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Abstract 

An exchange profile is a sequence of fragment fractions with 0, 1, ..., n deuterons introduced 

by hydrogen/deuterium exchange into a given molecular fragment. Derivation of the site-

exchange probabilities p1, p2, ..., pn, responsible for the experimentally observed exchange 

profile, is analyzed. A relation is established between p1, p2, ..., pn and the zeros of the 

polynomial whose coefficients are equal to the fractions in the exchange profile. When the 

zeros are complex, the probabilities are usually determined by the least squares fitting or by 

the maximum likelihood estimation. It is proved that in such cases the calculated probabilities 

can not be all distinct. Analytical expressions for the gradient and the Hessian of a sum of 

squared deviations between theoretical and experimental values are given. A case with only 

two exchanging sites (n=2) is examined in detail. Numerical simulations were performed to 

estimate the incidence of complex polynomial zeros for n=3-10 with varied number of 

detected fragment ions N=1000-1000000. 
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1. Introduction 

Knowledge of protein's three dimensional structure is of utmost importance for understanding 

their biological function. Protein structural studies usually involve application of several 

complementary methods to obtain insight on the protein 3D structure/dynamics/function 

relationship.[1-6] Various methods have been developed to determine the protein structure in 

a solution or to find out its features. One of the promising and already much applied 

techniques is hydrogen/deuterium exchange (HDX) followed by mass spectrometry.[7] The 

specific goal within this approach is determination of the kinetic parameters for protein sites 

at which HDX takes place. Under controlled pH and temperature, susceptibility of amide 

hydrogen to exchange, quantitatively expressed by the kinetic constant, reflects the protein 

structure through steric and inductive effects of neighboring amino acid side chains, solvent 

accessibility and strength of inductive bonding in secondary structure elements. Knowing the 

distribution of exchange susceptibilities along the protein chain enables one to conclude about 

protein conformational dynamics, allosteric effects, ligand binding and aggregation. 

A comprehensive account of the technique can be found in literature,[8-10] and here the 

procedure will be only briefly outlined. H/D exchange takes place at the amide bonds which 

are uniformly distributed along the protein chain and thus represent a good structural probe. 

H/D exchange is initiated by dissolving the protein in D2O. After specific period of time the 

exchange is quenched by decreasing pH to 2.5 and lowering the temperature close to 0°C. The 

protein is then submitted to enzymatic digestion (by adding pepsine or other suitable enzyme) 

in order to break it into smaller fragments. This is necessary to localize HDX data, that is, to 

measure extent of exchange for a particular region of protein structure. Since the fraction of 

exchanged hydrogens is determined for the peptide fragment as a whole, having smaller 

fragments increases the resolution by enabling monitoring of the exchange process at smaller 

protein pieces. The fragments are identified by combination of liquid chromatography and 

mass spectrometry. By repeating the procedure for variable time periods of deuteration, one 

obtains insight into temporal dynamics and gets the data from which the site exchange 

constants can be determined. Normally, a simple kinetic model for unimolecular process, with 

exponential time dependence, is used to describe time variation of the exchange extent. 

 A peptide fragment produced by enzyme digestion shows up in the mass spectrum as an 

isotopic profile – represented by a sequence of signals at regularly spaced m/z values. The 

signals arise from fragments with different isotopic compositions – all representing the same 
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chemical species. In the present context, the isotopic profile is a consequence of a natural 

isotopic variation and of the experimentally induced H/D exchange. The exchange extent for a 

given fragment is commonly expressed as the average number of hydrogens exchanged by 

deuterons. It is simply related to the centroid shift of the observed profile from a pure natural 

isotopic distribution.[11] The time dependence of the average number of exchanged 

hydrogens is then fit to a kinetic model involving as many rate constants as there were 

hydrogens available for exchange [12] or the chosen number of rate constants that represent 

discernible groups (e.g. slow, medium and fast exchanging sites). [13,14] Minimization of the 

sum of squared distances between the calculated and the experimental values now appears to 

be a common fitting objective,[12] but for this particular purpose it was frequently combined 

with maximization of the information entropy.[13,15,16] 

 

Figure 1. Schematic illustration of deconvolution of an isotopic profile from H/D exchange 
(in black) into theoretical isotopic profiles (in grey) arising from natural isotopic 
variation only. The theoretical profiles are equal in shape, shifted along the m/z axis 
according to the number of introduced deuterium atoms and scaled by the fractions 
f0

(e) – fn(e).  

The isotopic profile is a convolution of identical natural isotopic profiles shifted by m/z values 

that correspond to the number of artificially deuterated sites (see Figure 1). In other words, the 

experimental isotopic profile is a linear combination of the natural profiles shifted by i/z, with 

i going from 0 to n = the total number of exchanging hydrogens. The coefficients of the linear 

combination represent fragment fractions (or percentages) with 0 to n exchanged hydrogens. 

They are easy to obtain although extraction of reasonable values from the data with 
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experimental error can be nontrivial.[16-18] Collection of the fragment fractions for a given 

peptide fragment will be termed exchange profile. Certainly, the exchange profile contains 

more information about H/D exchange than the average number of exchanged hydrogens (the 

last one can be easily calculated from the exchange profile). The theoretical model is a bit 

more complicated, but more specific data should provide more reliable and more precise 

results. The reports with a comprehensive treatment of experimental data, involving 

deconvolution of isotopic profile are relatively rare, [19-21] and the details of the fitting 

procedure, like the expressions for a gradient or a Hessian of the objective function were not 

yet presented. 

Here we show how a given exchange profile can be analyzed to obtain exchange probabilities 

at the individual sites. In normal practice, several exchange profiles – recorded after different 

times of deuteration, are used for fitting the site-exchange rate constants. We show that the 

kinetic parameters can, at least in principle, be derived from a single exchange profile. 

Clearly, with more exchange profiles, the results should be more accurate and the theoretical 

model better verified. Still, the analysis of a single exchange profile can be applied to parts of 

experimental data for evaluation of their consistency and for recognition of outliers, or to 

obtain better initial guess for fitting to all the data at once. It will be shown that the results 

produced by the least squares fitting and by the maximum likelihood estimation exhibit 

inevitable degeneracy with at least two equal values among the fitted parameters. Numerical 

results show that the number of equal values is commonly greater than two. This finding may 

help to explain the results when collection of exchange profiles is fitted. Furthermore, we give 

analytical expressions for gradient and Hessian of the sum of squared deviations which are 

needed for proper fitting. These expressions are simple to extend for fitting to multiple 

exchange profiles. 
 

2. Mathematical background 

The object of the present analysis is a single exchange profile, that is, a set of values f0, f1, ... fn 

representing fractions with 0, 1, ..., n deuterated sites due to the H/D exchange. The 

experimental values will be denoted by fm
(e) (m=0-n). The set of fractions for a given 

exchange profile will be denoted as a vector f (f (e) for experimental values). 

The exchange probabilities at sites i = 1, ..., n,  are denoted by pi, and the vector p denotes all 

of them at once. In kinetic modelling the probabilities are a function of time, usually assumed 
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to be: pi = exp(-kit). Since we are limited here to a single exchange profile, the time 

dependence is omitted from our consideration and all the results are given in terms of the site 

probabilities pi. 

Equations (1) represent the basic relations between the fractions fi and the site exchange 

probabilities  pi under a common assumption that the exchanges at different sites are random 

and independent. 
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Our goal is to determine the probabilities pi that best reproduce the experimental data f (e). 

Basically, there are two approaches to this end: (i) the least squares fitting (LSF) and (ii) the 

maximum likelihood estimation (MLE). In LSF one seeks p which gives the least sum of 

squared deviations S between experimental and calculated values: 
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with fm, m=0-n, given by (1). The conditions under which LSF and MLE approaches are 

sensible to apply, can be found in the literature.[22] 

An inevitable experimental error is introduced by a finite number of molecular fragments that 

enter the detector. The isotopic composition of the fragments varies according to a 

multinomial distribution.[23] The observed fractions in the isotopic profile and those derived 

from them as the exchange profile, represent only a sample from this distribution. In the MLE 

approach one looks for the set of probabilities which yield the greatest likelihood of the 

observed set. A method for finding the site exchange constants that correspond to maximum 

likelihood of a set of isotopic profiles obtained for different deuteration times has been 

already described.[21] Here we establish specific properties of the MLE for a single exchange 

profile. For a given set of probabilities p, the probability P(N0,N1,...,Nn) that among the total 
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of N=N0+N1+...+Nn  detected fragments of a given peptide, Nm of them are with m exchanged 

hydrogens, is: 
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with fm, m=0-n, given by (1). Maximization of P(N0,N1,...,Nn) will be considered in Section 6. 

To establish relation between (3) and experimental data, we notice that (i) Nm, m=0-n, are 

related to the experimental values by Nm=fm
(e)·N, and (ii) p where P(N0,N1,...,Nn) has the 

maximum for a given set f (e) does not depend on N (which is normally unknown). 

 

3. Exact derivation of the site exchange probabilities pi 

In principle, for a given data set fm
(e), m=0-n, there is a unique set of probabilities pi that 

exactly reproduce the experimental data. To make it clear, we rewrite the eqns. (1) in terms of 

elementary symmetric polynomials, sm(n), which are defined by: 
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The dependence on n is explicitly designated in sm(n) in order to distinguish them from 

similar symbols that will be introduced later. After doing the multiplications denoted in eqns. 

(1) and recognizing the terms with equal order m in pi as sm(n), the equations for fm can be 

rewritten in a simple form: 
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The above expression is more convenient for further manipulation. The fractions fm and the 

elementary symmetric polynomials sm(n) can be easily interconverted by using the eqns. (5) 

and (6): 

 ∑
=
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The eqn. (6) is obtained by starting with the eqn. (5) for m=n, and subsequently solving the 

eqns. (5) with m=n-1, n-2, ..., 1, for sn-1(n), sn-2(n), ..., s1(n), respectively. By the elementary 

fact from algebra, the roots p1, ..., pn of the polynomial F(p): 
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satisfy the equations (4). Therefore, one may use (6) to transform fm

(e) to sm(n), and by finding 

the roots of F(p), one obtains pi that exactly reproduce the experimental set fm
(e). However, 

there is a pitfall – the roots pi are not always acceptable as probabilities, as they are not 

always real numbers. It frequently happens that the roots of F(p) involve complex numbers, 

which although satisfying (1), can not be interpreted as probabilities. This is a consequence of 

experimental error, unavoidable at least due to a finite number of detected molecules. 

It turns out that the transformation from fm
(e) to sm(n) can be avoided by introducing a new 

variable q defined by: 

 

   

 
Substitution of pi with qi gives from (1): 

 

  (9) 
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The expressions on the right side are written as products of the common factor f0 and tm(n), 

m=0-n,  which denote elementary symmetric polynomials in variables qi, i=1-n (in parallel to 

sm(n) which denote elementary symmetric polynomials in pi). Consider the polynomial  
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The roots of G(q) are equal to qi since dividing of G(q) with f0 converts the coefficients fm into 

tm(n) and the division does not change the roots of G(q). Thus to determine the probabilities 

pi, one can plug fm
(e) directly into (10) and search for the roots of G(q). Even the alternation of 

the coefficients' signs can be ignored since leaving them all positive, only changes the roots qi 

into –qi. The roots qi can be transformed to pi by using (8) or checked for complex values 

directly if this only is needed. 

Since fm
(e) are normally positive, the coefficients of G(q) strictly alternate in sign. By the 

Decartes rule,[24] G(q) has no negative real roots. It is clear from (8) that real positive qi 

correspond to pi ∈ [0,1) (pi=1 corresponds to qi=+∞). Hence, apart from complex values, the 

roots of F(p) cannot be nonphysical in any other way, like pi < 0 or pi > 1. This is true under 

the condition that all fm
(e) are positive. Due to experimental error, various situations can occur 

in practice. Negative values would be an obvious error that should be automatically corrected 

by replacing with zero since there is no sense to search for probabilities that reproduce 

nonphysical conditions. It may frequently happen that some leading or ending  fm
(e) show up 

as zeros due to insufficient sensitivity. How these cases should be best treated, we plan to 

present in the next sequel [25] in which different approaches for fitting to a single exchange 

profile will be examined. Here we take that all fm
(e) are positive or that small positive value 

can be assigned to those that turn up as zeros, just in order to ensure alternation of the 

coefficients in (10) and applicability of the Kurtz's theorem (see below). 

A question arises if there exists a condition which f0
(e) - fn

(e) should satisfy to assure that G(q) 

has only real zeros. With such a condition at hand, the exchange profiles producing complex 
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zeros could be detected more directly. It would also enable fitting by adjusting the elements in 

f (e) until they fulfill the condition for real zeros. Indeed, suitable conditions for real zeros are 

known: one that is necessary,[26] and one that is sufficient.[27] The necessary condition holds 

for a general polynomial with real coefficients, but the sufficient condition applies only to the 

polynomials with strictly positive or strictly alternating coefficients as in (10), which is a 

fortunate situation. Even more, both conditions are simple to understand and apply. The 

necessary

 

 condition was discovered long time ago by Newton:[26] 
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The sufficient

 

 condition was formulated by D. C. Kurtz,[27] in even more simple form: 

 1,...,1,2 11 −=> +− nifff iii         (12) 
 
The condition (12) guarantees not only real but also all distinct zeros. Except for n=2, the 

condition that would be simultaneously sufficient and necessary is not known; thus the fitting 

criterion can not be formulated without calculation of the site exchanging probabilities pi. 

 

 

Figure 2. Graphical presentation of the factors ))(/()1)(1( iniiin −++− (on the ordinate) 
across the ratio i/n (on the abscissa) for i = 1–n-1 and n = 2–20, from top to bottom. 
The points with i varied for fixed n are connected by lines. 
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Kurtz also proved that the factor 2 in (12) cannot be improved since there always exists a  

polynomial with non-real zeros that satisfies the modified condition (12) in which 2 is 

replaced by any smaller value. Note that only for n=2, the conditions (11) and (12) coincide. 

This simplest case is considered separately in Section 7. 

The factor from (11) is graphically depicted across the ration i/n in Figure 2 to show how its 

values change with increasing n. The point at the top represents the case n=2 and at the same 

time the minimal value of the ratio 11/ +−≡ iii fffr  that guarantees that all polynomial roots 

are real. When the ratio is below the point for given i and n, non-real roots are present. When 

r is between the top line at 2 and the point for appropriate i and n, the character of the roots is 

uncertain. It can be seen how the region with undetermined character of the roots grows with 

increasing n. 

 

4. Least squares fitting of the site exchange probabilities pi 

Whenever there are non-real roots of F(p) (or equivalently, of G(q)), the probabilities pi can 

be determined by fitting to the experimental values according to some criterion. In this section 

we consider the least squares fitting (LSF), in which pi are determined by minimizing the sum 

S of squared deviations between the experimental fm
(e) and calculated fm: 
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Here we give analytical expressions for the gradient and the Hessian since they are needed in 

various fitting algorithms. Hessian is not necessarily required, but it is always good to have 

since fitting algorithms generally perform better if Hessian is used. Besides, after finding the 

stationary point (by any algorithm), it should be checked whether it represents a minimum or 

perhaps a saddle point and this requires diagonalization of the Hessian. The elements gi of the 

gradient g read as: 
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The derivative of sk(n) is written in a bit cryptic way: 
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sm({p1, p2 ... pn}\pi) denotes elementary symmetric polynomial of order m in variables pj, j=1-

n, j≠i, that is – in the reduced set of probabilities with pi omitted. This is shortly designated by 

sm(n\i), where boldface n stands for all n probabilities and "\i" denotes omitting pi. The final 

expression for gi reads: 
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In a similar way one obtains the expression for elements Hij of the Hessian H: 
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The result of ∂sm+1(n\i)/∂pj, which occurs in derivation of (17), is denoted by sm(n\i\j) – which 

stands for the elementary symmetric polynomial of order m in the variables {pk, k=1-n | k≠i 

and k≠j}, that is, with omitted pi and pj. By definition, sm(n\i\j)=0 when i=j. In order to keep 

simple form of expressions (16) and (17), we extend the notation for sm by defining sm(...)=0 if 

m<0 or if m is greater than the cardinality of the set in the argument: e.g. sn(n\i)=0 and sn-

1(n\i\j)=0, by this definition. 

One of the simplest and quite efficient fitting algorithms is the Newton method,[28] in which 

the fitted function (S) is assumed to be sufficiently close to a quadratic function in the 

parameters p. With the gradient g and the Hessian H calculated for some guessed probabilities 

p, the improved values pnew, are obtained from: 

 
 pnew = p – H-1g          (18) 

 

The quantities sm(n), sm(n\i) and sm(n\i\j), in (16) and (17) may look complicated and difficult 

for evaluation. Here we describe a simple way to compute them efficiently. Note that these 
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quantities are sums of the products, each involving m pi-factors. As m goes from 1 to n in (4), 

(16) and (17), each of the subsets of {p1, p2, ..., pn} will appear as a product. Instead of a given 

sm(...) , we focus on systematic generation of all subsets, evaluating the product for each one 

and summing the result into the appropriate array element. The subsets can be coded as binary 

representations of the numbers from 0 to 2n-1, with 1/0 at the i-th position meaning that pi is 

included/excluded in the product. In the loop going from 0 to 2n-1, one generates the binary 

representation of the counting index and evaluates the product of the included pi. According 

to the length m of the product and the distribution of 0s in the binary representation, the 

product is summed into the appropriate elements of 1-, 2- and 3-dimensional arrays 

representing sm(n), sm(n\i) and sm(n\i\j), respectively, for m=0–n and i,j=1–n. 
 

5. Degeneracy in the least squares fitting results 

Here we prove that there are always equal values, at least two of them, among the 

probabilities obtained by LSF. This is so whenever the polynomial F(p) has complex roots, 

that is, whenever the experimental set fm
(e) cannot be exactly reproduced by a real set of site-

exchange probabilities. 

We start by rewriting equations that gi satisfy at the stationary point of S in terms of the 

variable q introduced in (8), in parallel to the expression (14) written in terms of p: 
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After dividing with -2 and denoting [fm

(e)–fm] with δm, the above equations become: 
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There is an additional condition from having both sums of fm

(e) and fm equal to 1: 
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The eqns. (20-21) can be considered as a homogeneous linear system with δm as unknowns. 

We use it only for purposes of the proof; the system has no practical value for finding the 

stationary point. This system of (n+1) equations in (n+1) unknowns has a nontrivial solution – 

with at least one δm≠0, only if the determinant of the coefficients' matrix is zero. Here we 
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prove that it may happen only if qi are not all distinct. By recalling the right hand sides of (9), 

one obtains for the partial derivatives in (20): 
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After substituting (22) into (20) and multiplying with (1+qi)/f0, the matrix of coefficients 
becomes: 
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    (23) 

 
Note that because t-1(n\i)=0 and tn(n\i)=0 by definition, the leftmost and the rightmost 

columns contain only a single term. Now we examine the rank of the matrix (23). After 

adding the first (the leftmost) column to the second, then the second column to the third, and 

proceeding in the same way until the n-th column is added to the last column (the rightmost), 

the matrix becomes: 
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If the determinant of the above matrix is zero, there must be a linearly dependent combination 

of rows. The last row cannot be in the combination since it contains the only nonzero element 

in the rightmost column. We proceed by examining the top n rows. Let each of them 

represents a polynomial with coefficients given in the columns 1 through n. There are n such 

row-polynomials, each of degree n-1. Linear dependence of rows implies linear dependence 

of the represented polynomials. Recall that tm(n\j) are elementary symmetric polynomials in 

qi, i≠j. Therefore all the row-polynomials are zero at -qj except the  j-th one. The j-th row 

cannot be in the linearly dependent combination because it is the only polynomial with 

nonzero value at -qj. The same reasoning holds for every row, and thus we conclude that the 
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matrix of the coefficients (23) may not have zero determinant if all qi are different. In this 

case the system (20-21) may have only the trivial solution, in contradiction to the assumption 

that fm
(e) cannot be exactly reproduced by fm. Therefore not all qi can be different. 

Numerical results obtained by LSF with simulated exchange profiles show that degeneracy is 

usually greater than minimal, that is, with more than 2 equal values among the fitted 

probabilities. Their number increases with the number of complex roots of F(p) (or G(q)) with 

certain regularity that has yet to be proven (see Section 9). 

 

6. Maximum likelihood estimation of pi 

In another way of estimating the site exchange probabilities p, one maximizes the likelihood 

(3) of observing the experimental exchange profile f (e), that is, one searches for p where the 

distribution (3) has maximum value. 

Instead of (3) it is more convenient to consider the logarithm which has maximum at the same 

point: 
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The first two terms do not depend on pi and can be omitted from further consideration. Only 

fm in the last summation depend on pi as given in (1). The necessary condition for a maximum 

is given by equating partial derivatives to zero: 
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By dividing with N, Nm is replaced by fm

(e), and then by using (9) and (15), the above set of 

equations is transformed as follows: 
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By multiplying with (1+qj) and recalling that fm

(e) sum to 1, one obtains: 

 

-814-



 
1

)(
)\(

)1(
0

1)( =+ ∑
=

−
n

m m

me
mj t

jt
fq

n
n

,     j = 1, 2, ..., n     (28) 

 
Equations (28) represent conditions for stationary points of the likelihood density for 

observing the experimental set f (e). In the rest of the section we show some characteristic 

solutions of these equations. 

First we show that the roots of G(q) after substituting fm in (10) with fm
(e), that is, those qi for 

which f=f (e), satisfy (28), as it was previously with the LSF equations (19). Then fm
(e) = 

f0⋅tm(n) and (28) becomes: 
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By using (9) it is easy to verify that the above equation holds since the summation is equal to 

[(1+qj)f0]-1. Thus the site probabilities which exactly reproduce the experimental values, are 

the most likely ones, as could be expected. However, this is acceptable only if all the roots of 

G(q) are real. 

When there are non-real roots of G(q), the MLE solution exhibits degeneracy as well as the 

LSF solution. By multiplying the last eqn. in (27) with (1+qj) and by simple transformation 

we obtain: 
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By dividing with f0 and by using the identity: tm(n) = qj·tm-1(n\j) + tm(n\j), one obtains 
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This set of equations reminds to the set in (20) and (22). We use similar reasoning to show 

that all distinct probabilities qj in the MLE solution imply f = f (e). First we regroup the terms 

in (31): 
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This is a homogenous system of n equations with the differences in brackets treated as 

unknowns. Note that the matrix of coefficients is equal to the top left part of the matrix in (24) 

involving the first n rows and n columns. By the same consideration as for the matrix (24), we 

conclude that the system of equations (32) has only trivial solution when all qj are distinct. In 

the trivial solution all the unknowns are equal to zero, implying: 
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m ff , one obtains const.=1. Thence, if f ≠ f (e), all qj cannot be distinct.  

In the rest of the section we point out a special stationary point, with qj being equal for all j: q1 

= q2 =...= qn ≡ q. Then: 
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and from (28) one obtains: 

 

n

 

From (6) follows that each summation in (35) is equal to s1(n). By using (8) to express p from 

q, one finds that q corresponds to: 

 

 
n
nsp )(1=           (36) 

 

This is nothing else but the mean value of roots of the polynomial in (7). Since complex roots 

come in conjugated pairs, the imaginary parts cancel and the values for p and q are real (this is 

also clear directly from (35) which involves only real numbers).  
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7. Case n = 2 

When n=2, H/D exchange takes place at two sites, with probabilities p1 and p2. The exchange 

profile consists of f0
(e), f1

(e) and f2
(e). Since their sum is fixed (to 1), only two values can be 

varied independently and we choose f0
(e) and f2

(e) because they are symmetrically related. The 

range of possible values for the pairs (f0
(e), f2

(e)) are determined by the conditions f0(e), f2(e)≥0. 

and f0
(e)+f2

(e)≤1. The set of all possible pairs (f0
(e), f2

(e)) that can be realized in the experiment is 

called an experimental region. Pairs within the experimental region are differentiated by 

non/existence of probabilities p1 and p2 that exactly correspond to a given pair f0
(e) and f2

(e). In 

other words, the experimental region is split into two parts: one containing the pairs (f0
(e), f2

(e)) 

for which G(q) =  f0
(e)⋅q2 - f1

(e)⋅q + f2
(e) has real roots, and the other with all the remaining 

pairs. The subset with real roots is called the exact region as the roots exactly reproduce a 

given pair (f0
(e), f2

(e)). Boundary between the exact and inexact regions is determined by the 

zero value of the discriminant d: 
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The discriminant is zero only when 1)(
2

)(
0 =+ ee ff . Figure 3 shows the diagram with 

delineated experimental region and its exact and inexact parts. 

The LSF probabilities for the pairs (f0
(e), f2

(e)) in the inexact region are determined by the zero 

condition for gradients, eqns. (16) and (19). When n=2, by the degeneracy rule established in 

Section 5, the two LSF probabilities are equal: p1 = p2 ≡ p, and the stationary point conditions 

reduce to a single cubic equation (written in two forms: in terms of p and in terms of q): 
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We are interested in the number of real solutions, which is determined by the sign of the 

discriminant of the cubic equation. The discriminant d reads as:  
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The subregion with positive values of the discriminant is delineated in Fig. 3. It is relatively 

small triangular zone, corresponding to high and similar values f0 and f2. As the most distant 

part from the exact region, it involves the greatest experimental error. There are three real 

solutions of (38), representing three stationary points of the sum of squared deviations. Two 

of them are minima and the third is a saddle point. It should be understood that the two 

minima represent two different degenerate solutions p1 = p2 ≡ p. Fig. 3 demonstrates 

complexity which is present already in the simplest case n=2. It demonstrates that even in the 

simplest case, there can be more than one minimal sum of the squared distances and that 

saddle points can be also present. For n>2, the complexity is certainly bigger, and one should 

expect increased number of local minima and saddle points. 

 

 

Figure 3. The plane (f0
(e),f2

(e)) with the experimental region (below the straight line 
f0

(e)+f2
(e)=1), divided into the exact and inexact regions. 

 

From Section 6 we know there is only one MLE solution in the inexact region: 
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It corresponds to p1 = p2, equal to the real part of the polynomial roots from (7). 

The simplest case n=2 allows us to examine the influence of a finite number of molecules 
detected in the experiment. The pairs (f0

(e), f2
(e)) are distributed according to the multinomial 

distribution:  
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P stands for the probability of observing the pair (f0

(e), f2
(e)) when the true exchange 

probabilities are p1 and p2, and N is the total number of detected molecules. N0, N1 and N2 
represent the number of molecules with zero, one and two hydrogens exchanged by deuterons. 
Clearly: 
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Figure 4 shows the distribution when N=100, p1=0.5 and p2=0.7 (N=100 is unrealistic low, but 
it well illustrates the distribution features).  In order to see better how the distribution divides 
between exact and inexact regions, the inexact part is cut and shifted towards the base centre. 
 

 
 
Figure 4. The distribution (41) for N=100, p1=0.5 and p2=0.7. The distribution is split into 

exact and inexact parts and the inexact one is shifted towards the base centre. 
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It is instructive to observe the distribution of pairs (f0
(e), f2

(e)) obtained by integrating the 

distribution (41) over p1 and p2 from 0 to 1: 
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If one takes that p1 and p2 are uniformly distributed, then P in (43) indicates general 

observation incidence of pairs (f0
(e), f2

(e)). 

 

 
 
Figure 5. The distribution (43) for N = 100. As in Fig. 4, the distribution is split into exact 

and inexact parts and the inexact part is shifted towards the base centre. 
 

The distribution (43) for N=100 is showed in Figure 5. It should be noted that the uniform 

distribution of (p1, p2) results in the distribution of (f0
(e), f2

(e)) with higher probabilities close to 

the boundary of the exact region, where 1)(
2

)(
0 =+ ee ff . Figure 6 shows cumulative 

distributions of )(
2

)(
0

ee ff +  for N increasing from 100 to 1000. The pairs (f0
(e), f2

(e)) do not 

extend far beyond the exact region, with inexact fractions ranging from 0.17 for N=100, to 

0.11 for N=1000. In parallel with shrinking of the inexact fraction, the exact fraction increases 

just near the boundary of the exact region. With an additional experimental error, perturbing 
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(f0
(e), f2

(e)) uniformly in all directions, the inexact fraction increases due to the accumulated 

distribution near the boundary. One would expect improvement in accuracy by increasing the 

number of detected ions, but the above observation makes the net effect somewhat obscured 

(see also discussion in Section 8 referring to Table 2). Extrapolation to n>2 of the distribution 

in Fig. 5 in respect to the consequences for exactness of experimental exchange profiles, is not 

straightforward since it is not known how the boundary between exact and inexact regions 

looks like for n>2. 
 

 

Figure 6. The cumulative distributions of )(
2

)(
0

ee ff +  obtained for N = 100-1000 with 
step=100. The lines for lower N appear broken because the distributions have more 
pronounced discrete character.  

8. Some numerical results 
There are many interesting questions in the present context that can be answered only by 

simulations. One of them is about the incidence of complex roots of polynomials G(q) 

obtained from realistic mass spectra. To answer this question, at least approximately, we 

performed numerical simulations in which random effects were simulated by using random 

numbers. First, n random numbers from the interval [0, 1] were produced to represent H/D 

exchange probabilities at n exchanging sites. They were converted to probabilities of having 0 

to n H/D replacements in a given molecular fragment. The interval [0, 1] was then divided 

into segments numbered by 0–n and ordered so that the length of the m-th segment was equal 

to probability of having m hydrogens exchanged. Another random number from [0, 1] was 

drawn and the ordinal number of the segment containing the drawn number was taken as 
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equal to the number of H/D exchanges in the simulated fragment. The last drawing was 

repeated N times, in a sequence N = 1 000, 10 000, 100 000, 1 000 000. N represents the 

number of detected fragments from which  f0
(e) – fn

(e) were determined. No other experimental 

error was simulated. Simulations for each N were repeated 1 000 000 times and each time the 

roots of the polynomial G(q) were determined. 

 
Table 1. Proportions (in percentages) of polynomials G(q) (10) with z complex conjugate 

pairs of zeros. Polynomial coefficients were obtained by simulating random 
deuteration at n sites in N molecular fragments (see the text for simulation details; 
the sum of percentages for a given pair (n, N) can be slightly different from 100.0 
due to a rounding error). 

 
n z N = 1 000 N = 10 000 N = 100 000 N = 1 000 000 

3 0 63.1 75.8 85.0 90.9 
 1 36.9 24.2 15.0  9.1 

4 0 32.8 49.0 64.6 76.7 
 1 59.0 46.2 33.0 22.1 
 2  8.2  4.8  2.5  1.2 

5 0 12.2 23.4 39.5 55.8 
 1 55.5 54.1 47.3 37.1 
 2 32.2 22.5 13.2  7.1 

6 0  3.4  8.0 18.4 33.1 
 1 34.8 40.3 45.7 44.8 
 2 55.6 46.9 33.2 20.9 
 3  6.1  4.9  2.7  1.3 

7 0  0.8  2.0  6.0 15.2 
 1 16.5 19.8 29.8 38.5 
 2 59.5 55.1 48.6 37.6 
 3 23.2 23.1 15.6  8.7 

8 0  0.2  0.4  1.4  5.1 
 1  6.4  7.0 12.9 23.3 
 2 48.0 41.4 44.0 44.0 
 3 43.1 46.9 38.5 25.9 
 4  2.3  4.3  3.2  1.8 

9 0  0.0  0.1  0.2  1.2 
 1  2.2  2.0  3.9  9.5 
 2 32.1 22.7 25.7 33.6 
 3 56.6 56.9 52.5 43.9 
 4  9.1 18.4 17.7 11.7 

10 0  0.0  0.0  0.0  0.2 
 1  0.6  0.5  0.9  2.7 
 2 19.0  9.9 10.7 17.0 
 3 60.0 49.9 45.0 45.3 
 4 20.1 37.7 40.3 32.5 
 5  0.3  2.0  3.1  2.4 
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Table 1 displays percentages of complex conjugated pairs among the roots (note that these are 

only approximate values obtained by simulation). One should observe that the incidence of all 

the roots being real (z=0 in Table 1) quickly decreases as n grows. At the same time, the 

average number of complex conjugated pairs also increases (see Table 2). As could be 

expected, for greater N, the number of complex roots in dependence on n increases slower. 

Remarkably, the last few rows of Table 2 display increasing average number of complex roots 

when N increases. 

 
Table 2. Average number of complex conjugated pairs in the roots of polynomials G(q) (10) 

n N = 1 000 N = 10 000 N = 100 000 N = 1 000 000 
3 0.37 0.24 0.15 0.09 
4 0.75 0.56 0.38 0.24 
5 1.20 0.99 0.74 0.51 
6 1.64 1.49 1.20 0.90 
7 2.05 1.99 1.74 1.40 
8 2.41 2.48 2.29 1.96 
9 2.73 2.92 2.84 2.55 

10 3.00 3.31 3.34 3.14 
 

 
9. Concluding remarks 

Most of the findings were discussed in the previous sections, and here we give only some 

additional remarks. As the main result we point out the degeneracy of the probabilities 

obtained by fitting, either within the LSF or the MLE approach, whenever experimental 

values are inconsistent with the model. 

The LSF results obtained in a preliminary investigation (to be reported in detail in the next 

sequel [25]) support a hypothesis that the number of distinct probabilities does not exceed the 

number of distinct roots of G(q) when conjugated pairs are counted as single roots. If the 

number of complex roots is considered as a measure of inconsistency with the model, it 

appears that the uncertainty, represented by degeneracy of the fitted results, increases as the 

data deviate more from the physical model. It remains to be verified whether it is also present 

in the common experimental setup when several exchange profiles, recorded after different 

deuteration times, are fitted at once. 
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An important aspect of the fitting procedure, irrespectively of the fitting criterion, is a high 

symmetry of the objective function, being invariant to any permutation of the site exchange 

probabilities. As a consequence, every stationary point of the sum of squared distances or of 

the likelihood for a given exchange profile, is replicated by permuting distinct site-

probabilities. It means that there are many equivalent stationary points - minima and various 

saddle points between them. With a possibility of different minima (local and global), the 

expected number of stationary points further increases.  Even the simplest case with n=2 

demonstrates that this is possible and it should be expected with greater incidence for n>2. 

This emphasizes importance of verifying the character of the stationary point obtained 

numerically. 

In regard to the numerical results in Section 8, in particular to their dependence on N – the 

number of detected ions in an instrument, it is interesting to know the experimental value of 

N. Certainly, it can vary a lot depending on the spectrometer type, the characteristics of a 

sample and the specific setup. It seems that in the instruments used for the H/D experiments 

with proteins, the number of ions trapped in the FT-ICR mass spectrometer is of the order of 

105.[29, 30] However, it should be taken into account that this quantity of ions produces an 

isotopic profile, including some noise in the signals. The precision of the exchange profile 

obtained by deconvolution reflects not only a finite number of detected ions but also the other 

sources of experimental error. One could take that the final effect for exactness of the 

exchange profile can be considered as effective reduction of the number of detected ions 

which we roughly and deliberately estimate by one order of magnitude. By assuming that the 

average number of aminoacids in the peptides used for quantitative analysis is 5-6, from the 

middle part of Table 1 one sees that the roots of G(q) will rarely be all real. 

At the end we emphasize that by no means the single exchange profiles discussed here, are 

proposed as a vehicle for quantitative analysis of HDX. In fitting the data from a single 

exchange profile, it is important to consider uncertainties arising from experimental error and 

the curvature at the minimum sum of squared deviations. Comparison of the fitting algorithms 

and characteristics of the fitting results are elaborated in the next sequel.[25] 
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