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The development of the idea of the golden 

ratio is usually attributed to Pythagoras 

(580-497 BC) and his students. The symbol of 

Pythagoras school was the regular pentagram.  

Plato (428-347 BC) saw the world in terms of 

perfect geometric proportions and symmetry. 

His ideas were based on Platonic Solids: a 

cube for earth, a tetrahedron for fire, an 

octahedron for air and icosahedrons for water, 

some of them are related to the golden ratio. 

Euclid (c. 325-c. 265 BC) in his Elements 

gives the first known definition of “extreme 

and mean ratio”, i.e. the golden ratio, as we 

call it today. In several propositions in 

Elements and their proofs the golden ratio is 

used.  

After the ancient times there was a long 

period of silence. 

About 1500s Luca Pacioli (1445-1517) 

published his book “De divina proportione” 

(which is his name for the golden ratio), it 

contains drawings made by Leonardo da 

Vinci of the five Platonic solids and other 

imaginations of artist, architects, and 

scientists of the golden ratio. 

Cardan and Bombelli (16. century) looked for 

the golden ratio using quadratic equations. 

The first known approximation of the golden 

ratio as a decimal was given in a letter written 

in 1597 by M. Maestlin to his former student 

Kepler (1571-1630). But Kepler was the first 

who explicitly banded together Fibonacci 

sequence to the golden ratio in 1609. 

Scottish mathematician R. Simson in 1753 

first proved the next important 

result
1

lim
−

∞→
=

n

n

n F

F
φ . 

At the beginning of the past century R. 

Penrose (1931- ) discovered a symmetrical 

pattern that uses the golden ratio in the field 

of periodic tilings which led to new 

discoveries about quasicrystals.  

 

Figure 2: Penrose tiling [7] 

2.1 Terms and labels for the golden ratio 

As stated before, Euclid used the term 

“extreme and mean ratio”. Euclid’s term for 

the golden ratio was used until about the 16
th
 

century. Then Pacioli introduced the term 

“divine proportion” and some writers adopted 

it. “Proportionally divided”, “continuous 

proportion” and similar expression were also 

used. In 1835 Martin Ohm in his book 

introduced a new term “golden section”, the 

name which is now used.  Modern terms are 

also “the golden ratio” and “the golden 

number”. 

The golden ratio is often represented by the 

Greek letter τ  (“tau”), which means “the 
cut” or “the section” in Greek.  

But, Mark Barr (early 18
th
 century) 

represented the golden ratio as φ (“phi”), 

because the φ  (“phi“) is the first letter in the 

name of Greek architect and sculptor Phidias 

who’s work often symbolized the golden 

ratio. 

  

3. GOLDEN SECTION IN 

ARCHITECTURE 

3.1 Ancient Egypt 

Today there are many theories about the Great 

Pyramid of Giza (c. 2570 BC). Many of them 

claim that Egyptian designers used the golden 

proportion in the construction of the Great 

Pyramid. It can be measured that the ratio of 

the slant height of the pyramid to half the 

length of the base as 612.01 (feet)/377.9 (feet) 

= 1.6195 is the golden ratio. But, this is not 

proof that the Egyptians intentionally used the 
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golden ratio. We don’t know the real 

measures of the pyramid; it was partially 

ruined by taking off the paneling. And also 

there is no written evidence about the design 

and the building of the pyramid. 

3.2 Ancient Greece 

Interesting data is that the golden ratio was 

used in some Greek theatres. The Epidaurus 

Theatre which was designed by Polykleitos 

the Younger in the 4th century BC used the 

golden ratio. The auditorium was divided into 

two parts; one had 34 rows and the other 21 

rows (Fibonacci numbers). The angle between 

the theatre and the stage divides a 

circumference of the basis of an amphitheatre 

in the ratio: 137°.5: 222°.5 = 0.618 (the 

golden proportion). 

 

Figure 3: The Epidaurus Theater [8] 

Similarly, the Theatre of Dionis in Athens has 

three circles, first with 13 rows, second with 

21, and last with 34, again Fibonacci 

numbers.  

The famous Greek temple, the Parthenon 

(c.430 BC), in the Acropolis in Athens 

includes golden rectangles in many 

proportions. 

 

Figure 4: Parthenon [7] 

But, it is necessary to underline the fact that 

there are no original plans for the Parthenon, 

and there is no documentary evidence that this 

was deliberately designed. The temple is 

damaged and all the measures are only 

approximate.  

3.3 Gothic 

One of the most popular monuments from this 

period is Notre Dame Cathedral in Paris (built 

1163-1346). F. Macody Lung in his book Ad 

Quadratum (1919) claims that this church, 

Cathedral of Chartres (early 12
th
 century), the 

Notre-Dame of Laon (12
th 
-13

th 
century) were 

designed according to the golden ratio.
 
 

 

Figure 5: Notre-Dame of Laon [6] 

 

Figure 6: Notre-Dame of Paris [7] 

3.4 Modern architecture 

The most popular modern architect connected 

to the golden section is the Swiss architect Le 

Corbusier (1887-1965). Le Corbusier 

explicitly used the golden ratio in his Modulor 

system for the scale of architecture proportion. 

He wanted to improve the function of 

architecture using the proportions of the 

human body. The best example of this idea is 

Villa Stein (1927) in Garches. The villa’s 

ground plan and inner structure including 

elevation are approximate golden rectangles. 
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Another Swiss architect, Mario Botta (1943), 

is famous for using the golden section in his 

work. For example in the house Origlio the 

golden ratio is the proportion between the 

central section and the side sections of the 

house. 

The CN Tower in Toronto (1974) is 

interesting. The height of once the world’s 

tallest tower is 553.33 m, and the height of the 

glass floor is 342 m. The proportion of these 

two values is 1.617924- the golden ratio. 

 

Figure 7: CN Tower [7] 

Furthermore, just a few years old Education 

Centre called The Core in SW England has 

been designed using the Fibonacci numbers as 

an example of plant spirals which symbolize 

nature and plants from all over the world.  

 

Figure 8: The Core [12] 

Another very new example is Engineering 

Plaza in California. Its designer J. Gordon 

Smith (former student of this University) was 

also guided by Fibonacci series spiral.  

 
Figure 9: Cal Poly Engineering Plaza [12] 

3.5 Few examples in Croatia 

So far we have found just two examples of the 

exploitation of the golden ratio. The first is 

the oldest Croatian artifact (c.1100) 

Bascanska ploca. 

 

   Figure 10: Bascanska ploca [15] 

Furthermore, the windows at the front of a 

secondary school (19
th 
century)

 
are golden 

rectangles. 

 

Figure 11: School “Gornjogradska gimnazija” 

[10] 

 



 

 

 

5 

 

4. CONSTRUCTION OF THE GOLDEN 

RATIO 

4.1 The Golden Ratio by Huntley 

In a right triangle ABC with sides BC =3, 

4=AC , and AB = 5, the point O is the foot of 

the angle bisector at B. If we draw a circle 

with the center O and the radius CO and 

extend BO to meet the circle at P and Q, then 

the golden ratio appears as φ=BPPQ : . 

Proof: First notice an angle bisector BO 

divides AC in the ratio of the sides AB: BC as 

we see .
3

5
==

AC

AB

CO

AO
 

 

 

 

Figure 12: The Golden Ratio in right triangle 

These results with 
2

5
=AO and the circle's 

radius rCO ==
2

3
. 

By the Power of a Point Theorem 
2BCBQBP =⋅ and after short research we 

find 
2

53
=BO and

2

)15(3 −
=−= rBOBP . 

Finally, φ==
BP

r

BP

PQ 2
. 

4.2 The Golden Ratio by Gabries Borsia  

Gabriel Borsia has discovered another 

interesting way to construct the golden ratio.  

He associated the right triangle 5:2:1   

with the right triangle 3–4–5 as on Figure 12. 

 

 

Figure 13: GR in right triangle 1:2: 5  

4.3 The Golden Ratio by George Odom 

Let ABC be an equilateral triangle with L and 

M the midpoints of its sides AB and AC. Let X 

and Y be the intersections of LM extended 

with the circumcircle of the triangle ABC. 

Then φ=MYLM : .  

 

Figure 14: GR in equilateral triangle 

Proof: If we take 2a as the side length of ABC, 

then follows .aLMMCAM === Let us 

assume .bMYXL == By Intersecting 

Chord‘s theorem MCAMMYMX ⋅=⋅  

and aabba ⋅=⋅+ )( . If we denote x
b

a
=  it 

appears equation 21 xx =+ , which results 

in φ=x . 

4.4 Hofstetter’s Construction with 

Compass  

An elegant construction of the golden ratio 

can be found in the work of K. Hofstetter in 

Forum Geomericorum, Vol 2 (2002), 
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p.65-66.[9] 

Let us mark S (P) the circle with the centre S 

through point P. Let us take A and B to be the 

two points. Circles A(B) and B(A) intersect in 

C and D and cross the line AB in points E and 

F. Circle A(F) and B(E) intersect in X and Y 

as in the diagram. Points X, D, C and Y are 

collinear (due symmetry). Then .:CDCX=φ  

 

Figure 15: GR from four circles 

Proof:  Let us assume .2=AB Than 

,32=CD 315 +=CX and we obtain 

φ=
+

=
32

315

CD

CX
 which means D is gold 

point of the segment CX. Note the points E 

and F lie on the circle C (D). That is why the 

construction can be accomplished with 

compass only.  

4.5 Lemoine’s Construction 

This construction and proof was given by 

Lemoine in 1902 and rediscovered by 

Hofstetter as 5-step construction [9]. 

Two circles )(BA  and )(AB  and C, D their 

points of intersection. The third circle )(AC  

intersects )(BA  in E and the line CD in F.  

The fourth circle E (F) intersects line AB in 

points G and G'. 

So, φ=
AG

AB
 and .φ=

AB

AG

 

 

Figure 16: Lemoine’s construction 

Proof: Let AB be unit length. Then 3=CD , 

and 2== EFEG . Let H be the orthogonal 

projection of E on the line AB. Since 
2

1
=HA  

and ,
4

5222 =−= EHEGHG it results in 

2

15 −
=−= HAHGAG . G divides AB in the 

golden section. 

4.6 Hofstetter’s 5-step construction  

Let us draw circles from points A and B, 

segment AB being unit length, let C and D be 

the intersections of )(BA  and )(AB . Extend 

AB beyond A to the intersection E with )(BA . 

 

Figure 17: 5-step division of a segment in the 

Golden Section  

Draw )(BE and let F be the intersection of 

)(BE and )(AB further from D. CF intersects 

AB in G. φ=BGAG : . [2] 
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Figure 18: Proof 

Proof:  Extend AB to intersect the circle 
)(BE  at H. Let the point I be intersection of 

CD and AB and J the foot of perpendicular 

from F to AB. We can see 4=BH and 

1=BF  in the right triangle BFH. 

Since ,2BFBJBH =⋅ .
4

1
=BJ Further, 

4

1
=IJ , 15

4

1
=JF . Then,  

15

2

4

15

2

3

===
JF

IC

GJ

IG
 

,
2

25

52

2 −
=

+
=

IJ
IG

.
2

15

2

1 −
=+= IGAG  

The point G divides AB in the golden section. 

4.7 A Simple Hofstetter’s construction with 

a rusty compass 

Construction with a rusty compass means 

opening can be set only once. 

First draw )(BA  and )(AB  and find C and 

D their intersection. AB intersects CD at the 

point M. Than construct ),( ABMC , a circle 

with centre M and radius AB. Let it intersects 

)(AB  in F and another point, F being the 

farthest from D. Define G as the intersection 

of AB and DG. G is the sought point. 

 

 

Figure 19: GR with rusty compass 

Proof: ,FMBF =  the projection of F to AB 

the point K is the midpoint of segment AB, 

then BKKM = . Right triangles GMD and 

GKF are similar. Let us assume 4=AB , 

then ,4== BFFM ,2== BMAM

1== BKKM . Solving right triangles results 

we conclude φ=BGAG : . 

 

Figure 20: Proof 

5. FROM ISOSCELES TRIANGLE VIA 

PENTAGON TO DODECAHEDRON 

WITH THE GOLDEN RATIO 

5.1  Golden triangle 

The Golden Ratio also appears in some 

special isosceles triangles. 

An isosceles triangle ABC with a top angle 

measuring 36˚ and both base angles measure 

72˚ we find in regular decagon, in a regular 

pentagon, in a pentagram as in a regular 

dodechaedron. 

If the baseline of this triangle is unit length its 

sides will be φ .  
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This triangle has an interseting property that 

bisecting the angle in B by drawing BD, we 

obtain an isosceles triangle BCD simillar to 

ABC, and we can proof : φ=
DC

AD
. That is 

why this tall triangle is usually named the 

“golden triangle”. The remaining obtuse 

isosceles triangle 36˚- 36˚-108˚ is named the 

“golden gnomon”. 

 

Figure 21: Golden Triangle 

We can also name triangle ABC with angles 

72˚-36˚-72˚ “sharp” triangle, and triangle 

BCD with angles 36˚-108˚-36˚“flat” triangle. 

These two types of isosceles triangles are the 

basic building shapes of Penrose tilings, an 

interesting way of applying the golden 

section. 

We can keep on drawing: e.x. bisector D in 

the small triangle. Then the golden ratio 

appears in every next small triangle. If we 

draw arcs from the vertices of the 

obtuseangles of the isosceles triangles from  

a point to point and connect them we draw 

Golden Spiral.[1] 

 

Figure 22: Golden Spiral 

5.2 The Regular Pentagon 

We can find the golden triangle in a regular 

pentagon. The base of triangular DE here is 

the side of regular pentagon, and side BD is 

the diagonal. The ratio of the diagonal and the 

side in the regular pentagon is φ=sd : . 

 

Figure 23: Golden triangle in a regular 

pentagon [4] 

Two diagonals of the regular pentagon divide 

each other in the golden ratio.  

 

Figure 24: GR in a regular pentagon [4] 

When we draw two intersecting diagonals, we 

get two golden triangles (sharp) and a 

gnomon ( flat). 

Let us remark that by drawing all five 

diagonals of a regular pentagon we define a 

pentagram example of a regular non – convex 

polygon where again the golden ratio appears. 

5.3 Diagonals of a regular pentagon and 

Fibonacci 

Even the Pythagoreans studied a series of 

regular pentagons. That is the way they 

discovered incommensurability and the 

golden ratio.[4] 

Let a pentagon side be s n and we take it to be 

diagonal 1−nd of the previous smaller regular 

pentagon, than 1−= nn ds . In that case 

diagonal nd  is the sum of the side and the 

diagonal of the previous pentagon. 
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Figure 25: A serie of regular pentagons  

This can be written write as reccurrence 

relationships 1−= nn ds and 11 −+ += nnn sdd . 

With 21 =s and 31 =d  leads to the 

sequence 
n

n

s

d
 of ratios  

2

3
, 
3

5
, 
5

8
, 
8

13
, …        

which are successive Fibonacci numbers. A 

formal proof  can be found in The Golden 

Ratio: The story of Phi the World’s most 

Astonishing Number.[1] 

5.4  Construction of  a regular 

dodecahedron around a cube  

This method is mentioned by Euclid in book 

XIII proposition 17 and is given in [4].  

We can construct a regular dodecahedron by 

putting appropriate “roofs” on each face of 

the cube.  

Figure 26: From a cube to the regular 

dodecahedron [4] 

The bases of such roofs are the faces of the 

cube. All edges of the roofs that are not edges 

of the cube must have the same length. The 

adjacent faces of meeting roofs must form a 

regular plan pentagon. 

The length of the diagonals of the pentagons 

equals the length of the sides of the cube. The 

length of the edges of the dodechaedron is 

greater of the two parts in which the edge of 

the cube is divided by the golden ratio.  

The angles between the base and a triangular 

face and between the base and a trapezoidal 

face of the roof  are complementary. It 

means the pentagons are planar. That we can  

 

Figure 27: Frontal view [4] 

see from a frontal view. 

As 
2

ϕ
=BD  and ,

2

1 ϕ−
=AD ,1 2ϕϕ =−  

.
1

1
tan

ϕϕ

ϕ
α =

−
=  

As 
2

ϕ
=AC  and 

2

1
=AE ,

α
ϕβ

tan

1
tan ==  

α + β = 90˚. We conclude that the pentagons 

are planar. If the length of the edge of the 

starting cube is 1, then the length of the edge 

of the dodecahedron is .
2

15 −
=ϕ The 

length of the edge of the  cube desribed (the 

green one) around the dodechaerdon is 

φ =
2

15 +
. The same sphere circumscribes 

the dodechaedron and the original cube, 

2

3
=r  .  

 

Figure 28: Dodechaedron and two cubes [4] 
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5.5 A cube to dodecahedron 

transformation 

Bob Faulkner gave Herman Serras an 

interesting idea how to construct a regular 

dodechaedron starting with a cube.[4]  

Define six roofs upon a given cube. Complete 

the roofs by their square basis. Choose one of 

the roofs as fixed, four adjacent roofs were 

hinged along their edges common with fixed 

roof. 

The sixth roof was hinged to one of its 

already hinged neighbours.  

 

Figure 29: A Cube in Dodecahedron 

It could be unfold into the regular 

dodechaedron and refold into the cube. This 

served as the basis for Serras’ nice 

animation.[4] 

It is possible to see a cube in a regular 

dodecahedron if we use one diagonal on each 

face. 

The diagonals of a regular dodechaedron are 

φ  times as long as its sides then the cube’s 

sides so the dodechaedron’s sides are in the 

golden ratio. In fact, five distinct cubes can be 

fitted into the dodecahedron with the vertices 

of the cube meeting at the vertices of the 

dodechaedron. 
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