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[1] In this paper, we study the influence of high log-conductivity variance ð�2
Y Þ and local-

scale dispersion on the first two concentration moments as well as on higher-order
moments, skewness, and kurtosis, in a 2-D heterogeneous aquifer. Three different
heterogeneity structures are considered, defined with one and the same global isotropic
Gaussian variogram. The three structures differ in terms of spatial connectivity patterns at
extreme log-conductivity values. Our numerical approach to simulate contaminant transport
through heterogeneous porous media is based on the Lagrangian framework with a reverse
tracking formulation. Advection and local-scale dispersion are two competing and
controlling mechanisms, with a relative ratio defined by the Peclet number (Pe) ; hydraulic
log-conductivity variance �2

Y in the simulations is assumed to be one or eight. The term
local-scale dispersion is used as a combined effect of molecular diffusion and mechanical
dispersion. Uncertainty of the concentration field is quantified by the second-order moment,
or the coefficient of variation (CVC) as a function of the sampling position along a
centerline, Peclet number, and �2

Y , as well as by higher-order moments, i.e., skewness and
kurtosis. The parameter �2

Y shows a strong influence on the concentration statistics, while
the three different structures have a minor impact in the case of low heterogeneity. The
results also indicate that for �2

Y ¼ 8, the influence of local-scale dispersion is significant
after five integral scales (IY) from the source for the connected (CN) field, while in case of a
disconnected field, the local-scale dispersion effect is observed after 20IY from the source.
In the case of unit �2

Y , local-scale dispersion acts very slowly affecting concentration
uncertainty at distances higher than 20IY from the source. Our inspection of Monte Carlo
concentration skewness and kurtosis with the ones obtained from the Beta distribution show
the discrepancies for high �2

Y and CN log-conductivity structure.
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1. Introduction

[2] Concentration fluctuations and their estimation in
groundwater plumes have received increased attention in
the last 20 years, since knowing the statistical properties of
concentration fluctuations in a moving plume is important
for risk assessment. Risk assessment studies require know-
ing the concentration fluctuations [Andricevic et al., 2012;
Tartakovsky, 2007], which are completely described by a
one-point concentration probability density function (PDF).
At any point in space and time the concentration PDF con-
tains all the information about concentration fluctuation

phenomenology and embodies all the higher-order concen-
tration moments of the stochastic process.

[3] The analyses of concentration moments and PDF in
heterogeneous aquifers have been considered in a large
number of studies. In the early attempts of characterizing
groundwater contaminant transport, Dagan [1982] showed
that in the absence of local-scale dispersion and a uniform
source concentration, for the point sampling the concentra-
tion PDF is a two-state process of initial concentration, C0,
or zero. Bellin et al. [1994] analyzed the concentration cu-
mulative distribution function (CDF) and first two concen-
tration moments together with the coefficient of variation
(CVC) as a function of sampling volume. They demon-
strated the influence of sampling volume on concentration
moments, CVC, and consequently the PDF shape. Neither
of the studies incorporated local-scale dispersion as a
mechanism for modifying the two-state concentration PDF,
which may strongly influence the concentration variance,
�2

Y , as well as higher concentration moments [Andricevic,
1998; Dagan and Fiori, 1997; Fiori and Dagan, 2000;
Kapoor and Kitanidis, 1998].

[4] Fiorotto and Caroni [2002] considered the effect of
local-scale dispersion in the case of wide ranges of sampling
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size, as well as for longitudinal source dimension, and dem-
onstrated that numerical results compare well with an analyti-
cal solution for the first two concentration moments in low
heterogeneity cases. Caroni and Fiorotto [2005] extended
the analysis of Pe value influence on the concentration
moments to cases characterized by �2

Y � 2. They show that
local-scale dispersion affects the concentration variance
strongly, while the mean stays unaffected except for very low
Pe values O(101), which is in agreement with results in the
literature [Andricevic, 1998; Dagan and Fiori, 1997; Fiori
and Dagan, 2000; Tonina and Bellin, 2008]. Dagan and
Fiori [1997] and Fiori and Dagan [2000] quantified the influ-
ence of local-scale dispersion on the first two concentration
moments. Their finding is consistent with the analysis of field
data by Fitts [1996], and they concluded that the concentra-
tion mean is weakly affected by local-scale dispersion. CVC

is also analyzed by Fiori [2003] and Tonina and Bellin
[2008] as a function of the Pe number and the source size.
Both the local-scale dispersion and source size result in
decreasing the concentration variance and CVC. Bellin et al.
[1994] demonstrated how the increase in sampling volume
decreases the concentration uncertainty, particularly at plume
boundaries, but this analysis did not account for the effect of
local-scale dispersion.

[5] The impact of sampling volume, local-scale disper-
sion, heterogeneity variance, and source size on the first
two concentration moments, and CVC, using first-order
theory [Dagan and Fiori, 1997; Fiori and Dagan, 2000]
and numerical results combined with analytical solutions
derived as a generalization of the first-order solution for a
finite sampling volume, are demonstrated in Tonina and
Bellin [2008]. It was shown that the first-order theory based
on analytical solutions are in good agreement with numeri-
cal results for �2

Y values up to one and can be used to esti-
mate the concentration uncertainty.

[6] Caroni and Fiorotto [2005] showed a good fit of the
Beta distribution with Monte Carlo (MC) results conducted
in a 2-D heterogeneous aquifer. Bellin and Tonina [2007]
confirmed results by Caroni and Fiorotto [2005] and
showed that the Ito stochastic differential equation (SDE)
leads to a Beta distribution. By setting the Pe value equal
to infinity, SDE converges to the double Dirac’s concentra-
tion PDF showed by Dagan [1982]. Schwede et al. [2008]
applied a semianalytical method and confirmed a very good
agreement with Beta, even in 3-D, for different sampling
volumes. A joint velocity-concentration PDF method has
been developed by Meyer et al. [2010]. This method is
much more efficient in comparison with standard MC, but
the accuracy starts to deteriorate for Pe � 100. An addi-
tional attempt to derive methods based on the relationship
between velocity distribution and concentration PDF has
been presented by Dentz and Tartakovsky [2010]. These
studies indicate the asymmetric shape of concentration
PDF [Cirpka et al., 2011b], for a wide range of Pe values
and sampling sizes, independent of distance from the
source.

[7] The study of concentration statistics in heterogene-
ous aquifers in the past few decades has mostly been lim-
ited to the lower range of aquifer heterogeneity �2

Y < 2
� �

and to the common multi-Gaussian (MG) log-conductivity
structure. The exception is work by Meyer and Tchelepi
[2010] where �2

Y up to four is considered as well as a non-

Gaussian field characterized by significant correlation of
high-value log-conductivity zones. The investigation of
Zinn and Harvey [2003] opened possibilities for addressing
different non-Gaussian heterogeneity structures departing
from the MG one in a simple manner, whereas recent nu-
merical advancements enable more reliable computations
of advective transport in aquifers with high heterogeneity
[Gotovac et al., 2007, 2009a].

[8] In this paper, we investigate the impact of different
hydraulic log-conductivity structures and large variability
on the solute plume uncertainty as quantified by the con-
centration mean, CVC, skewness, and kurtosis. The MG
field is considered as a base case, with two possible non-
Gaussian fields [Zinn and Harvey, 2003] characterized by
different correlations of extreme log-conductivity patterns.
Furthermore, we contrast the case of low/moderate and
high heterogeneity of the hydraulic conductivity by consid-
ering �2

Y equal to one or eight, utilizing the numerical
methodology of Gotovac et al. [2007, 2009a]. A particular
issue to be addressed here is the spatial-temporal scale
when local-scale dispersion becomes an important factor in
estimating concentration uncertainty, and the validity of
the Beta distribution as an approximation for evaluating
concentration skewness and kurtosis.

2. Physical Statement of the Problem

[9] In this paper we consider incompressible and steady
groundwater flow taking place through a heterogeneous
aquifer and result in divergence free flow r � v xð Þ ¼ 0.
Velocity vector is defined on a finite sampling volume, in
the vicinity of x, which corresponds to Darcy scale.
Because of aquifer heterogeneity, the seepage velocity v xð Þ
is a random space function.

[10] If mass M of a conservative tracer is introduced into
the aquifer, resident concentration needs to satisfy the mass
conservation law

@cðx;tÞ
@t

¼ �r � v xð Þc x; tð Þ½ � þ r � D xð Þrc x; tð Þ½ �: ð1Þ

[11] The total change of conservative tracer mass in a fi-
nite aquifer volume is controlled by two mechanisms,
advection and local-scale dispersion. The advection acts on
relatively short time scales, to thin the contaminant plume
and create lenses and fingers at its fringe. Local-scale dis-
persion acts irrespectively of the velocity random field,
controlled by concentration gradients inside the plume do-
main. The parameter c(x,t) denotes the concentration scalar
field, defined as the contaminant mass per aquifer volume
in the vicinity of x at time t. Local-scale dispersion is
defined by D xð Þ ¼ DmIþ �v xð Þ, where DmI quantifies mo-
lecular diffusion and � is a constant dispersivity.

[12] For initial time, concentration c(x,0) is equal to C0

inside the source area, while outside it takes zero value. For
this study instantaneous resident injection mode is considered.

3. Numerical Methodology

3.1. Random Walk Particle Tracking

[13] For the purpose of this paper, the random walk par-
ticle tracking (RWPT) method is used to simulate
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conservative tracer transport in a heterogeneous aquifer.
RWPT is a method derived from stochastic physics, com-
monly used in the research of diffusion and dispersive
processes in porous media [Kinzelbach and Uffink, 1986].

[14] If a total mass introduced in a heterogeneous aquifer
is divided into a large number of particles of equal mass,
then the movement of each particle is described in tradi-
tional form given by the Ito-Taylor integration scheme [Ito,
1990]

XP t þ�tð Þ � XP tð Þ ¼ v XP;tð Þ þ r � D XP;tð Þ½ � ��t

þ B XP;tð Þ � � tð Þ
ffiffiffiffiffiffi
�t
p

;
ð2Þ

where the first term on the right-hand side is the drift vec-
tor, while the displacement matrix B(XP ;t) defines the
strength of local-scale dispersion, and � tð Þ presents a vector
of independent, normally distributed random variables with
zero mean and unit variance.

[15] As can be seen from equation (2), it is straightfor-
ward to calculate particle displacement because of the
explicit time integration scheme. If the starting position of
a contaminant particle is known, equation (2) calculates
particle displacement resulting from advection and local-
scale dispersion. Resident concentration [Parker and van
Genuchten, 1984] is calculated from known particle dis-
placement using smoothing techniques [Hassan et al.,
2001].

3.2. Adaptive Fup Monte Carlo Method (AFMCM)

[16] Despite all the advantages of the RWPT methodol-
ogy [Kinzelbach and Uffink, 1986; Salamon et al., 2006], it
is difficult to calculate the D(XP ;t) value. Solving the flow
within an Eulerian framework using the usual numerical
methods such as finite element method or Finite difference
yields discontinuities in head as well as the velocity field.
In equation (2), the D(XP ;t) derivative cannot be accurately
calculated if the above-mentioned methods are used with-
out additional improvements [LaBolle et al., 1996; Sala-
mon et al., 2006] designed to satisfy the mass conservation
law. To avoid difficulties in mass conservation, we solve
the flow and transport here in two dimensions using the
proven AFMCM numerical methodology [Gotovac et al.,
2007, 2009a], which has been shown to converge and to be
accurate even for high log-conductivity values.

[17] At its core, AFMCM is a collocation method that is
combined with Fup basis functions defined on compact
support, allowing us to compute the dispersion term and all
its derivatives independently of the position vector. Fup
collocation transform (FCT), closely related to the discrete
Fourier transform, is required for the multiresolution repre-
sentation of all flow and transport variables. The theoretical
and practical aspects of AFMCM and FCT are presented in
detail elsewhere [Gotovac et al., 2007, 2009a]. All relevant
variables such as log-conductivity, velocity, head or veloc-
ity, and concentration have a particular adaptive grid
describing these on all spatial and temporal scales with a
predefined accuracy level. An adaptive technique is used
by adding a number of Fup basis functions in domain areas
according to numerical adaptive criteria. To summarize,
the most significant property of this method is the continu-
ity of all variables and their derivatives.

3.3. Numerical Application

[18] In the case of backward random walk particle track-
ing (BRWPT), equation (2) can be used for calculating par-
ticle displacement as the starting position of each particle.
Particles are distributed over a sampling volume, with a
dimension smaller than the integral scale of log-
conductivity and using a reverse scheme, are tracked back
from detection volume to the contaminant source. In com-
parison with the forward scheme, the backward scheme
possesses considerable simplifications in numerical calcu-
lation and evaluation whenever the sampling volume is
much smaller than the source volume [Fiorotto and Caroni,
2002; Caroni and Fiorotto, 2005]. The number of particles
NP is distributed normally or uniformly in the detection
volume and tracked back toward the source direction using
equation (2). If n of total number of particles NP released
from the detection volume, in any time step �t, is found
inside the source volume, the concentration is evaluated as

C ¼ C0
n

NP
; ð3Þ

where C0 presents the initial concentration when all
released particles are found inside the source volume. In
the BRWPT scheme, the source dimension is set up to be
larger than the sampling volume. In the longitudinal direc-
tion, the source size dimension is L1 ¼ 2IY , while in the
transverse direction it is L2 ¼ 10IY . Three different types
of conductivity fields may result in highly different flow
and mass transfer properties [Zinn and Harvey, 2003; Wen
and Gomez-Hernandez, 1998] and are selected to analyze
their influence on contaminant concentration statistical
properties. All three structures have identical lognormal
univariate conductivity distributions, as well as isotropic
spatial covariance functions. They differ in the pattern by
which high- or low-conductivity regions are connected:

[19] (1) ConNected: CN field with well-connected high-
conductivity channels but poorly connected low- and
mean-conductivity zones. This type of structure is charac-
terized by an effective conductivity greater than the geo-
metric mean and large variations in fluid velocity.

[20] (2) DisconNected: DN field, with well-connected
low-conductivity zones such that transport occurs through
low values of conductivity. This type of structure is charac-
terized by an effective conductivity less than the geometric
mean and smaller velocity variations.

[21] (3) Multi-Gaussian: MG field, where extreme con-
ductivity values are poorly connected, while mean-
conductivity zones are well connected. Only for this struc-
ture, the effective conductivity is equal to the geometric
mean (for 2-D flow case) that is consistent with first-order
theory.

[22] The CN and DN fields were generated through a
transformation of the MG field in four basic steps: (i) the
absolute value of the MG field (zero mean, unit variance)
was calculated. This transform shifts extreme values to
become high values, and values originally close to the
mean become low values; (ii) the histogram of the values
in the field was converted back to a univariate Gaussian
distribution by mapping the CDF value at each point to a
standard normal CDF; (iii) the block size of the field was
increased such that the integral scale matched that of the
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original MG field. This provided the final DN field; (iv) the
CN field was then generated from the DN field by reflecting
the values of the DN field around the mean.

[23] In this paper, we use the numerical setup properties
shown in Figure 1 in order to explore the impact of differ-
ent �2

Y , log-conductivity structure and Pe on concentration
statistics. For the flow solution we use a domain 64IY �
48IY (IY¼ 16 m). To avoid direct boundary effects, trans-
port is simulated inside an inner domain, 8IY from upper
and lower no-flux boundaries, and 12IY away from left- and
right-side constant head boundaries. For the same numeri-
cal setup as in Gotovac et al. [2009b], inspection of the ve-
locity variance in both longitudinal and transversal
directions confirms that the boundary effects are small even
for the highest variance, i.e., �2

Y ¼ 8. In comparison, Salan-
din and Fiorotto [1998] used 4IY to reduce the boundary
effects, while Janković et al. [2003] separate flow and the
inner domain with 10IY. To achieve statistical confidence,
MC convergence tests were conducted (Appendix A). Five
hundred statistically independent realizations are consid-
ered as sufficient for concentration moments in the case of
�2

Y ¼ 1, while for �2
Y ¼ 8 the required number of realiza-

tions is 2500. Transport is simulated by releasing 400 uni-
formly distributed particles from each of the 43 sampling
volumes with instantaneous resident injection mode. Spa-
tial discretization corresponds to a scale IY=4, the same as
the sampling volume. We define this spatial discretization
based on the grid convergence analysis summarized in Ap-
pendix B. The parameter �2

Y is set up to be one or eight for
three types of log-conductivity structures [Zinn and Har-
vey, 2003] with an isotropic Gaussian variogram. Effects of
local-scale dispersion are analyzed for Pe number 100 or
10,000; the latter value is representative of advection-
dominated transport. The dispersion tensor used here is
simplified as an isotropic, velocity independent one.

[24] According to previous sections, we summarize the
numerical procedure in five steps:

[25] (1) Generate a random hydraulic log-conductivity
field with defined statistical properties using HYDRO-GEN
[Bellin and Rubin, 1996]. The Fup regularized transform
[Gotovac et al., 2007, 2009a] is used for data or function

(e.g., log-conductivity) approximations in the same multire-
solution fashion as FCT, but computationally more efficient.

[26] (2) Evaluate the Eulerian velocity and head field
using the adaptive Fup collocation method inside the nu-
merical domain with defined boundary conditions solving
the flux balance equation.

[27] (3) Evaluate particle displacement at any time step
using equation (2) with the BRWPT algorithm based on the
Runge-Kutta-Verner explicit time integration scheme.

[28] (4) Evaluate resident concentration using equation
(3).

[29] (5) Perform MC processing, which yields the statis-
tical characterization of the concentration field in space and
time.

3.4. Model Verification

[30] The numerical procedure explained in the previous
section is used to simulate conservative contaminant trans-
port in heterogeneous porous media. For the purpose of
method verification, the numerical setup used here is pre-
sented in Figure 1, while the model parameters are chosen
to be similar to those of Caroni and Fiorotto [2005]. The
random log-conductivity field is a MG one, generated using
HYDRO-GEN [Bellin and Rubin, 1996], and modeled with
an isotropic exponential variogram.

[31] We focus the verification on spatial moments and
analyze moment values along the centerline. In each rec-
tangular sampling volume, 400 particles are uniformly dis-
tributed and tracked back via a reverse particle tracking
scheme toward the source direction. The source dimension
in the longitudinal direction is selected to be L1 ¼ 2IY ,
while in the transverse it is equal to L2 ¼ 10IY , approxi-
mately being ergodic. Simulations are made for Pe ¼ 100
and 10,000, and �2

Y ¼ 1 with an constant anisotropic dis-
persion DY ¼ DX=20. The total number of MC realizations
is 1000, and derived statistical moments (mean and stand-
ard deviation) are verified with previous numerical results
[Caroni and Fiorotto, 2005].

[32] Figures 2a and 2c presents the verification of the
concentration mean developed from numerical model
results and one used in the analysis of Caroni and Fiorotto

Figure 1. Numerical setup.

SRZIC ET AL.: IMPACT OF AQUIFER HETEROGENEITY ON CONCENTRATION UNCERTAINTY

3715



[2005] for three different dimensionless times tU=IY ¼ 2,
5, and 15 along the centerline, for Pe¼ 10,000 and 100.
One can see good matching between the MC results con-
ducted and ones by Caroni and Fiorotto [2005], independ-
ently of dimensionless times selected. For larger travel
times since injection, the results obtained from the numeri-
cal procedure explained earlier are shown to be less smooth
compared to early travel times. The cause of this may be
found in an insufficient number of realizations. With an
increasing number of realizations, smoothness would
improve and reach levels similar to those of tU=IY ¼ 2.

[33] Figures 2b and 2d present verification results of the
concentration standard deviation. The bimodal feature is
still well captured independently of the Pe value. It is im-
portant to notice the bimodal concentration standard devia-
tion even for tU=IY ¼ 5 in the case of smaller Pe, for both
MC results and Caroni and Fiorotto [2005] results.

[34] To summarize, we show that our numerical proce-
dure captures all key features related to contaminant trans-

port, including bimodality in the concentration standard
deviation, which vanishes for larger travel times. It is
shown that our numerical procedure is able to balance
between advection and local-scale dispersion as key trans-
port mechanisms.

4. Results and Discussion

4.1. Effect of the Log-Conductivity Structure on
Concentration Uncertainty

[35] Although three different log-conductivity fields,
MG, DN, and CN, share the same overall spatial statistical
properties, their differences in correlation structures affect
the spatial and temporal concentration distributions, partic-
ularly in the case of high heterogeneity. We consider
Pe¼ 10,000 as representative of an advection-dominated
transport case in order to specifically analyze the influence
of the log-conductivity field and �2

Y on the first two concen-
tration moments due to stretching, squeezing, and

Figure 2. Model verification with Caroni and Fiorotto [2005]. �2
Y ¼ 1, MG field: (a) concentration

mean along centerline for tU/IY ¼2, 5, and 15, Pe¼ 10,000, (b) concentration standard deviation along
centerline for tU/IY¼ 2, 5, and 15, Pe¼ 10,000, (c) concentration mean along centerline for tU/IY¼ 2, 5,
and 15, Pe¼ 100, and (d) concentration standard deviation along centerline for tU/IY¼ 2, 5, and 15,
Pe¼ 100.
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dispersing of the concentration plume mainly due to the
advection. The analysis is performed at two sampling loca-
tions along a centerline, at 2 and 15IY from the source,
characterizing near- and far-field transport characteristics
(Figures 3a–3c).

[36] Concentration statistics under uniform average flow
are significantly influenced by heterogeneity patterns and
uncertainty related to its definition and measure. Conse-
quently, velocity statistics related to different heterogeneity
structures directly affect concentration moments and its
PDF. It is well known that low heterogeneity implies a rela-
tively uniform velocity distribution causing different non-
Gaussian fields to possess velocity statistics that do not
converge to those obtained by the MG classical field [Wen
and Gomez-Hernandez, 1998]. Hence, all transport varia-
bles including concentration statistics only differ slightly
for all three structures in the case of low heterogeneity
[Zinn and Harvey, 2003; Wen and Gomez-Hernandez,
1998]. However, larger heterogeneity is generally charac-
terized by a channeling effect, where the main portion of
contaminant mass flow is located only through the few nar-
row channels [Gotovac et al., 2009b; Janković et al., 2003,
2006]. This channeling effect involves larger velocity vari-
ability resulting in increasing the velocity variance [Zinn
and Harvey, 2003] and Lagrangian velocity correlation
[Gotovac et al., 2009b]. This is particularly true for the CN

field, where flow channels are extremely fast and narrow
having large longitudinal correlation lengths that can
occupy significantly larger domain areas than for MG and,
especially, DN fields. On the other hand, the DN field also
shows the channeling effect, but with relatively low
velocity values indicating much slower flow channels and
relatively low velocity variability even for higher heteroge-
neity. Zinn and Harvey [2003] showed by examining the
breakthrough curve (BTC) at any control plane from the
source that the solute mass is observed firstly for the CN
field, then for MG, and lastly for the DN field, implying
different early and late arrivals, as well as the peak position
for all three structures.

[37] In Figure 3a–3c we present the concentration mean
as a function of dimensionless time at two sampling loca-
tions along the centerline, separately for each log-
conductivity. Note that dimensionless time used in this pa-
per is normalized by mean velocity calculated for each par-
ticular heterogeneity structure. Zinn and Harvey [2003]
showed that this formulation of dimensionless time is dif-
ferent than real time because mean velocities are different
for each structure. For instance, mean velocities are similar
for �2

Y ¼ 1, but for high heterogeneity and �2
Y ¼ 8, CN and

DN fields have 2.5 times higher and lower mean velocity
than MG field, respectively. In the case of �2

Y ¼ 8, and
effective porosity of 0.2, the mean velocity for the MG field

Figure 3. Concentration mean and CVC for Pe¼ 10,000 at two different sampling locations 2 and 15
integral scales away from source center along centerline: (a) DN field, (b) MG field, and (c) CN field.
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is U ¼ 1:1037� 10�7m=s. In the case of the CN field, the
mean velocity value is 250% higher, while for DN it is
reduced by the same percentage. In this way, dimensionless
time represents the time needed for particle to exceed the
distance given the actual mean velocity defined by each
particular log-conductivity structure. For low heterogene-
ity, the difference in mean velocity between different log-
conductivity structures is less apparent for all sampling
locations, as has been shown in the past [Wen and Gomez-
Hernandez, 1998; Zinn and Harvey, 2003].

[38] Regardless of the heterogeneity structure, a higher
�2

Y produces a smaller concentration mean (smaller peak
value) and longer tailings. In other words, due to larger het-
erogeneity and consequently velocity variability, the plume
is more spread. Transport processes in the CN field result
in enhanced plume spreading due to the higher velocity
variations in longitudinal direction and preferential chan-
neling effects. In this case, the plume is spread more irregu-
larly creating a larger surface area between the plume and
the surrounding fluid. This increases contaminant mass
transfer driven primary by the concentration gradient. As a
consequence, a higher reduction in the mean plume peak is
observed. The mass transfer caused by local-scale disper-
sion moves mass from one streamline to the neighboring
one in a transversal direction. Transversal dispersion is
shown to be relevant for enhanced contaminant mixing,
and is related to the �2

Y as shown in Cirpka et al. [2011a].
Due to the velocity variations between neighboring stream-
lines, the plume attached to the pathway with slower veloc-
ity (e.g., immobile zone) is captured, while the rest of the
plume is driven along paths with higher velocity. This
increases the plume spreading and results in more pro-
nounced tailing effects characterizing the CN field. The CN
field results in the early first arrival and lower concentration
peak values.

[39] The DN field is characterized by a relatively larger
portion of slower transport through the low-permeable
areas, resulting in the later plume arrival compared to the
case of MG or CN structures. As expected, the MG field
positions itself between these two extreme non-Gaussian
fields. On the other hand (under same conditions), on con-
taminant plume margins, the concentration moments are
higher for higher heterogeneity, which is a result of the fact
that the plume is spread over a larger area in these time
intervals taking nonzero concentration values.

[40] Besides the concentration mean, within the same
Figures 3a–3c, we present the concentration standard devi-
ation through CVC. Although we do not present standard
deviation explicitly, our investigation through CVC leads to
the conclusion that standard deviation is also affected by
both log-conductivity structure and variance. A bimodal
feature in concentration variance is a unique property
noticed at early travel times for �2

Y ¼ 1 in all log-
conductivity structures. Our results in Figure 4 present the
difference in concentration variance for CN and DN fields
in the case �2

Y ¼ 1. We select the case with a higher Pe
value, which reduces the influence of local-scale dispersion
and highlights the influence of the conductivity structure. A
bimodal feature of the concentration variance is more appa-
rent in the case of a DN field. Velocity variations are lower
than in the case of the CN field, which results in more pro-
nounced plume overlapping between different realizations.

Also, for a purely advective case and point sampling, con-
centration variance is a function of the concentration mean
and initial concentration �2

C ¼ hCi C0 � hCið Þ [Dagan,
1982], providing an upper bound for concentration fluctua-
tions. Related to this, if the concentration mean takes val-
ues greater than C0=2, the bimodal feature is present (valid
only for pure advection). Our results for concentration
mean (Figures 3a–3c) show higher mean concentration val-
ues in the case of the DN field (even higher than C0=2),
which leads to a significant bimodal feature in the concen-
tration variance; this is in contrast to the case of the CN
field. For sampling 5IY away from the source, the bimodal
feature vanishes for both cases (CN and DN). The peak
concentration variance value is first observed for the CN
field, based on higher mean velocity values.

[41] For later travel times, the plume is further dispersed
and the concentration mean is lower. This results in
reduced concentration variance values and a disappearance
of the concentration variance bimodal feature. The bimodal
feature is not present for the higher �2

Y values for all three
types of conductivity structures, including even the closest
sampling location. This is in agreement with the results by
Caroni and Fiorotto [2005] and Tonina and Bellin [2008].

[42] The concentration coefficient of variation is pre-
sented in Figures 3a–3c as a function of travel time. As
expected, the lowest CVC values are observed in the plume
center, independently of the log-conductivity structure,
because the plume shows similar properties over different
realizations around the plume center. Contrary to this, the
concentration estimation is more uncertain at the plume
boundaries implying that advection meanders the plume
(because of velocity variability characterizing scales
greater than the source) around the center in an irregular
way, especially for high heterogeneity. By comparing three
different log-conductivity structures, CVC shows the well-
known ‘‘U’’ shape, which starts to be more skewed as the
�2

Y increases its value. The largest uncertainty level at the
plume center is observed in the case of a CN field, which is
reasonable considering the properties of concentration

Figure 4. Bimodal feature in concentration variance for
DN and CN field, �2

Y ¼ 1.
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mean and standard deviation as already explained, while
the most reliable field for concentration prediction based on
first two moments is the DN one. At the plume margins
(corresponding to the first and late arrivals), a higher uncer-
tainty level is observed in the DN field compared to the
MG and CN fields.

[43] Regardless of log-conductivity structure, by com-
paring different �2

Y , the higher log-conductivity variance
increases the uncertainty at the plume center and conse-
quently decreases it at the plume fringes (contrary to unit
�2

Y case). Regarding the plume shape and size, uncertainty
at the fringes is lower for higher �2

Y (Figures 3a–3c). If one
compares plume shape and size for two different log-
conductivity variances (�2

Y ¼ 1 and 8), the conclusions
arising from the comparison can be summarized as
follows:

[44] (1) in the case of lower �2
Y , the plume shape is much

more regular with less pronounced fringes and lenses,
while the plume size is defined by aquifer heterogeneity
resulting in different velocity values.

[45] (2) by increasing the �2
Y , velocity variations are

more pronounced. This will cause the plume to be dis-
persed over a larger area with fringes found at preferential
channels. In the case of unit �2

Y , the lowest concentration
uncertainty is observed at the plume center, and it increases
toward plume boundaries. This is explained as a conse-
quence of frequent plume overlapping from realization to
realization in the plume central part. Consequently, the
overlapping will decrease as the sampler is closer to plume
boundaries, which increases the uncertainty. The same ex-
planation is valid even for higher �2

Y .
[46] Early arrivals are occurring faster in highly hetero-

geneous media due to the existence of extremely fast
streamlines that significantly enhance plume spreading. On
the other hand, the late arrivals are characterized through
concentration moments with the strong tailing effect. This
is more pronounced for the high heterogeneity and the CN
structure due to slow (even ‘‘stacked’’) streamlines in low-
permeable areas outside of the dominant flow channels.
Generally, high heterogeneity CN fields exhibit larger dif-
ferences in the first two concentration moments implying
that connectivity patterns may have a dominant role for
concentrations statistics, as also evidenced in many field
sites (e.g., Macrodispersion Experiment (MADE)) [Zheng
et al., 2010].

[47] Sensitivity of the concentration mean and variance
to the sampling volume scale for DN and CN fields has
been analyzed (Appendix C). In general, the concentration
mean is little affected by changes in sampling volume irre-
spective of log-conductivity structure and �2

Y . By contrast,
CVC characterizing the CN field for high �2

Y is significantly
affected by the sampling volume scale, especially at the
plume fringes.

4.2. Effects of Local-Scale Dispersion

[48] In this subsection, we analyze the effects of local-
scale dispersion for all three structures considering low and
high heterogeneity and particularly the time evolution of
the local-scale dispersion impact on concentration uncer-
tainty. Since real flow and transport processes are advection
dominated, the concentration mean (especially peak) is not
significantly affected by local-scale dispersion [Andricevic,

1998; Dagan and Fiori, 1997; Fiori and Dagan, 2000].
Therefore, we focus on the CVC, which contrary to the
mean, is affected by local-scale dispersion.

[49] In general, the local-scale dispersion always acts on
the plume due to the concentration gradients, but its impact
is closely related to the contact area between a plume and
surrounding space measured by the Pe number. Advection
is a dominant transport mechanism in porous media that
stretches and meanders the plume rapidly, while local-scale
dispersion is a relatively slow process acting simultane-
ously with advection but after a certain time may have an
important influence on concentration statistics [Andricevic,
1998; Andricevic, 2008]. After some time, the impact of
local-scale dispersion and advection balance each other,
while their relationship is strongly influenced by the hetero-
geneity field (log-conductivity variance and correlation of
different log-conductivity patterns). In the random walk
context, the local-scale dispersion spreads particles from
advective streamlines to the surrounding area. In low heter-
ogeneity cases, due to relatively uniform velocity distribu-
tion, the local-scale dispersion slowly disperses a
concentration plume requiring a lot of time before it signifi-
cantly influences the concentration moments. By contrast,
the local-scale dispersion in the high heterogeneous aqui-
fers causes particles from the fast and narrow advective
channels [Cirpka et al., 2011a] to transfer to the wider sur-
rounding area with very small velocities resulting in a
much faster influence on the concentration statistics. To the
best of our knowledge, there is no reliable evidence about
time evolution of local-scale dispersion impact in highly
heterogeneous porous media for different non-Gaussian
fields.

[50] In Figures 5a–5c, we demonstrate the influence of
local-scale dispersion on CVC in the case of three heteroge-
neity structures for both sampling positions (2 and 15IY at
centerline far from the source) through the time. The local-
scale dispersion acts as a reducing mechanism that dis-
perses the plume intensively over the aquifer area and
results in reducing uncertainty. Close to the source area,
the influence of the local-scale dispersion on CVC is not
visible due to the fact that the dispersion process needs
time to evolve and to reduce higher concentration gradients
over the plume. Farther from the source (at 15IY), the local-
scale dispersion effect is more pronounced. According to
the results presented in Figures 5a–5c, the plume center
is still not affected by local-scale dispersion at this position
in the case of lower �2

Y . The solid curve presenting
the almost pure advective case (Pe¼ 10,000) fits well
symbols presenting strong local-scale dispersion character-
ized by Pe¼ 100. For increased �2

Y , one can see higher val-
ues of concentration uncertainty in both the central
and fringe parts of the plume. Advection strictly increases
the concentration uncertainty independently of the
sampling position while local-scale dispersion acts to
decrease it.

[51] Further evidence of time evolution of the local-scale
dispersion impact is presented in Figures 6a–6f for different
dimensionless times (5, 10, 20, and 35) along the center-
line. For unit �2

Y , the local-scale dispersion acts very slowly
and after 20 dimensionless times (related to 20 integral
scales in terms of mean velocity) starts to show some influ-
ence on the concentration uncertainty for the CN field,
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while in an MG field, the CVC stays almost unaffected by
local-scale dispersion even after 20 dimensionless times
(Figures 6a, 6c, and 6e). Furthermore, the DN field stays
unaffected by local-scale dispersion for a long time (35
dimensionless) after injection. Note that the concentration
peak is especially weakly dependent on local-scale disper-
sion having a CVC value between one and two for all three
structures. We can conclude that differences between three
heterogeneity structures are not so significant with respect
to the influence of local-scale dispersion, and advection
remains as a dominant transport mechanism for low hetero-
geneity [e.g., Dagan and Fiori, 1997; Rubin, 2003; Tonina
and Bellin, 2008].

[52] On the other hand, Figures 6b, 6d, and 6f present a
significant influence from the local-scale dispersion for
highly heterogeneous porous media �2

Y ¼ 8
� �

. In this case,
the local-scale dispersion reduces concentration uncertainty
rapidly even close to the source. At a far distance and later
times, local-scale dispersion with Pe¼ 100 considerably
decreases the uncertainty level and reduces the CVC to
between one and two for all three fields. The local-scale dis-
persion has the most profound effect in the CN field, where

connectivity patterns strongly influence the transport mech-
anisms [Knudby and Carrera, 2005]. In the case of a CN
field, the preferential fast flow channels (created by con-
nected high log-conductivity values) spread a plume rapidly
over a larger space, drastically extending the contact area
around and within the plume, thereby enhancing local-scale
dispersion impact. In this case, the local-scale dispersion
effect is already visible at the dimensionless time equal to
five (Figure 6e). For the MG field, the local-scale dispersion
effect becomes visible later, at 10 dimensionless time, while
in the case of a DN field (Figure 6b) its influence becomes
visible only after 20 dimensionless times from the injection.

4.3. Higher-Order Concentration Moments

[53] Recent studies of concentration PDF have shown
that it is asymmetric in both spatial and temporal domains
[Bellin and Tonina, 2007; Cirpka et al., 2011b; Schwede et
al., 2008]. This implies that the first two moments (concen-
tration mean and CVC) do not provide sufficient informa-
tion for characterizing the concentration PDF, stressing the
need for higher-order concentration moments. Furthermore,
the Beta distribution (characterized by the first two

Figure 5. CVC for Pe¼ 10,000 (lines) and Pe¼ 100 (symbols) at two different sampling locations 2
and 15 integral scales away from source center along centerline in case of (a) DN field, (b) MG field,
and (c) CN field.
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moments only) has been recommended as a suitable
approximation for quantifying concentration fluctuations
[Bellin and Tonina, 2007; Caroni and Fiorotto, 2005].

[54] In this section we illustrate the concentration skew-
ness and kurtosis for CN and DN log-conductivity fields,
with �2

Y ¼ 1 and 8 and make a comparison with skewness

Figure 6. CVC for Pe¼ 10,000 (dashed lines) and Pe¼ 100 (solid lines) at seven different sampling
locations 2, 5, 10, 15, 20, 30, and 35 integral scales along centerline for selected times 5, 10, 20, and 35
dimensionless, in case of (a) DN field, �2

Y ¼ 1, (b) DN field, �2
Y ¼ 8, (c) MG field, �2

Y ¼ 1, (d) MG field,
�2

Y ¼ 8, (e) CN field, �2
Y ¼ 1, and (f) CN field, �2

Y ¼ 8.
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and kurtosis as inferred from the Beta distribution that is
obtained using the concentration mean and variance as cal-
culated from MC statistics. The results for concentration
skewness are presented in Table 1, while kurtosis values
are shown in Table 2.

[55] At the plume center, higher �2
Y leads to highly

skewed distributions, while the opposite is true at the plume
fringes. Irrespective of the Pe value, the local-scale disper-
sion has not sufficiently evolved for the nearest sampling at
the plume center, and normalized concentration values
higher than 0.5 are most frequently observed (negative
skewness values). Contrary to the DN field, concentration
PDF characterizing the CN field is more skewed toward
zero concentration values for a purely advective case due
to the frequent number of zero concentration values since
transport occurs in relatively narrow channels. For domi-
nant local-scale dispersion influence (Pe¼ 100) and �2

Y ¼
8 characterizing the CN field, we notice lower skewed PDF
in comparison to the DN case (in plume core for sampling
15IY from source). To explain this we must return to the
previous section. According to Figures 6b and 6f, local-
scale dispersion characterizing the CN field is much more
pronounced than in the DN case. For �2

Y ¼ 8 local-scale
dispersion is so dominant that a generalization of the log-
conductivity structure and its influence on CVC and con-
centration skewness cannot be accepted.

[56] As the distance from source increases, negative
skewness values disappear. Also, due to the meandering

effect at the plume boundaries, skewness increases and is
positive. Concentration distribution at the plume fringes in
the case of the CN field is characterized as less skewed
than for the DN field due to a more pronounced tailing
effect. The Pe value does not influence skewness signifi-
cantly except for late travel time and the farthest sampling
in the case of the CN field for a high heterogeneity case.
Concentration kurtosis is influenced by the log-
conductivity structure and local-scale dispersion in a simi-
lar manner as skewness. In peak values and for different
�2

Y , the highest differences in kurtosis due to the local-scale
dispersion are noticed for the CN structure. For early travel
times, local-scale dispersion does not influence concentra-
tion kurtosis values (for unit �2

Y ), which are similar for both
CN and DN structures, especially in the plume core. At the
plume fringes we note that the discrepancies between kur-
tosis values characterizing different log-conductivity struc-
tures are increasing in the same way as shown for skewness
and CVC. This phenomenon is more pronounced as the �2

Y
increases.

[57] Comparison of MC skewness and kurtosis with the
ones obtained from the Beta distribution leads to the con-
clusion that Beta can accurately define both the concentra-
tion skewness and kurtosis for the samplings close to the
source, even for �2

Y ¼ 8 and the CN field, within the whole
time interval analyzed in the study. For sampling 15IY

away from the source, however, Beta provides a close rep-
resentation only if �2

Y ¼ 1: With a higher �2
Y , our results

Table 1. Concentration Skewness Comparison Between MC Results and Ones Obtained From Beta Distribution for CN and DN Log-
Conductivity Structures, Pe¼ 100 and 10,000, Sampling Locations 2IY and 15IY From Source and Three Different Randomly Selected
Snapshots

Sampling Volume 2IY Away From Source Sampling Volume 15IY Away From Source

tU/IY¼ 1 tU/IY¼ 2 tU/IY¼ 8 tU/IY¼ 10 tU/IY¼ 15 tU/IY¼ 25

Pe 100 10,000 100 10,000 100 10,000 100 10,000 100 10,000 100 10,000

Log-conductivity
variance¼ 1

DN MC �0.11 0.20 �0.88 �0.90 7.75 7.47 2.98 3.23 1.61 1.45 6.05 5.92
Beta distribution �0.11 0.18 �0.88 �0.90 8.08 7.32 2.99 3.26 1.61 1.47 6.16 5.96

CN MC 0.40 0.63 �0.55 �0.51 3.23 3.06 2.90 2.75 1.97 1.72 4.25 4.00
Beta distribution 0.41 0.65 �0.53 �0.51 3.25 3.03 2.93 2.86 1.89 1.73 4.09 3.92

Log-conductivity
variance¼ 8

DN MC 1.21 1.33 0.77 0.82 1.64 1.66 4.20 4.59 3.89 3.85 4.22 5.10
Beta distribution 1.22 1.34 0.79 0.83 1.64 1.66 4.09 4.41 3.80 3.78 3.97 4.53

CN MC 2.23 2.35 2.26 2.22 2.40 2.33 4.17 5.94 3.57 7.54 5.14 9.19
Beta distribution 2.29 2.39 2.27 2.22 2.37 2.33 3.92 5.73 3.70 6.10 3.99 6.98

Table 2. Concentration Kurtosis Comparison Between MC Results and Ones Obtained From Beta Distribution for CN and DN Log-
Conductivity Structures, Pe¼ 100 and 10,000, Sampling Locations 2IY and 15IY From Source and Three Different Randomly Selected
Snapshots

Sampling Volume 2IY Away From Source Sampling Volume 15IY Away From Source

tU/IY¼ 1 tU/IY¼ 2 tU/IY¼ 8 tU/IY¼ 10 tU/IY¼ 15 tU/IY¼ 25

Pe 100 10,000 100 10,000 100 10,000 100 10,000 100 10,000 100 10,000

Log-conductivity
variance¼ 1

DN MC 1.20 1.22 1.97 2.03 65.87 61.98 10.52 12.44 4.32 3.58 45.77 41.07
Beta distribution 1.17 1.19 1.95 1.99 71.42 58.42 10.49 12.42 4.22 3.62 45.62 40.82

CN MC 1.36 1.58 1.46 1.42 11.87 10.69 10.72 9.35 6.09 4.47 23.51 18.83
Beta distribution 1.33 1.58 1.41 1.40 11.93 10.49 10.85 9.90 5.57 4.46 20.79 17.71

Log-conductivity
variance¼ 8

DN MC 2.66 2.98 1.81 1.89 4.05 4.18 21.91 25.02 20.14 18.30 23.59 31.08
Beta distribution 2.67 2.97 1.80 1.88 4.03 4.12 20.43 22.82 18.73 17.48 20.78 24.88

CN MC 6.92 7.59 7.05 6.88 7.57 7.29 29.29 45.28 20.86 75.48 51.67 118.06
Beta distribution 7.04 7.64 6.99 6.74 7.33 7.16 23.07 42.35 21.53 47.21 25.02 63.01
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suggest that the Beta distribution provides an accurate rep-
resentation of the concentration PDF only for early times.

4.4. Concentration Statistics

[58] Concentration statistics rely on the first two concen-
tration moments for low heterogeneity since Caroni and
Fiorotto [2005] and Tonina and Bellin [2008] showed that
a Beta distribution, under certain circumstances, can pro-
vide a good approximation of the concentration PDF for
the MG field and log-conductivity variance up to two. For a
high heterogeneity case, however, the concentration PDF
depends on higher-order moments. Here we show and
extend the potential usage of the Beta distribution as repre-
sentative of the concentration PDF, for CN and DN log-
conductivity structures; however, it seems necessary to
include higher-order concentration moments in order to
properly capture concentration fluctuations. Yee [2009]
confirmed that under different conditions in transport media
characterized by turbulence (in air tunnels and water chan-
nels), higher-order concentration moments can be defined
as a function of the first two concentration moments only,
by taking advantage of the moment collapse feature. One
important question is whether it is possible to obtain
moment collapse for different heterogeneity structures and
Pe numbers in porous media. Moment collapse enables one
to evaluate only the first two concentration moments in
order to obtain all the needed higher-order moments and
finally the complete concentration PDF. Yee [2008] also
found that in turbulent diffusion, the usage of three or two-
parameter PDFs such as a clipped gamma or exponential is
useful for defining the full concentration PDF. We can con-
clude that our presented results quantify the influence of
advection and local-scale dispersion under different condi-
tions of heterogeneity in aquifers and can serve as a solid
base for exploring moment collapse and the concentration
PDF, which is a topic of ongoing research. Also, the analy-
sis of concentration mean and CVC, complemented by
computations of the skewness and kurtosis, provide a solid
foundation for further characterizing concentration fluctua-
tions and the associated uncertainty.

[59] On the other hand, the concentration PDF accompa-
nied by aquifer information is a key element for risk assess-
ment [Andricevic et al., 2012]. Although a PDF contains all
the information about spatial and temporal concentration
values, regulatory policies use only maximum average con-
centration or reference dose values together with prescribed
exposure duration as an input in human health risk assess-
ment. Because of the concentration stochastic nature in het-
erogeneous aquifers, it is important to complete the
information about concentration fluctuations. When this is
aligned to aquifer characterization data, it will enable one
to describe the necessary input for improving reliable esti-
mations of risk probability. The statistical moment analysis
presented in this paper allows a better understanding of dif-
ferent Pe values, log-conductivity variance values, and dif-
ferent spatially correlated structures and their influence on
the concentration characterization used in risk assessment.

5. Conclusions

[60] In this paper, we analyze the influence of three spa-
tial log-conductivity structures (MG and two non-Gaus-

sian) with local-scale dispersion on the first two
concentration moments and extend the analysis to skewness
and kurtosis. We particularly focus on the influence of aq-
uifer heterogeneity and temporal evolution of the local-
scale dispersion impact considering a coefficient of varia-
tion as well as skewness and kurtosis as a measure of
uncertainty. Although the research on concentration uncer-
tainty has been extensive over the past decades, new results
from this study can be helpful in determining uncertainty in
in situ cases, recognizable by their distinctive properties
that deviate from theoretical MG conductivity fields and in
addition exhibit relatively high variability in hydraulic
properties.

[61] Based on this work our general conclusion is that
effect of local-scale dispersion on plume dilution and mix-
ing over time depends on the log-conductivity structure and
the degree of aquifer heterogeneity. A few specific con-
cluding points we summarized as follows:

[62] (1) The main consequences of high heterogeneity
are significant reduction in the concentration peak, short-
ened first arrival due to the higher velocity contrast, charac-
terizing preferential channels, and enhanced tailing effect
in BTCs.

[63] (2) Increasing heterogeneity yields higher uncer-
tainty around the plume center and lower uncertainty at the
plume edges, contrary to the case characterized by lower
aquifer heterogeneity, due to different properties of
plume’s shape and size for low and high heterogeneity.

[64] (3) Although the existence of preferential channels
causes more erratic plume shape, if accompanied by aquifer
heterogeneity it contributes to enhanced plume mixing
resulting in reduced concentration uncertainty (only for
lower Pe values).

[65] (4) Inspection of concentration skewness and kurto-
sis indicated and confirmed the asymmetric and skewed
shape of the concentration PDF. The total number of con-
centration moments required for accurate quantification of
the plume fluctuations should be investigated further.

[66] (5) Beta distribution skewness and kurtosis have
been shown to be in good agreement with MC results in the
case of low heterogeneity; with increasing �2

Y , the diver-
gence of skewness and kurtosis between simulations and
the Beta model is more pronounced.

[67] Based on the results presented in this paper, a future
challenge and possible extension of the paper would be to
check the validity of the partially successful application of
the Beta distribution [Bellin and Tonina, 2007; Schwede et
al., 2008] for the low/mild and high heterogeneity cases.
The current results for high heterogeneity cases indicate the
potential importance of knowing the higher concentration
moments in order to establish a potential relationship with
lower-order ones. This relationship will lead one to a com-
plete definition of the concentration PDF (based on infor-
mation solely about lower-order moments), which is
essential information for the risk assessment of ground-
water contamination.

Appendix A: MC Convergence

[68] For analyzing higher-order normalized concentra-
tion moment convergence, we use the numerical setup as
presented in Figure 1. MC convergence tests for
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concentration mean and CVC were conducted, as well as
for higher-order moments (skewness and kurtosis), for
�2

Y ¼ 1 and 8. The CN field with a higher velocity variance
is chosen for illustration. Starting from 10, the number of
realizations is increased until convergence in moment val-
ues is achieved. For this purpose we select two random
samplings and dimensionless snapshots. The results of the
MC convergence are presented later.

[69] First, we present MC convergence for �2
Y ¼ 8. The

number of realizations increases until an asymptotic rela-
tive ratio (ratio between nth moment value calculated from
NR realizations and nth moment value calculated for high-
est number of realizations (2500)) is achieved. In Figures
A1a–A1g, we present the results of MC convergence for

Pe¼ 100 and 10,000, CN field and �2
Y ¼ 8. Sampling posi-

tions and snapshots are selected to capture the plume core
as well as plume fringes due to the different convergence
requirements. It can be seen that for all four concentration
moments (mean, CVC, skewness, and kurtosis), 2500 trans-
port realizations are sufficient. The concentration mean
(Figures A1a and A1b) shows increasing discrepancies to-
ward plume boundaries, but even so, the differences
between 2200 and 2500 MC are small irrespective of the
Pe value.

[70] CVC (Figures A1c and A1d) is shown to be stable
even for 1500 MC realizations (differs less than 1% con-
trary to 2500 MC). A greater difference between plume
core and peripheral part has not been observed. In contrast

Figure A1. MC convergence study results in case of �2
Y ¼ 8, CN field; (a) concentration mean,

Pe¼ 100, (b) concentration mean, Pe¼ 10,000, (c) CVC, Pe¼ 100, (d) CVC, Pe¼ 10,000, (e) concentra-
tion skewness, Pe¼ 100, (f) concentration skewness, Pe¼ 10,000, (g) concentration kurtosis, Pe¼ 100,
and (h) concentration kurtosis, Pe¼ 10,000.
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to CVC, concentration skewness (Figures A1e and A1f) is
shown to be higher for a number realizations less than
1000, but for 2000 MC realizations, an approximately con-
stant value is reached. As expected, concentration kurtosis
(Figures A1g and A1h) is shown to be most demanding,
especially at early and late times. Regardless, the results
show stability between 2200 and 2500 MC realizations. At
the plume core, differences are less than 0.5%; for early
and late arrivals these differences increase but are still less
than 3%.

[71] In the case of �2
Y ¼ 1, 500 MC realizations are

shown to be sufficient even for the highest order moments,
skewness, and kurtosis. The results are presented in Figures
A2a–A2g.

Appendix B: Heterogeneity Grid-Scale Influence

[72] In this section, we compare the first two concentra-
tion moments as the mean and CVC, for two different sets
of simulations, conducted for both IY/8 and IY/4 heterogene-
ity scales. Our intention was to follow previously published
results ; for example, Ababou et al. [1989] gave grid criteria
�x=� � ð1þ �2

Y Þ
�1 ( x presents the mesh size or the heter-

ogeneity grid, while � denotes the heterogeneity correlation
scale) for simulating transport in 3-D heterogeneous porous
media. Along these lines, de Dreuzy et al. [2007] use 10
grid cells per correlation length for �2

Y up to 9, while Salan-
din and Fiorotto [1998] use 8 grid cells per correlation
length. In the work by Meyer and Tchelepi [2010], 16 grid

Figure A2. MC convergence study results in case of �2
Y ¼ 1, CN field; (a) concentration mean,

Pe¼ 100, (b) concentration mean, Pe¼ 10,000, (c) CVC, Pe¼ 100, (d) CVC, Pe¼ 10,000, (e) concentra-
tion skewness, Pe¼ 100, (f) concentration skewness, Pe¼ 10,000, (g) concentration kurtosis, Pe¼ 100,
and (h) concentration kurtosis, Pe¼ 10,000.
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cells per correlation length are used to characterize the het-
erogeneity field and solve the flow problem for �2

Y up to 4.
[73] We conducted a grid convergence study for the MG

field and �2
Y ¼ 8, with Pe¼ 10,000. For these parameters

1000 flow and transport realizations were generated using
two discretization levels, IY/8 and IY/4.

[74] In Figure B1a we present concentration mean and
CVC for two different sampling locations along the center-
line and compare two different heterogeneity scales, IY/8
and IY/4, for the sampling volume IY/4. One can see almost
identical moment values near the plume center. Fluctua-
tions are visible for a sampling location 15IY away from the
source, presumably caused by an insufficient number of
realizations. In Figure B1b, we did the same but using a
smaller sampling volume equal to IY/8. Moment values for
the smallest sampling volume IY/32 are shown in Figure
B1c. As expected, results for CVC are predominantly influ-
enced by sampling volume. Some differences in CVC

between the two heterogeneity grids are observed as one
approaches the plume boundaries. As the sampling volume
increases, this difference increases (Figures B1b and B1c).
Finally, the earlier observations are consistent with the

results presented by Gotovac et al. [2009a, Figure 12]
where the longitudinal and transversal Eulerian velocity
variance is shown as a function of log-conductivity resolu-
tion. For the MG field and �2

Y ¼ 2, discrepancies between
n¼ 4 and 8 (number of grid cells per correlation length) are
negligible. For �2

Y ¼ 8 the difference is around 4.5% for
both longitudinal and transversal velocity components.

Appendix C: Influence of Sampling Volume on
First Two Concentration Moments for DN and CN
Log-Conductivity Structures

[75] For this purpose, we use our numerical simulations
and extend the sets with two additional sampling volumes
IY/2 and IY/8. To avoid the mixing caused by local-scale dis-
persion at the same time, only the case with Pe¼ 10,000 is
considered. It is shown in Figures C1a–C1d that the impact
of the sampling volume on concentration mean at the plume
center can be neglected for both DN and CN fields, for �2

Y ¼
1 and 8. Moving toward plume fringes some differences are
visible in the higher �2

Y case. In contrast to the mean, CVC is
significantly affected by the sampling volume as already

Figure B1. Heterogeneity grid convergence study for �2
Y ¼ 8, MG field, Pe¼ 10,000, NR¼ 1000, for

two sampling locations 2IY and 15IY away from source centre along centerline; (a) heterogeneity scale
IY/8 and IY/4 with sampling size �¼ IY/4, (b) heterogeneity scale IY/8 and IY/4 with sampling size
�¼ IY/8, and (c) heterogeneity scale IY/8 and IY/4 with sampling size �¼ IY/32.
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shown for the MG field and small �2
Y [Andricevic, 1998;

Tonina and Bellin, 2008]. As one moves away from the
plume center, the impact of the sampling volume further
influences the concentration CVC. CVC obtained in the CN
field is shown to be more sensitive to the sampling volume
at the plume core than in the case of the DN field.
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