
Efficient Navigation for Anyshape Holonomic Mobile Robots
in Dynamic Environments

Marija Ðakulović* Christoph Sprunk‡ Luciano Spinello‡ Ivan Petrović* Wolfram Burgard‡

Abstract— Platforms with holonomic drives are particularly
interesting due to their maneuvering capabilities. Robots used
for transportation tasks usually have a non-circular footprint.
In this work, we present a navigation strategy for a holonomic
mobile robot with anyshape footprint. Our technique introduces
an efficient navigation method based on a strategy that makes
use of discrete and continuous techniques. We introduce com-
pact discrete intervals to represent the free space for computing
fast-to-update plans. Based on these, we provide a continuous
motion generation approach to generate smooth motions that
are fast to compute. We evaluated our approach by running
simulated experiments and by using a real holonomic L-shaped
robot. Our experiments demonstrate that our technique can be
carried out online and is able to smoothly drive the robot to
its goal locations even in dynamic environments.

I. INTRODUCTION

Nowadays, mobile platforms with holonomic drives are
particularly appealing for industrial applications due to their
high maneuverability. Especially robots designed to perform
transportation tasks typically have a rectangular footprint
design to accommodate a loading bay. However, overhanging
payloads may modify the footprint shape of the robot. In
robotics, many planning and motion execution algorithms,
for the sake of efficiency, approximate the robot footprint
with a circle. This assumption potentially limits the mobility
of non-circular robots especially in confined environments
such as corridors or narrow passages or even in dynamic en-
vironments. In this paper, we propose a navigation approach
for arbitrarily shaped (anyshape) holonomic robots, that is
efficient and is able to deal with dynamic environments.
With respect to other existing anyshape robot navigation
techniques [6, 11, 17], our approach introduces a fast,
reactive navigation technique based on a discrete-continuous
processing pipeline. It generates a plan that can efficiently
be updated using a compact discrete representation of the
free space. By using this discrete plan, it generates an
efficiently computable, smooth and stable motion. The main
contributions of our approach consist of: (i) a novel graph
representation of the collision-free configuration space that
is compact in the number of nodes, supports incremental
updates to react to changes in the environment and is suitable
for incremental path planners; (ii) the use of this graph
for continuous motion generation that computes smooth
motions in a highly reactive manner and that is proven to

*Department of Control and Computer Engineering, Faculty of Electrical
Engineering and Computing, University of Zagreb, Croatia
‡Department of Computer Science, University of Freiburg, Germany
This work has been supported by the European Commission under FP7-
285939-ACROSS, FP7-260026-TAPAS, and FP7-248873-RADHAR.

1 m

start

goal B
goal A

dynamic
obstacles

Fig. 1. An L-shaped robot navigating through opposingly oriented goals
(A, B) with complex maneuvers and turns on the spot. Our method runs
online on a real robot in dynamic environments.

be Lyapunov asymptotically stable. By using this discrete-
continuous strategy, both planning and motion generation can
run online and thus enable the application in dynamically
changing environments of an anyshape holonomic robot. In
particular, we propose a novel way of compactly representing
the collision free space in the environment, called orientation
interval graph (OIG). Based on this graph, the computa-
tionally expensive problem of exhaustively searching for
collision-free configurations is greatly reduced. The idea is
to create a graph of valid orientation intervals on top of non-
occupied locations of a grid map. Our motion generation is a
fast reactive approach based on the receding horizon control
(RHC) principle [4]. It is implemented as a closed-loop
controller that guarantees that the robot will not get stuck in
local minima. This controller incorporates the discrete OIG
search path costs in the form of an interpolated continuous
cost-to-goal function. Note that both the replanning in the
OIG and the RHC optimization are computed online. We
quantified the performance of our motion planning algorithm
in simulations and on a real robot. Our experiments demon-
strate a speedup of up to a factor of 60 in planning time.

II. RELATED WORK

To reduce the search space, the anyshape motion planning
methods presented in [6, 11] use a discrete set of motion
primitives to build a state lattice graph. In [17], a reduction
of the search space is obtained by fitting spheres into the en-
vironment and searching for a path composed of intersecting
spheres. In contrast to these approaches, we do not sacrifice
admissible configurations from the state space.

The problem of high dimensional search in motion plan-
ning for practical applications has lately been addressed by

“anytime” algorithms that quickly identify an initial feasible
plan, and then improve this plan towards an optimal solution
during the execution. A widespread representative of such
methods is the rapidly-exploring random tree search (RRT).
Whereas this approach finds feasible solutions and paths
in high-dimensions [9], it assumes that the environment
is static and tends to converge to a solution that is sub-
optimal. Therefore, paths computed by RRT-based motion
planning algorithms are typically post-processed to reduce
the effects of randomization [3, 5]. Even though numerous
methods for motion planning and trajectory optimization
can be found in the literature, the trade-off between the
optimality of the solution and the computational effort is
still crucial. Stabilizing receding horizon controllers (RHC)
are motion planners that avoid local minima [10, 13]. For
practical reasons, many methods assume that the state space
is collision-free. However, in real environments this as-
sumption does not hold and as soon as the configuration
space is non-convex, RHC cannot be applied [12]. This
problem can be solved by splitting the configuration space
into convex parts and by optimizing them separately [10].
The convergent dynamic window approach (CDW) [13]
uses an interpolated continuous version of the navigation
function [7] as a control Lyapunov function. The previously
mentioned methods solving the stabilization problem are
based on continuous analysis. However, the robot motion
planning problem has a discrete-time nonlinear control loop.
Our motion planning method uses [1] to prove asymptotic
stability of the non-smooth discrete-time nonlinear closed
loop system. Our CDW idea shares some ground with [13].
We consider anyshape robots and present a discrete stability
analysis. Our search technique is in spirit similar to [14].
They propose to compress adjacent timesteps, while we
instead merge adjacent collision free orientations.

III. PATH PLANNING WITH ORIENTATION INTERVALS

For navigating in an environment, we need a way to
determine whether a certain configuration of an anyshape
footprint robot is colliding with the environment. In this
paper, we present a compact representation of all admissible
configurations that can be used for graph-based planning in
dynamic environments.

Let (x̃, ỹ) be the center of rotation of the robot footprint in
the plane and θ̃ be its orientation. We define the configuration
space discretization as (x, y, θ) = (bx̃c, bỹc, bθ̃c). In prac-
tice, this defines a 3D grid map of the environment (positions
and orientations). For the orientation, we use M bins, where
M = d 2π

1/r e. In case of anyshape robots, a commonly used
orientation bin size is 1/r, where r is the radius in grid cells
of the circumcircle of the robot around its center of rotation.
This choice ensures that no point on the robot contour
translates more than one grid cell if the robot changes its
orientation by one increment, i.e., 1/r rad. In this paper, we
introduce a state space representation that aims to reduce the
search space for path planning. We do so by merging discrete
orientations θ into orientation intervals Θ1, . . . ,Θl, where

(x, y)

θ0 θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 θ11

n/a n/a n/a n/a n/a n/a

Θ0 = [θ2, θ4] Θ1 = [θ8, θ10]

Fig. 2. A dart-shaped robot in a narrow passage (left). We collapse dis-
cretized collision-free configurations (x, y, θi) into collision-free orientation
intervals (x, y,Θj) for a specific position (x, y).

Θ = [θl , θu] for each location (x, y). Adjacent collision-
free orientations are collapsed into orientation intervals by
using connected-components clustering (see Fig. 2). The set
of collision free configurations Cfree with elements (x, y, θ)
is now represented by a (much) smaller set of collision free
orientation intervals with elements (x, y,Θ) without any loss
of information.

A. Orientation Interval Graph

We introduce an orientation interval graph GOI that
represents the set of discretized collision-free configurations
Cfree and its connectivity. We make use of [8] to efficiently
retrieve all the valid configurations in the environment. This
approach maintains incrementally updatable convolutions
of the robot footprint with the environment. By storing
the number of cells colliding with the footprint for each
discretized configuration, collision checks can be performed
with a single lookup.

We define the nodes of the orientation interval graph GOI

to be the set {(x, y,Θ)} containing for each location (x, y)
all orientations compressed in their respective orientation
intervals, Θ. An edge exists between two neighboring nodes
of GOI if they represent neighboring locations and if the re-
spective orientation intervals intersect, such that there exists a
way for the robot to transition from one to the other location.
Formally, an edge ep,q exists between node p := (xp, yp,Θp)
and node q := (xq, yq,Θq) iff the following equation holds:

(xq, yq) ∈ N (xp, yp) ∧ (Θp ∩Θq 6= ∅) , (1)

whereN (x, y) is the set of 2D neighbors of location (x, y) in
the discretized configuration space (typically a 4-connected
or 8-connected neighborhood). Each edge ep,q has a weight
wp,q > 0, which defines the cost of transition between nodes
p and q. For this work, we have chosen costs that depend on
the cost of translation λt between neighboring node locations
and on the size of the intersection interval, with lower cost
for bigger intersection intervals, i.e.,

wp,q := λt · (M + 1− |Θp ∩Θq|) . (2)

In case the environment changes, we update the set of
orientation intervals for the affected locations by adding or
removing the appropriate orientations from the orientation
intervals. In this way, the GOI can efficiently model dynamic
environments, and it can be used for incremental search
techniques.

B. Searching in an Orientation Interval Graph

The graph search algorithm computes for a given graph
GOI a path P(s, g) from any node s to the node g with
the cost c(P) if one exists. The cost of the path c(P) is

defined as the sum of its edge weights. In this paper, we
use the D* algorithm [16] variant without heuristics for
its replanning capabilities. When applied to GOI , the D*
graph search computes the optimal paths and path costs
for every node p to the goal node g. However, this might
be a too coarse approximation for a precise and smooth
execution of a path. To this end, a finer cost can be computed
for each configuration represented by a node through the
introduction of an edge weighting scheme during the D*
search by making use of desired orientations. The desired
orientation is the orientation that the robot needs to assume
when moving from p to neighbor node q in the safest way
possible. We define this to be the middle orientation θ̂q of
the interval intersection Θp∩Θq as this typically implies the
largest distance to colliding configurations. Given that nodes
and edges of GOI exist only in the collision free space, any
orientation choice is guaranteed to be collision free. Now,
the edge weight becomes

wp,q := λt · (M + 1− |Θp ∩Θq|) + λr · |θ̂p − θ̂q| , (3)

where λr is the cost of rotation for one orientation increment,
and |θ̂p − θ̂q| is the minimal distance between desired
orientations of nodes p and q, while taking into account
that rotation is inside the intersection interval Θp∩Θq . Note
that the desired orientation for the goal node θ̂g is set to
the goal orientation. If the intersection interval contains all
orientations then desired orientation is set to the desired
orientation of the parent node. The D* search starts from
the goal node and desired orientations are computed while
the search expands new nodes backwards from the goal.
This means that the desired orientation of a node changes
each time the search discovers a lower cost path to it. Note
that D* replanning treats these updates as changes in the
graph. After planning, fine costs φ(·) can be retrieved for
each configuration (x, y, θ) as:

φ(x, y, θ) = c(P(p, g)) + λr · |θ̂p − θ| , (4)

where (x, y, θ) ∈ p and |θ̂p − θ| corresponds to the cost of
orienting the robot to the desired orientation, while taking
into account that rotation is inside of the interval Θp. In
case the environment changes, the orientation interval graph
is updated. To allow proper processing of the graph update
by D*, we interleave its replanning with the update of the
graph structure.

Note that the resulting path is not guaranteed to be optimal
with respect to this new cost function since we do not
examine all possibilities of desired orientations for each
node. Optimality can be achieved by keeping track of as
many desired orientations for a node as there are edges to its
neighbors, since each intersection interval with the neighbor
yields a distinct middle orientation.

IV. RECEDING HORIZON CONTROL ON DISCRETE PATHS

Based on the discrete solution of the path planning prob-
lem we now introduce a fast and stable motion execution
scheme. The working principle behind our motion control is
based on receding horizon optimal control (RHC) [4]. In the

following, we use only continuous states and drop the tilde
notation for readability. Consider a discrete-time nonlinear
time-invariant holonomic robot model:

s(t+ 1) = f(s(t), u(t)), t ∈ N0 , (5)

where f : Rn × Rm → Rn is some given time-invariant
nonlinear function, s ∈ Rn is the system state vector, and
u ∈ Rm is the control input. We use a representation of the
robot state defined by s = (x, y, θ), the control input defined
by u = (vx, vy, ω), and f defined by the state equation

x(t+1) = x(t) + (vx(t) cos θ(t)−vy(t) sin θ(t)) ∆t
y(t+1) = y(t) + (vx(t) sin θ(t)+vy(t) cos θ(t)) ∆t
θ(t+1) = θ(t) + ω(t)∆t ,

(6)

where t ∈ N0 and ∆t is the duration of each sampling
interval. Let {sk}N0 be the evolution of the system state over
a fixed horizon N (as a function of the control sequence
{uk}N−10), according to the model (6), starting with s0 =
s(t). At the current time t, and for the current state s := s(t),
the RHC problem is formulated as follows

PN (s) : J∗(s) := min
{uk}N−1

0

J({sk}N0 , {uk}N−10) , (7)

subject to:
sk+1 = f(sk, uk), for k = 0, . . . , N − 1 , (8)
s0 = s , (9)
uk ∈ U , for k = 0, . . . , N − 1 , (10)
sk ∈ Cfree , for k = 0, . . . , N , (11)

where U ⊂ Rm is the control input constraint set (kinematic
and dynamic constraints), Cfree ⊂ Rn is the state constraint
set, and J is the objective function given by

J({sk}N0 , {uk}N−10) := F (sN) +

N−1∑
k=0

L(sk, uk) .

The functions F : Rn → R and L : Rn × Rm → R are the
terminal state cost and the stage cost, respectively. Typical
choices for the weighting functions F and L are quadratic
functions. We select the objective function J to be

J({sk}N0 , {uk}N−10) :=

N∑
k=0

φ(xk, yk, θk) + ρ

N−1∑
k=0

|uk| ,

where φ is the interpolated path cost function defined in
Sec. IV-A, and ρ is a small positive scalar value. All
sequences {uk}N−10 and {sk}N0 satisfying the constraints
(8)-(11) are called feasible sequences.

We denote the optimal control sequence at s(t) by
{u∗k}

N−1
0 . Then, the control applied to the system at time

t is the first element of this sequence, defining the control
law κ as

u(t) = κ(s) = u∗0 . (12)

The same procedure (7)-(12) is repeated for the new state of
the system at each time interval.

In order to prove the asymptotic stability of the closed loop
system, the value function J∗ is used as a Lyapunov function.

s

v2 v3

c

φ(θ)

φ(θi)

φ(θi+1)

Fig. 3. Path costs are interpolated separately for two discretized orienta-
tions. A final interpolation is run between the previously interpolated costs.

According to the Lyapunov asymptotic stability analysis, the
aim is to find an objective function J and a control sequence
that minimizes J such that J∗ decreases each time step. We
introduce additional constraints on the states necessary for
the stability proof, which can be interpreted as preferring
those trajectories that are approaching the goal state faster:

φ(xN , yN , θN) ≤ φ(xk, yk, θk), for k = 0, . . . , N−1 . (13)

In order to make the optimization process tractable, we
search only among a finite set of control sequences, denoted
by F , that satisfy the constraints (8)-(11) and (13). Similar
to the dynamic window approach [2], we define each control
sequence from the set F to be a collision free circular
trajectory. In contrast to the dynamic window approach, our
control sequences have zero velocities at the horizon. As
stated in [4], this is a frequently used method to establish
stability of the RHC implementation and can be seen as
accounting for events that lie beyond the horizon.

The same principle is used by the convergent dynamic
window algorithm (CDW) [13], where the horizon N is
divided into two parts, N = N1 + N2, and every feasible
control sequence must contain decelerations in the second
part N2 of the horizon. Therefore, every control sequence
will feature a stopped robot at the horizon.

A. Path Cost Interpolation

To ensure convergent motion to the goal state the inter-
polated cost function φ must not have any local minima
except for one global minimum located at the goal state.
For discrete path cost values, this is fulfilled since only
the goal node has null cost and there exists a path from
any node to the goal with monotonically decreasing cost
values. The interpolating cost function φ can preserve this
property if it has continuous transitions between cells and
discretized orientations. This is guaranteed by using the
simplicial complex representation [15].

The interpolation is done as follows. Let s = (x, y, θ) be a
continuous state contained in a cell with center c = (x1, y1)
and θ from the orientation bin defined by [θi, θi+1). This cell
is divided into four triangles defined by the two diagonals of
the cell as shown in the left image of Fig. 3. The state s is
located in one of these four triangles. Let the two remaining
vertices be v2 = (x2, y2) and v3 = (x3, y3). We interpolate
the costs separately for two discretized orientations, and then
again interpolate between the obtained costs (see right image
of Fig. 3). We calculate the cost of the first orientation
φ(x, y, θi) as the interpolation of the costs at the triangle
vertices where the cost φ(c, θi) is the cost of the cell center
at the orientation θi determined by the D* search. The costs

1 1.5 2 2.5 3 3.5 4 4.5

1.5

2

2.5

3

y
 [

m
]

x [m]

D* path

final trajectory
optimal trajectory

1.9 2 2.1 2.2 2
2.5

3
3110

3120

3130

3140

y [m]
x [m]

φ

Fig. 4. An example of trajectory optimization at time t according to
φ. Although trajectories seem to move the robot away from the goal (in
blue, left), their costs are decreasing (right). The initial planned path with
orientations and driven final trajectory (in red) are shown only as a reference.

of the cell vertices φ(v2, θi) and φ(v3, θi) are calculated as
the minimum of the costs of the surrounding cell centers for
the orientation θi plus the distance between the vertex and
the cell center. The same is done for the orientation θi+1 and
the cost φ(x, y, θi+1). Finally, we obtain the cost φ(x, y, θ)
as the interpolation between φ(x, y, θi) and φ(x, y, θi+1).

Our interpolation method for calculating the function φ at
discrete orientations can be compared to the interpolated nav-
igation function presented in the CDW algorithm [13], which
calculates vertex costs using the wavefront algorithm. The
interpolation is done over the triangles obtained by dividing
each cell by a diagonal line drawn from the vertex with the
highest cost value. Thus, the obtained navigation function
has gradients only in the direction of the cell diagonals,
while our cost function φ has quadratically more gradients
due to a finer division of the cell. Another difference to
the CDW algorithm is that we do not need to calculate the
entire function φ but only its values at points on the robot
trajectories. An example of evaluating the trajectories at time
t is shown in Fig. 4, where 500 circular trajectories of varying
lengths are being used for the horizon of length 50 steps.

B. Asymptotic Stability Proof

We follow the stability definitions given in [1] for the
discontinuous discrete-time nonlinear closed loop system.
Here, we shortly present how the stability of the RHC is
established. A formal proof can be derived following [4].

Lemma 4.1: Let the set S be defined as S = {s =
(x y θ) ∈ Cfree | φ(x, y, θ) < ∞}. Then ∀s ∈ S
there exist feasible state and control sequences for the fixed
horizon optimal control problem PN (s) in (7)-(12) and S
is positively invariant for the closed loop system s+ =
f(s, κ(s)).

Proof: The control sequences are chosen from the set
of control sequences F that satisfy constraints (8)-(11) and
(13). First, we need to show that for any s ∈ S the set
F is not empty. By construction, the set F is composed of
collision free control sequences, and in the worst case only
the zero-sequence exists, i.e., uk = 0, for k = 0, . . . , N − 1.
We denote the optimal control sequence and corresponding
state sequence at time t for the state s = s(t) ∈ S as

U∗ = {u∗0, . . . , u∗N−1}, S∗ = {s∗0, . . . , s∗N} . (14)

Then, the control move applied to the system at time t is the
first element of (14):

u(t) = κ(s) = u∗0 . (15)

TABLE I
DISCRETE PATH AND FINAL TRAJECTORY (SIMULATION)

rectangular T-shape fly-shape
GOI G3D GOI G3D GOI G3D

c(P) 3,002 3,002 3,464 3,462 80,522 80,518
c(T) 3,001.6 3,001.6 3,402 3,400 80,520 80,516
l(P) [m] 7.5 7.5 7.4 7.4 124 124
l(T) [m] 5.903 5.903 6.285 6.285 102.71 102.9
vavg [m/s] 0.294 0.294 0.259 0.259 0.387 0.388
tG [s] 20.1 20.1 24.3 24.3 265.3 265.4
tsrc [s] 0.003 0.063 0.007 0.278 0.078 14.594
nexp[#] 1,640 28,566 6,207 136,689 97,866 5,910,471
trhc[s] 0.008 0.004 0.008 0.004 0.013 0.004

Assume that at time t+1 the robot moves to the state s∗1, i.e.,
s+ = f(s, κ(s)) = f(s∗0, u

∗
0) = s∗1. There exists a control

sequence {uk}N−10 ∈ F with starting control move u0 = u∗1
that will produce the state trajectory {sk}N0 starting from the
s∗1 and repeating the last point at s∗N :

U+ = {u∗1, . . . , u∗N−1, 0}, S+ = {s∗1, . . . , s∗N , s∗N} .
(16)

Therefore, the control sequence and the corresponding state
sequence (16) are feasible for the problem PN (s+) in (7)-
(12) and hence s+ ∈ S . By this it is shown that S is posi-
tively invariant for the closed loop system s+ = f(s, κ(s)).

Theorem 4.2: For the system s+ = f(s, κ(s)) controlled
by the RHC algorithm (7)–(12) the goal state is asymptoti-
cally stable in S for the closed loop system.

Proof: The value function J∗ is employed as a Lya-
punov function. We must check if J∗ always decreases
except at the goal state. At time t for the state s ∈ S, and
for the optimal control and state sequence given by (14) the
value of the Lyapunov function is

J∗(s) =

N∑
k=0

φ(s∗k) + ρ

N−1∑
k=0

|u∗| . (17)

At time t + 1 for the next state s+ = f(s, κ(s)) a feasible
control and state sequences given by (16) are not necessarily
optimal so we know that

J∗(s+) ≤
N∑
k=1

φ(s∗k) + s∗N + ρ

N−1∑
k=1

|u∗k|+ 0 . (18)

Combining (17) and (18) and substituting (13) yields:

J∗(s+)− J∗(s) ≤ −ρ|u∗0| , (19)

with equality only when u∗0 = 0. Therefore, J∗ decreases
for all |u∗0| > 0. Finally, it must be shown that the robot
will not stop at a non-goal state, i.e., κ(s) 6= 0, s 6= G.
This is ensured by the construction of the continuous cost
function φ with only one local minimum at the goal state G.
Additionally, due to the construction of the set F there exists
a small movement which will orient the robot to the desired
orientation of the cell, and translate it to the next cell with
the lowest path cost. Since we are searching the 4-connected
grid, difficult controls to diagonal neighbor cells are avoided.

TABLE II
PATH COSTS IN GOI IN SIMULATED ENVIRONMENTS

cost ratio nodes with cost max cost diff.
λr /λt diff. from G3D [%] to λrM [%]

rectangular
M = 60

10 96.4 34.7
1 1.2 3.3

0.1 0 0
0 0 0

T-shape
M = 52

10 84.8 63.5
1 13 26.9

0.1 0.04 3.8
0 0 0

fly-shape
M = 82

10 99.7 137
1 1 7.3

0.1 0.0006 2.4
0 0 0

V. EXPERIMENTS

1) Simulation Experiments: We evaluated the perfor-
mance of motion generation and execution for various robot
shapes by comparing the search on our orientation interval
graph GOI and on a graph containing all discrete configura-
tions G3D , which is the standard approach to this problem. In
GOI , the weights are determined such that the transition costs
between two locations depend on the size of the intersection
interval plus the rotation costs of their desired orientation
difference, as given by (3). Accordingly, we define the
weights in G3D as

wa,b :=λt(M+1−|Θa′∩Θb′ |+|θ̂a′−θa|)+λr|θa−θb| , (20)

where a′ and b′ are the nodes in GOI containing a and b
respectively. According to (20), the cost of transition between
two nodes with orientation in the middle of the intersection
interval is the smallest and has the same value as defined
in GOI . If the intersection interval contains all orientations
then it is assumed that θ̂a′ = θa. The paths in G3D are
compared to the ones in GOI in Tab. I. Three different robot
shapes have been chosen in simulated static environments
of different sizes, see Fig. 5. The paths have been executed
by the proposed motion planning algorithm and the obtained
trajectories T are compared according to the length l(T)
and cost c(T) calculated from the interpolated cost function
φ (see Sec. IV-A) as c(T) =

∑
i(φ(Ti)−φ(Ti−1)). Note that

this formula is valid also for calculating the cost of the path.
Path cost c(P) and trajectory cost c(T) are given in cell
numbers (cell size is 0.1 m) with λt = 1 and λr = 1. In the
given simulation examples the obtained paths in GOI have
comparable values for all setups. The executed trajectories,
average velocities vavg and times to goal tG are similar for
both approaches (maximal velocities were set to 0.4 m/s and
50 deg/s). The costs of trajectories are lower than the costs
of the discrete paths for all robots. This is expected since the
generated local trajectories are defined in continuous space
and give the robot the possibility to cut its way to the goal.
GOI outperforms G3D with respect to the search time tsrc,
since the number of explored nodes nexp is substantially
lower, up to 60× for the largest environment. In Tab. II, we
analyze the influence of the ratio λr/λt on the path costs. A

1 m

1 m

1 m

Fig. 5. Robot trajectories in a simulated environment. Note that robot motion includes complex maneuvers due to the footprint of the robot.

TABLE III
DISCRETE PATH, FINAL TRAJECTORY, AND REPLANNING

goal A goal B

c(P) 3,774 5,967
c(T) 3,774.6 5,952.7
l(P) [m] 6.8 6.4
l(T) [m] 5.38 6.86
vavg [m/s] 0.294 0.236
tG 20.2 29.4
tsrc avg (max) [s] 0.00024 (0.012) 0.002 (0.029)
nexp avg (max) [#] 60 (11087) 659 (18067)
trhc [s] 0.01 0.009

higher ratio means weighting rotational costs more strongly
than translational costs. For each goal we compare the path
cost value for every state (x, y, θ) obtained by searching GOI

and G3D . The path costs between approaches are equal for
all states if λr = 0. In the extreme case of λr/λt = 10, the
costs obtained in GOI differs most from the ones obtained
in G3D . The higher the ratio, the less good are the paths
returned by our search strategy.

2) Real Robot Experiments: We tested our motion plan-
ning algorithm on the holonomic mobile robot KUKA om-
niRob. As the footprint of the robot is rectangular, we
fixed a rectangular payload on top of the robot to make its
footprint more irregular, see Fig. 1. The planned paths and
obtained trajectories have been compared according to their
costs in a static environment. Replanning has been tested
by walking in front of the robot and blocking its path to
the goal. The experiments have been repeated five times and
averaged results are given in Tab. III. The trajectory costs
are sometimes higher than the initial path costs, which is
expected in dynamic environments. The replanning times
are presented with their average and maximal values. The
velocity profile during one experimental run between the two
goals is given in Fig. 6.

VI. CONCLUSION

This paper presented a novel anyshape robot naviga-
tion approach that is based on a combination of discrete-
continuous techniques. Our approach uses a compact graph
representation of the collision-free configuration space that
allows fast replanning. It applies a continuous motion gen-
eration for computing smooth motions in a highly reactive
manner that we prove to be Lyapunov asymptotically stable.

0 10 20 30 40 50
0

0.2

0.4

time [s]

v
[m

/s
]

−20
0

20

ω
[d

eg
/s

]

goal A goal B

Fig. 6. Velocity profiles executed by a robot in a real world experiment.

By using this discrete-continuous strategy, both planning and
motion generation run online, enabling applications in dy-
namically changing environments. Experiments demonstrate
that our method provides fast and reactive path planning and
smooth motion execution.

REFERENCES
[1] F. Christophersen. Optimal control of constrained piecewise affine

systems. Springer Verlag, 2007.
[2] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to

collision avoidance. Robotics & Auton. Sys., 4(1):23–33, 1997.
[3] R. Geraerts and M. Overmars. Creating high-quality paths for motion

planning. Int. Journ. of Rob. Research, 26(8):845–863, 2007.
[4] G. C. Goodwin, M. M. Seron, and J. A. De Doná. Constrained control

and estimation: an optimisation approach. Springer Verlag, 2004.
[5] J. Kim, R. Pearce, and N. Amato. Extracting optimal paths from

roadmaps for motion planning. In IEEE Int. Conf. on Rob. & Aut.,
2003.

[6] J. King and M. Likhachev. Efficient cost computation in cost map
planning for non-circular robots. In IEEE/RSJ Int. Conf. on Intel.
Rob. and Sys., 2009.

[7] J. Latombe. Robot Motion Planning. Kluwer Academic Pub., 1991.
[8] B. Lau, C. Sprunk, and W. Burgard. Efficient grid-based spatial rep-

resentations for robot navigation in dynamic environments. Robotics
& Auton. Sys., 2013. to appear.

[9] S. LaValle and J. Kuffner. Randomized kinodynamic planning.
Int. Journ. of Rob. Research, 20(5):378–400, 2001.

[10] S. Lindemann and S. LaValle. Simple and efficient algorithms
for computing smooth, collision-free feedback laws over given cell
decompositions. Int. Journ. of Rob. Research, 28(5):600–621, 2009.

[11] B. MacAllister, J. Butzke, A. Kushleyev, and M. Likhachev. Path
planning for non-circular micro aerial vehicles in constrained environ-
ments. In IEEE Int. Conf. on Rob. & Aut., 2013.

[12] D. Mayne, J. Rawlings, C. Rao, and P. Scokaert. Constrained model
predictive control: Stability and optimality. Automatica, 36, 2000.

[13] P. Ogren and N. Leonard. A convergent dynamic window approach
to obstacle avoidance. IEEE Trans. on Rob., 21(2):188–195, 2005.

[14] M. Phillips and M. Likhachev. Sipp: Safe interval path planning for
dynamic environments. In IEEE Int. Conf. on Rob. & Aut., 2011.

[15] J. Sack and J. Urrutia. Handbook of computational geometry. North-
Holland, 2000.

[16] A. Stentz. Optimal and efficient path planning for partially-known
environments. In IEEE Int. Conf. on Rob. & Aut., 1994.

[17] N. Vandapel, J. Kuffner, and O. Amidi. Planning 3-d path networks in
unstructured environments. In IEEE Int. Conf. on Rob. & Aut., 2005.

