aims to find one optimal solution for each
budget constraint. In our case we are looking for highest profit
for each budget limit. This kind of evaluation provides the
decision maker with one solution that is pronounced as best
one. The downside of this kind of evaluation is that it does
not provide an insight into the search space. We are unaware
of the profit versus cost trade-off between different budget

constraints unless we use many budget constraint values. If
we decide to use many budget constraint values, we prolong
the execution time and make the whole process inefficient.
This kind of evaluation is used in [2], [5]–[8], [13], [18] and
it should not be neglected so we included it in our research.

The second evaluation procedure is an interesting procedure
presented by Zhang et al. [10]. They evaluate the results
plotting the Pareto-optimal front of non-dominated solutions
for satisfaction of each stakeholder with limited budget. In
that way they are able to examine the tensions between
stakeholders and one of their conclusions was there were no
tensions. The datasets we used contain a couple of hundreds of
stakeholders and this kind of evaluation is out of the question
due to practical reasons.

The third way of evaluating the results is not affected by
high number of stakeholders or requirements and provides a
more informative insight into the search space of the problem
than the previous two. While the second evaluation procedure
calculates the results for each stakeholder separately, the third
one does it for overall profit/satisfaction brought by all the
stakeholders together. That means the Pareto-optimal front is
a subset of highest overall profit for corresponding value of
cost, regardless of budget, and we obtain one Pareto-optimal
front for each heuristic algorithm. In order to compare the
results produced by all the algorithms, we formed the joint
Pareto-optimal front. The joint Pareto-optimal front shows the
highest profit for each cost value among all the algorithms.
Then we calculated the percentage of solutions that are brought
by each algorithm into the joint Pareto-optimal front. This kind
of evaluation is present in [1], [3], [4], [9]–[12], [14] and we
included this kind of evaluation in our research as well.

C. Experimental Design

Our research was divided into two phases. The first phase
evaluated the results as described in the first evaluation proce-
dure and the second phase evaluated the results as described
in the third evaluation procedure from previous subsection.

The first research phase applied the Hill Climbing (Steepest
Ascent, First Found - Ordered, First Found - Random and
Sampling), Simulated Annealing (Ordered and Random) and
Random Search algorithms to find the highest profit for limited
budget. The algorithms were run with random restart until
achieving 10,000 fitness evaluations, i.e. cmax = 10, 000. The
budget constraint spanned from β=0.3 to β=0.7 with step of
0.2. the Simulated Annealing’s parameters are set to T0=100
and α=0.9. The results obtained in this manner are presented in
Table IV. The name of the dataset is given in the first column.
The β value and the corresponding value of available budget
B is given in the second column. The following columns are
for all instances of each algorithm we used in our research
and every column has one subcolumn that depicts the highest
value of profit found by that algorithm and its decision cost
DC. Values marked as bold are the best results for a given
dataset and budget constraint, i.e. for each row.

In the second phase of our research we applied the Hill
Climbing (First Found - Ordered and First Found - Random),

EuroCon 2013 • 1-4 July 2013 • Zagreb, Croatia

456978-1-4673-2232-4/13/$31.00 ©2013 IEEE

TABLE III
REALISTIC NRP DATASETS

Dataset Nrp-e1 Nrp-e2 Nrp-e3 Nrp-e4 Nrp-g1 Nrp-g2 Nrp-g3 Nrp-g4 Nrp-m1 Nrp-m2 Nrp-m3 Nrp-m4
Num of stakeholders 536 491 456 399 445 315 423 294 768 617 765 568
Profit of stakeholders [15,43] [13,46] [15,45] [15,45] [16,46] [15,43] [16,44] [15,45] [15,44] [16,46] [15,45] [16,44]
Num of requirements 3502 4254 2844 3186 2690 2650 2512 2246 4060 4368 3566 3566
Cost of requirements [1,7] [1,7] [1,7] [1,7] [1,7] [1,7] [1,7] [1,7] [1,7] [1,7] [1,7] [1,7]

Simulated Annealing (Ordered and Random) and Random
Search algorithms to find the joint Pareto-optimal front. The
algorithms were run with random restart with cmax = 5, 000.
Although the Pareto-optimal front is created regardless of bud-
get constraint, we still need the algorithms to look for optimal
solutions around certain values of cost. Otherwise they would
simply include requirements until achieving maximum cost
and neglect the search for near optimal solutions. Therefore,
we included more budget constraints and so it spanned from
β=0.3 to β=0.7 with step of 0.1. The Simulated Annealing
algorithm had the same parameters as before: T0=100 and
α=0.9. Due to limited space and the fact we examine 12
different datasets, we omitted the graphical representations
of Pareto-optimal fronts. Instead, we present the results in
terms of percentage of solutions obtained from each algorithm
that forms the joint Pareto-optimal front in Table V. The first
column of the table contains the name of the dataset. The
following columns are for all instances of each algorithm
we used in this phase of our research. Each of them has
two subcolumns that depict the percentage of solutions that
are brought by each algorithm into the joint Pareto-optimal
front in the ”Point” and in the ”Spread” range. The ”Point”
range signifies the joint Pareto-optimal front has one value of
highest overall profit for each value of cost examined by any
algorithm. Downside to this procedure is that some algorithms
could have found the highest profit just because they were the
only ones that examined a particular cost value. The ”Spread”
range tried to cope with that issue. The joint Pareto-optimal
front in ”Spread” range has one value of highest overall profit
for a range of 100 cost values.

D. Results

From the results present in Table IV, we conclude that
Steepest Ascent and Sampling Hill Climbing algorithms are
considerably worse than others. They are outperformed even
by Random Search in all cases. Here, we must point out
again that being outperformed by the Random Search algo-
rithm means the algorithm is worse than pure guessing. This
is the reason for excluding these two algorithms from the
second phase of our research. The Steepest Ascent algorithm
evaluates all the solutions present in the neighbourhood of
current candidate solution and that is equal to the number of
requirements. Since the number of requirements in our datasets
is between 2000 and 4500 and cmax = 10, 000, it will manage
to evaluate only a couple of candidate solutions. Due to this
reason we anticipated such results for the Steepest Ascent
algorithm. Sampling Hill Climbing, on the other hand, had a

considerable improvement on that major disadvantage for large
scale problems but its results were equally poor. Even though
Simulated Annealing’s results are superior to other algorithms,
the First Found Hill Climbing algorithm managed to find 4 out
of 36 best solutions. The Random Search algorithm had never
found a solution with highest profit for given budget and that
proved the usage of heuristic algorithms was appropriate.

From the results present in Table V, it is interesting to
notice that Random Search forms a rather high percentage
of joint Pareto-optimal front in Point range. However, all of
these points are inferior in their surrounding, which is evident
in 0% for the Spread range. This fact convinced us that
Spread range is more informative regarding the algorithms’
quality of results. The results also show an unexpectedly
high difference in results of the two Simulated Annealing
instances. The Simulated Annealing - Random algorithm gave
0% of solutions to the joint Pareto-optimal front in Spread
range, performing worse than both instances of Hill Climbing
algorithm.

The results given both in Table IV and Table V enabled us
to answer the four research question stated in section I of this
paper:

E. Answer to RQ1

Our results indicate Simulated Annealing to be the superior
algorithm to Hill Climbing on a large scale realistic NRP. Hill
Climbing outperforms the Simulated Annealing algorithm only
in few cases when searching for the highest profit for a given
budget. However, observing the results of forming the joint
Pareto-optimal front, we conclude the solutions proposed by
Hill Climbing give a broader insight into the search space of
large scale NRP and therefore should not be neglected.

F. Answer to RQ2

The results of Hill Climbing algorithm in forming the joint
Pareto-optimal front of non-dominated solutions in realistic
large scale NRP is inferior to Simulated Annealing. However,
when looking at the Spread range we observe a respectable
increase of percentage with respect to Point range. This
increase in percentage signifies the solutions found by Hill
Climbing algorithm are of greater quality than many solutions
given by Random Search and even by Simulated Annealing
with Random neighbourhood search procedure when observed
in its cost related surrounding.

G. Answer to RQ3

Based on the results of this study, we can conclude that
Steepest Ascent Hill Climbing is not an appropriate algorithm

EuroCon 2013 • 1-4 July 2013 • Zagreb, Croatia

457978-1-4673-2232-4/13/$31.00 ©2013 IEEE

TABLE IV
RESULTS: HIGHEST PROFIT AND CORRESPONDING COST FOR LIMITED BUDGET

Hill climbing Simulated Annealing Random
Budget Steepest Ascent First Found Ord First found Rnd Sampling Ordered Random

Data Ratio Value Profit Cost Profit Cost Profit Cost Profit Cost Profit Cost Profit Cost Profit Cost
nrp-e1 0.3 3945 0 0 243 3809 272 3756 82 3640 894 3937 730 3944 190 3872

0.5 6575 310 6524 605 6574 1582 6567 392 6533 2941 6574 2308 6571 706 6531
0.7 9205 1594 8766 3286 9204 3338 9204 1559 9000 4486 7530 4782 7928 2427 9132

nrp-e2 0.3 4778 0 0 95 4618 92 4604 26 4439 224 4777 191 4775 105 4450
0.5 7964 156 7932 519 7656 514 7963 166 7957 1054 7956 1075 7948 452 7939
0.7 11150 932 10717 3235 11147 1999 11149 724 10845 2272 9950 2144 8586 1265 10759

nrp-e3 0.3 3120 0 0 349 2971 303 2996 61 2992 645 3119 468 3114 175 3046
0.5 5200 234 5163 1221 5199 719 5199 451 5128 2754 5197 2314 5177 700 5149
0.7 7279 1421 7056 3730 7279 3232 7279 1652 7200 4317 6719 4404 6480 2021 7195

nrp-e4 0.3 3510 0 0 108 3349 35 3342 34 3356 284 3509 116 3490 115 3415
0.5 5850 156 5746 621 5765 580 5849 213 5738 1172 5838 1600 5836 347 5780
0.7 8189 594 7841 1835 8189 2680 8189 660 7962 2028 7848 2646 6805 1213 8077

nrp-g1 0.3 3983 19 3633 304 3935 310 3895 105 3892 859 3979 700 3979 219 3981
0.5 6639 322 6507 1318 6638 652 6638 574 6610 2924 6610 2633 6625 790 6626
0.7 9294 2074 9230 2199 9293 3122 9293 2005 9064 4337 8659 4748 8492 2363 9106

nrp-g2 0.3 3788 31 3527 57 3517 37 3656 53 3766 293 3786 108 3775 105 3644
0.5 6313 61 6267 397 6312 646 6310 206 6145 1249 6300 1482 6207 391 6270
0.7 8838 466 8685 1525 8838 2366 8698 694 8606 1628 8588 2333 7360 1345 8585

nrp-g3 0.3 3677 28 3520 455 3526 463 3523 102 3500 938 3673 508 3677 217 3518
0.5 6129 245 6058 523 6128 835 6128 404 5892 3259 6128 3050 6127 767 6125
0.7 8581 1332 8147 3131 8580 3589 8580 1608 8212 4421 8315 3187 7085 2314 8567

nrp-g4 0.3 3210 0 0 102 3182 33 2924 65 3010 271 3187 202 3208 99 3082
0.5 5350 118 5315 497 5322 751 5344 219 5272 1316 5316 1511 5307 364 5307
0.7 7490 917 7217 1433 7489 2191 7235 809 7168 1809 7361 2849 6647 1134 7411

nrp-m1 0.3 4722 33 4501 433 4721 606 4664 100 4564 1064 4709 1004 4722 257 4486
0.5 7871 562 7773 2168 7870 1291 7870 885 7869 5080 7867 4145 7848 1081 7845
0.7 11019 2553 10828 5104 11018 4689 11018 2436 10761 7842 9412 7196 9623 3517 10991

nrp-m2 0.3 5099 32 4955 141 4915 93 4765 53 4824 277 5095 198 5099 135 4938
0.5 8499 146 8464 980 8409 1233 8489 336 8369 1816 8497 2089 8484 617 8441
0.7 11898 762 11673 4158 11897 2946 11897 1258 11537 3910 10637 3538 9409 1791 11602

nrp-m3 0.3 4140 63 3939 861 4039 866 4072 169 3824 1216 4137 1462 4139 305 4099
0.5 6900 708 6817 988 6899 1294 6899 733 6853 5663 6897 4556 6884 1233 6865
0.7 9660 2381 9131 7163 9659 5423 9659 3269 9326 9275 7920 8576 8960 3809 9595

nrp-m4 0.3 4258 24 3968 96 4121 98 4108 69 3987 338 4255 124 4251 121 4180
0.5 7097 172 6954 501 7096 961 7077 245 6903 2344 7058 2096 7086 584 7096
0.7 9936 1509 9768 3872 9935 3418 9935 1471 9502 3625 8082 4207 8578 2020 9800

TABLE V
RESULTS: PERCENTAGE OF SOLUTIONS THAT FORM A JOINT PARETO-OPTIMAL FRONT

Hill climbing Simulated Annealing Random
First Found Ord First found Rnd Ordered Random

Data Point Spread Point Spread Point Spread Point Spread Point Spread
nrp-e1 3,63% 5,88% 6,44% 9,80% 45,15% 39,22% 27,00% 0,00% 18,39% 0,00%
nrp-e2 6,80% 8,33% 1,16% 1,67% 60,09% 66,67% 18,15% 0,00% 14,08% 0,00%
nrp-e3 9,36% 8,11% 2,54% 2,70% 60,83% 70,27% 12,62% 0,00% 14,87% 0,00%
nrp-e4 8,87% 13,04% 1,52% 0,00% 59,95% 67,39% 12,90% 0,00% 17,00% 0,00%
nrp-g1 0,70% 0,00% 7,93% 2,13% 58,32% 70,21% 18,31% 0,00% 15,09% 0,00%
nrp-g2 5,20% 6,67% 6,39% 11,11% 58,78% 57,78% 13,52% 0,00% 16,53% 0,00%
nrp-g3 2,25% 4,65% 10,42% 6,98% 48,06% 53,49% 23,25% 0,00% 16,47% 0,00%
nrp-g4 3,89% 4,76% 2,99% 4,76% 59,32% 61,90% 20,18% 0,00% 14,06% 0,00%
nrp-m1 0,49% 0,00% 8,72% 9,80% 52,37% 54,90% 18,05% 0,00% 20,78% 0,00%
nrp-m2 2,09% 6,25% 5,70% 4,69% 51,46% 54,69% 25,06% 0,00% 16,20% 0,00%
nrp-m3 6,42% 8,51% 5,69% 6,38% 46,82% 42,55% 20,38% 0,00% 21,27% 0,00%
nrp-m4 7,66% 7,84% 4,16% 9,80% 40,24% 31,37% 30,44% 0,00% 18,39% 0,00%

for solving a large scale NRP. Its neighbourhood search
procedure which examines all of the adjacent solutions before
moving to the next step is the limiting factor because the
number of such solutions is too large. Among all the analyzed
algorithms this is the only one that was incapable of finding
a solution with profit above 0 in several cases. We could
also add that Sampling Hill Climbing algorithm proved to be
inappropriate for solving a large scale NRP as well as Steepest
Ascent even though its neighbourhood search procedure is

much faster.

H. Answer to RQ4

Our research did not give conclusive evidence that order
of neighbourhood search influences the local search heuristic
algorithm in finding the optimal solution in large scale NRP.
When evaluating the results in finding the highest profit
for limited budget, the Random procedure of neighbourhood
search outperformed the Ordered procedure in 19 out of 36
instances for Hill Climbing First Found algorithm, and in 13

EuroCon 2013 • 1-4 July 2013 • Zagreb, Croatia

458978-1-4673-2232-4/13/$31.00 ©2013 IEEE

out of 36 instances for the Simulated Annealing algorithm.
When evaluating the results in percentage of solutions that
form joint Pareto-optimal front, the two Hill Climbing in-
stances do not give a straightforward answer to this research
question. However, the two Simulated Annealing instances
give opposite results for this evaluation criterion. Ordered
procedure of neighbourhood search does not only outperform
the Random procedure greatly in Point range, but Random
procedure gives 0% in Spread range.

VI. CONCLUSION

This paper examined the appropriateness of using Hill
Climbing and Simulated Annealing algorithms and compared
their contribution in solving the NRP upon a realistic dataset.
We used four instances of Hill Climbing algorithm: Steepest
Ascent, First Found - Ordered, First Found - Random and
Sampling, two instances of Simulated Annealing: Ordered and
Random and the Random Search algorithm as a sanity check.
The evaluation of results was done in two ways: finding the
highest profit for given budget and finding the percentage of
forming the joint Pareto-optimal front. The results we had
obtained answered three of our four research questions. We
concluded that Simulated Annealing algorithm outperforms
the Hill Climbing algorithm in solving realistic large scale
NRP. Nevertheless, the Hill Climbing algorithm contributes
in forming the joint Pareto-optimal front and should not
be rejected entirely. Among four instances of Hill Climbing
algorithm we analyzed, Steepest Ascent and Sampling did not
justify their usage in solving realistic large scale NRP. The
fourth research question remained without a clear answer.
Comparison of neighbourhood search procedures showed
some interesting results when observing the percentage of
forming the joint Pareto-optimal front. Further research of that
topic using statistical hypothesis tests are needed to give clear
conclusions. Besides examined algorithms, there are some
genetic algorithms often used for solving the NRP and there
are also emerging some new hybrid algorithms with promising
results within the Search Based Software Engineering field.
Including these algorithms in our analysis is our intention for
future research as well.

ACKNOWLEDGMENT

REFERENCES

[1] Y. Zhang, M. Harman, and S. A. Mansouri, “The multi-objective
next release problem,” in Proceedings of the 9th annual conference
on Genetic and evolutionary computation, ser. GECCO ’07. New
York, NY, USA: ACM, 2007, pp. 1129–1137. [Online]. Available:
http://doi.acm.org/10.1145/1276958.1277179

[2] J. del Sagrado, I. M. del Aguila, and F. J. Orellana, “Ant colony
optimization for the next release problem: A comparative study,”
in Proceedings of the 2nd International Symposium on Search
Based Software Engineering, ser. SSBSE ’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 67–76. [Online]. Available:
http://dx.doi.org/10.1109/SSBSE.2010.18

[3] J. J. Durillo, Y. Zhang, E. Alba, and A. J. Nebro, “A study of the
multi-objective next release problem,” in Proceedings of the 2009 1st
International Symposium on Search Based Software Engineering, ser.
SSBSE ’09. Washington, DC, USA: IEEE Computer Society, 2009, pp.
49–58. [Online]. Available: http://dx.doi.org/10.1109/SSBSE.2009.21

[4] M. Harman, J. Krinke, J. Ren, and S. Yoo, “Search based data sensitivity
analysis applied to requirement engineering,” in Proceedings of the
11th Annual conference on Genetic and evolutionary computation, ser.
GECCO ’09. New York, NY, USA: ACM, 2009, pp. 1681–1688.
[Online]. Available: http://doi.acm.org/10.1145/1569901.1570126

[5] J. Xuan, H. Jiang, Z. Ren, and Z. Luo, “Solving the large scale next
release problem with a backbone-based multilevel algorithm,” IEEE
Transactions on Software Engineering, vol. 38, pp. 1195–1212, 2012.

[6] A. J. Bagnall, V. J. Rayward-Smith, and I. Whittley, “The next release
problem,” Information & Software Technology, pp. 883–890, 2001.

[7] G. Lu, R. Bahsoon, and X. Yao, “Applying elementary landscape
analysis to search-based software engineering,” in Proceedings of the
2nd International Symposium on Search Based Software Engineering,
ser. SSBSE ’10. Washington, DC, USA: IEEE Computer Society, 2010,
pp. 3–8. [Online]. Available: http://dx.doi.org/10.1109/SSBSE.2010.10

[8] H. Jiang, J. Xuan, and Z. Ren, “Approximate backbone based multilevel
algorithm for next release problem,” in Proceedings of the 12th annual
conference on Genetic and evolutionary computation, ser. GECCO ’10.
New York, NY, USA: ACM, 2010, pp. 1333–1340. [Online]. Available:
http://doi.acm.org/10.1145/1830483.1830730

[9] Y. Zhang, M. Harman, A. Finkelstein, and S. Afshin Mansouri,
“Comparing the performance of metaheuristics for the analysis of
multi-stakeholder tradeoffs in requirements optimisation,” Inf. Softw.
Technol., vol. 53, no. 7, pp. 761–773, Jul. 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.infsof.2011.02.001

[10] A. Finkelstein, M. Harman, S. A. Mansouri, J. Ren, and Y. Zhang, “A
search based approach to fairness analysis in requirement assignments
to aid negotiation, mediation and decision making,” Requir. Eng.,
vol. 14, no. 4, pp. 231–245, Oct. 2009. [Online]. Available:
http://dx.doi.org/10.1007/s00766-009-0075-y

[11] J. T. de Souza, C. L. Maia, F. G. de Freitas, and D. P. Coutinho,
“The human competitiveness of search based software engineering,”
in Proceedings of the 2nd International Symposium on Search Based
Software Engineering, ser. SSBSE ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 143–152. [Online]. Available:
http://dx.doi.org/10.1109/SSBSE.2010.25

[12] F. Colares, J. Souza, R. Carmo, C. Pádua, and G. R. Mateus, “A new
approach to the software release planning,” in Proceedings of the 2009
XXIII Brazilian Symposium on Software Engineering, ser. SBES ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 207–215.
[Online]. Available: http://dx.doi.org/10.1109/SBES.2009.23

[13] P. Baker, M. Harman, K. Steinhofel, and A. Skaliotis, “Search based
approaches to component selection and prioritization for the next
release problem,” in Proceedings of the 22nd IEEE International
Conference on Software Maintenance, ser. ICSM ’06. Washington,
DC, USA: IEEE Computer Society, 2006, pp. 176–185. [Online].
Available: http://dx.doi.org/10.1109/ICSM.2006.56

[14] Y. Zhang and M. Harman, “Search based optimization of requirements
interaction management,” in Proceedings of the 2nd International
Symposium on Search Based Software Engineering, ser. SSBSE ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 47–56.
[Online]. Available: http://dx.doi.org/10.1109/SSBSE.2010.16

[15] D. Greer and G. Ruhe, “Software release planning: an evolutionary and
iterative approach,” Information and Software Technology, vol. 46, pp.
243–253, 2004.

[16] T. Menzies, B. Caglayan, E. Kocaguneli, J. Krall, F. Peters,
and B. Turhan, “The promise repository of empirical
software engineering data,” June 2012. [Online]. Available:
http://promisedata.googlecode.com

[17] S. Luke, Essentials of Metaheuristics. Lulu, 2009, available for free at
http://cs.gmu.edu/∼sean/book/metaheuristics/.

[18] M. Harman and S. A. Mansouri, “Search based software engineering:
Introduction to the special issue of the ieee transactions on software
engineering,” IEEE Trans. Software Eng., vol. 36, no. 6, pp. 737–741,
2010.

[19] D. Kreher and D. Stinson, Combinatorial Algorithms: Generation,
Enumeration, and Search, ser. CRC Press series on Discrete
mathematics and its applications. Taylor & Francis, 1998. [Online].
Available: http://books.google.hr/books?id=-Lz3BlxzsLoC

EuroCon 2013 • 1-4 July 2013 • Zagreb, Croatia

459978-1-4673-2232-4/13/$31.00 ©2013 IEEE

