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Abstract

In this thesis two topics of the beam theory are considered. The first of them is

concerned with the linear Timoshenko beam theory and within it a new interpolation

called the linked interpolation has been proposed. This interpolation is derived from

the exact solutions of the Timoshenko beam differential equations and therefore results

in the finite element giving the exact solutions in linear analysis. The second topic is

concerned with the non–linear geometrically exact beam theory of Reissner and Simo.

Within this theory another interpolation is proposed; the non–linear configuration–

dependent interpolation. In this work a particular form of the configuration–dependent

interpolation is derived which coincides with the linked interpolation in case when

displacements and rotations become small, or in other words, in linear analysis. Both

of these proposed interpolations are given in a general form for an arbitrary number

of nodes per element. In order to conduct the numerical analysis, a new non–linear

2D beam finite–element computer code has been created. The proposed interpolation

is free of shear–locking thus having the potential to be used in various problems in

material non–linearity where higher–order quadrature may be needed.

Key words: Finite element method, 2D beam theory, linear analysis, linked inter-

polation, configuration–dependent interpolation, non–linear analysis.
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Sažetak

U ovoj disertaciji obradena su dva poglavlja gredne teorije. Jedno poglavlje se tiče lin-

earne Timošenkove gredne teorije u okviru koje je predložena nova interpolacija koja

polazi od točnih rješenja diferencijalnih jednadžbi problema te samim time rezultira

konačnim elementima s točnim rješenjima u linearnoj analizi. Vezana interpolacija je u

radu predstavljena na dva načina. Prva formulacija predstavlja interpolaciju ovisnu o

materijalnim karakteristikama nosača (nazvana problem–dependent interpolacija) koja

slijedi iz diferencijalnih jednadžbi uz uvodenje svih rubnih uvjeta. Druga formulacija

predstavlja interpolaciju neovisnu o materijalnim karakteristikama, stoga je nazvana

problem–independent interpolacija. Za obje formulacije je pokazano da daju točnu ma-

tricu krutosti koja je poznata i dana u literaturi.

Drugo poglavlje obuhvaća nelinearnu grednu teoriju u okviru koje je obradena Reiss-

nerova gredna teorija velikih pomaka i velikih rotacija te je predložena nova interpo-

lacija koja je nazvana interpolacija ovisna o konfiguraciji. U ovome radu poseban

oblik interpolacije ovisne o konfiguraciji je izveden, kojem je granični slučaj u linearnoj

teoriji upravo vezana interpolacija. Predložene interpolacije su dane u generaliziranom

obliku za proizvoljan broj čvorova grednog konačnog elementa. Za potrebe analiza

koje su se provele u numeričkom dijelu ovog rada sastavljen je algoritam za nelin-

earni proračun konstrukcija sastavljenih od ravninskih konačnih grednih elemenata u

programskom paketu Wolfram Mathematica te je on u potpunosti autorsko djelo dok-

toranta. Predložena interpolacija je otporna na shear–locking efekt te ima potencijala

za korǐstenje u različitim problemima povezanim s materijalnom nelinearnošću gdje je

potrebna integracija vǐseg reda.

Ključne riječi: Metoda konačnih elemenata, ravninska gredna teorija, linearna

analiza, vezana interpolacija, interpolacija ovisna o konfiguraciji, nelinearna analiza.
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1 Introduction

This thesis is divided into five major chapters. After a brief overview of the field given

in the first chapter, the second chapter deals with the linear Timoshenko beam theory

within which the new interpolation, called the linked interpolation is proposed. Beam

is considered to be a 3D body with two of its dimensions considerably smaller than the

third – the longitudinal dimension along which the beam has a certain length.

Generally, linear beam theory can be divided into Euler–Bernoulli and Timoshenko

beam theory depending on the thickness of the beam. The Euler–Bernoulli beam

theory is rather simple, it omits shear deformations of the beam cross–section, thus

making the displacement and the rotation field dependent quantities. Also, this theory

assumes that cross–section remains planar and orthogonal to the deformed line of the

beam. On the other hand, the Timoshenko beam theory includes shear deformations

of the beam cross–section and in this way makes the rotational and displacement field

independent of one another. When talking about the Timoshenko beam problem, it

should be stated that this is one of the classic problems in elasticity that has attracted

a widespread attention owing to its obvious usefulness in practical engineering design

as well as simplicity in finite–element implementation including generalisation in non–

linear analysis. In contrast to many other problems in computational mechanics and

structural engineering, the Timoshenko beam problem is relatively simple, its behavior

well understood and its closed-form solution widely reported [29].

When this solution is to be used in large–scale structural problems it becomes of

interest to express it in terms of a set of basic unknown parameters that are appropri-

ate for application of a particular numerical method. These unknown parameters are

usually taken to be the displacement and rotation vectors at chosen nodal points, and

and in this particular case we talk about interpolating the problem solution for dis-

placement and rotation fields exactly. Important thing to mention here is that usually

interpolations are not exact, since they represent only numerical approximation of the

unknown field.

Such exact interpolation that provides exact solution in linear analysis has been

widely reported [25, 30, 31, 39, 40] and often praised for automatically eliminating

shear–locking [39, 41]. Closer inspection reveals that this interpolation can take a

number of forms, from highly coupled one in which the displacement and the rotation

field depend on the nodal displacements and rotations as well as the material, geomet-

ric and loading data [27, 30, 31, 40] to a completely uncoupled interpolation of the
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displacement and the rotation fields [20]. Tessler and Dong in [39] have studied this

plurality of interpolation choices that lead to the same answer and have introduced a

family of virgin elements with presumed independent interpolation of the rotation and

the displacement field. Next, Tessler and Dong [39] deal with a family of constrained

elements in which a number of internal degrees of freedom is eliminated by reducing

the shear strain in the element to a certain theoretically justified lower order, leading

to the interdependent interpolation.

In the first chapter we introduce the linked interpolation that can be presented as the

problem–dependent interpolation or the problem–independent interpolation. The first

term is used because of the dependence of the interpolation on the material, geomet-

ric and loading characteristics and the second term if all the material and geometric

characteristic as well as the loading parameters are absent from the interpolation func-

tions. In a numerical part of the second chapter a problem–independent interpolation

has been considered depending on the relation of the number of the nodes with trans-

lational degrees of freedom towards the number of the rotational degrees of freedom. It

has been shown that, in the case when the nodes for the rotational degrees of freedom

match those of the displacement degrees of freedom, a particularly elegant form (both

mathematically and computationally) is obtained. This result is here presented in a

general form of which some of the known linked interpolations reported in the literature

[41] have been shown to be the special cases.

When faced with such a number of interpolation choices with all of them leading

to the exact solution, it is quite natural to take the one with the smallest number of

unknown parameters and implement it into a numerical procedure. However, in certain

problems, we may wish to have interpolation that is free from the problem parame-

ters, e.g. when handling materially non–linear problems. In geometrically non–linear

problems, extra degrees of freedom are also very useful in describing departure from

the shape of the deformation in linear case.

The third chapter of the thesis deals with the non–linear beam theory of Reissner

[32] and Simo [33] that has provided the basis for many of the finite element formula-

tions for 3D beams [9, 17, 21, 36, 43] and many others. The geometrically exact theory

provides the relationship between the configuration and the adopted strain measures

that are fully consistent with the virtual work principle and the differential equations

of motion regardless of the magnitude of the displacement, rotation or strains involved

[32].
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If a standard Lagrangian interpolation is applied to the total or incremental rotation

vector or the infinitesimal change of the rotation matrix, a certain problem of non–

objectivity of the strain measures arises. In their work [18] Jelenić and Crisfield propose

a strain–invariant and path–independent, geometrically exact isoparametric 3D beam

element of arbitrary order to overcome this problem. The essence of this formulation is

the interpolation of the current local rotations. Even though the proposed method is

different from the conventional approaches [9, 17, 21, 34, 37], authors further introduce

generalised shape functions that enables the method to take a similar form to the ones

of the conventional approaches mentioned.

A different approach is taken by Borri and Bottasso in [4]. This approach aims at

resolving a more general type of non–objectivity of the numerical results with respect

to the chosen reference line. Authors have named the interpolation introduced therein

a helicoidal interpolation that enables interdependence between the rotation and the

displacement field in a way that the rotations of the considered beam cross–section gen-

erate corresponding displacements of the reference line. The formulation proposed is

quite different from the classical beam formulations based on polynomial interpolations

of the independent field. The authors resolve the constant strain problem analytically

to derive appropriate shape functions. The proposed methodology results in the same

interpolation functions for the rotation and the displacement field which are also iden-

tical to the generalised interpolation for rotations in the work of Jelenić and Crisfield

[18]. This helicoidal formulation, however, is applicable to two–noded elements only

and the given methodology is strictly limited to that case.

The third chapter of this thesis synthesises this two [4, 18] independent formulations

for 3D geometrically exact non–linear beams of which each has a certain anomaly. The

approach proposed here extends the results of the second formulation [4] to multi–

noded elements by applying the methodology of the first formulation [18] resulting in a

configuration–dependent interpolation proposed here and given for the position vector

for 3D beam elements of arbitrary order. As the name states, this interpolation uses

the current deformed configuration to interpolate the current position of the reference

line of the beam.

We will show that for linear problems the proposed configuration–dependent inter-

polation may easily take a form which reduces to the linked interpolation and that, for

the two–noded non–linear elements, it is equivalent to the helicoidal interpolation of

Borri and Bottasso. In this way we obtain a very elegant form that binds the linear

and the non–linear analysis with the family of the same interpolation functions.
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Finite element method, used in this work, is a method that allows us to describe and

analyse mechanical problems numerically [42]. It is based on dividing continuum into

segments that are called finite elements, each element has two or more nodal points

with at least two of them at the boundaries of the element. Displacements and rota-

tions of the nodal points present basic unknown parameters of the problem considered

in which the finite elements are of the beam type. Displacements and rotations between

the nodes are approximated by interpolation functions. Together with the kinematic

and constitutive equations as well as the applied loading, the problem is presented in

a variational form leading to the system of discrete equations from which the basic

unknown parameters of the system can be obtained.

The finite element method has an approximate character that stems from the inter-

polation functions introduced, hence the accuracy of the calculation highly depends on

the chosen interpolation functions. Standard procedure [34] uses the same order La-

grangian polynomials to describe the unknown displacement and rotation field leading

to the numerical anomaly known as the shear locking [3]. The shear strain is defined

by the theory as a difference between the derivative of the lateral displacement with

respect to the length co–ordinate and the rotation of the cross section. With equal–

order Lagrangian interpolation, it is impossible to consider the state of pure bending

and obtain the solution with no shear strains. The cure for this anomaly is the widely

used reduced integration [42] leading to underintegration of some elements of the stiff-

ness matrix. The linked interpolation and the configuration–dependent interpolation

proposed here do not produce such numerical anomalies.

The forth chapter consists of some numerical tests to assess the performance of these

elements against the elements with Lagrangian or linked interpolation.

Each of these chapters of the thesis will have the short introduction before the

problem is exposed. Joint conclusion of the linear and non–linear analysis will be given

at the end of the thesis in the forth chapter.
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2 Static linear analysis of 3D thick beam elements

and linked interpolation of arbitrary order

2.1 Overview of the finite element procedures in linear analysis

The standard application of the finite–element method to Timoshenko beam theory

assumes independent approximation for the displacement and the rotation field using

a polynomial interpolation of the same order [41, 3], e.g

u(x1) =
N∑
i=1

Ii(x1)ui, θ(x1) =
N∑
i=1

Ii(x1)θi, (1)

where 0 ≤ x1 ≤ L is the length coordinate of the beam centroidal axis, u(x1) is the

displacement field, θ(x1) is the rotation field, (ui, θi) are the unknown nodal displace-

ments and rotations and Ii(x1) are the Lagrangian polynomials of order N − 1 for an

N − noded element.

The Timoshenko beam theory assumes that in the deformed state, the cross–sections

are not necessary orthogonal to the centroidal axis of the beam. To simplify represen-

tation, in Figure 2.1 this is shown for a 2D case.

 

dv
dx

x  ,v

x ,u

MS

undeformed beam

deformed beam

dv
dx

v

Timoshenko

beam

1

2

1

1

Figure 2.1: Timoshenko beam.

As it can be seen, an additional rotation γ exists as a result of the shear forces which

cause slipping of the cross–section. This can be described by the following equation

θ(x1) =
dv

dx1

− γ, (2)
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where v is the vertical displacement of the point on the axis, θ(x1) is the rotation of

the cross–section and γ is the shear angle.

The standard interpolation given by (1) imposes a non–physical constraint between

the displacement and the rotation field which becomes exceedingly prominent in the

problems of thin beams leading to completely wrong results. This problem is known

as the shear locking and is usually eliminated by using the so–called uniformly reduced

integration [3]. This means that functions are integrated using less sampling points

than needed leading to under–integration of some elements of stiffness matrix. Pre-

sented in this way, the reduced integration seems like just a mathematical trick that is

used to compute the stiffness matrix and the internal force vector in an inaccurate way.

Justification for this trick becomes apparent when the problem is formulated using the

Hellinger–Reissner functional with appropriate interpolation for the displacement, ro-

tation and strain fields [3]. This technique applies to the correction of the stiffness

matrix only and not to the non-physical interpolation of the displacement and the ro-

tation fields.

An alternative approach is utilised in [30, 40], where the appropriate polynomial

distribution for the displacement and the rotation field are sought from the condition

that the finite–element solution should coincide with the exact solution. The theory–

induced dependence of the lateral displacement field on the cross–sectional rotations is

now inherited by the finite–element interpolation, the resulting interpolation is said to

be field consistent [40] and is explicitly given in [30] and [40]. The resulting stiffness

matrices therefore coincide with the results of the engineering thick beam theory pre-

sented in [29] but, in addition, these references also give the exact field distribution,

which in turn provides unique results for the strain measures and the stress resultants

irrespective of whether they are obtained from the equilibrium equations or the con-

stitutive equations.

For the Timoshenko beam theory considered here, such a field–consistent interpola-

tion is necessarily dependent on the cross–sectional material and geometric properties

and in [41] an alternative interpolation is presented which is independent of the prob-

lem parameters at the expense of introducing an additional internal degree of freedom.

Such a plurality of interpolation choices leading to the same answer is studied further

in [39], where a family of so–called virgin elements is introduced, in which indepen-

dent interpolation for the rotation and the lateral displacement field is presumed at

the outset with the interpolation for the rotation field. In [31] such an interpolation

is called the consistent interpolation. A family of constrained elements is proposed
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next in [39], in which a number of internal degrees of freedom are eliminated by re-

ducing the shear strain in the element to a certain theoretically justified lower order,

thus leading to what the authors call the interdependent interpolation of the rota-

tion and the lateral displacement fields. Further elimination of the internal degrees

of freedom will eventually lead to the problem–dependent interpolation of [30, 40] as

shown in [25] and [31]. In contrast to [39], it is this interpolation that the authors call

the interdependent interpolation.

In this chapter it will be shown that, for arbitrary static polynomial loading, this

approach can be generalised to arbitrary order of interpolation giving a family of ex-

act interpolation functions for the Timoshenko beam which follow a very structured

pattern. The result is made possible by the fact that the homogeneous parts of the

governing differential equations have polynomial solutions and would naturally cease

to be exact for the problem where this is not true, e.g. for dynamically loaded beams

and beams on elastic foundation as well as for the plate structures. Dependence of the

lateral displacements on the rotational degrees of freedom similar to that existing in

the static beam solutions has been often assumed in order to improve the performance

of the finite element analysis of plate structures. The resulting elements are given in

[2, 16, 38, 41] and the references therein and from here we borrow the term ”linked

interpolation”.

We derive our linked interpolation by consistently providing a sufficient number of

nodal points for the displacement and the rotation degrees of freedom, where this num-

ber depends on the order of the polynomial describing the applied loading. In this way

the virgin interpolation of [39] or the consistent interpolation of [31] may be obtained.

Expressing some of the internal degrees of freedom in terms of the remaining degrees

of freedom leads to various types of the constrained interpolation of [39] and we par-

ticularly emphasise the one with the equal number of nodes for the rotation and the

displacement degrees of freedom. If all the internal degrees of freedom are expressed

in terms of the boundary degrees of freedom we are left with the solution of Rakowski

[30] and Yunhua [40] as well as the interdependent interpolation of Reddy [31] enriched

by the contributions due to the applied distributed loading.

Additionally, in contrast to all the references mentioned, here we apply this method-

ology to a full 3D Timoshenko beam problem.
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2.2 Differential equations of a 3D Timoshenko beam problem

2.2.1 Kinematic equations

The Timoshenko beam theory assumes a beam to be a 3D body with two of its dimen-

sions considerably smaller than the third one, which is called the longitudinal dimension

of the beam and its length will be denoted by L. Intersection of the beam with a plane

orthogonal to its longitudinal dimension is defined as a beam cross–section, which the

theory defines as rigid. In contrast, the line of centroids, defined as the line that con-

nects the centroids C (Figure 2.2) of the cross–section, is deformable. Timoshenko

beam of a uniform cross–section made of a linearly elastic material is considered here.

 

X
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Figure 2.2: Kinematics of the problem.

The beam axis in reference configuration is taken to be a straight line which coin-

cides with the x1 axis of the Cartesian frame with the orthonormal unit base vectors

g01, g02, g03. The orthonormal triad e1, e2, e3 defines spatial frame. These two

frames are connected with the initial rotational matrix Λ0 which depends only on the

angle of inclination of the beam in the undeformed state ϕ0. Equation that defines

connection between these two frames is given by
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g0i = Λ0 ei, i = 1, 2, 3. (3)

Similar connection can be defined for the orientation of the cross section in the deformed

configuration as

gi = Λ ei, i = 1, 2, 3 , (4)

where gi is the orthonormal triad that defines the cross section in the deformed configu-

ration, with Λ as a rotational matrix that depends on the rotations of the cross-section

in the deformed state and satisfies the standard conditions of unimodularity detΛ = 1

and orthogonality ΛΛT = I, with I as a 3 × 3 unit matrix. The first member of this

triad g1 is perpendicular to the plane of the cross section while the other two members

g2,g3 are spanning the plane of the cross section.

The position vector X(x1, x2, x3) of an arbitrary point of the deformed beam is

defined by three parameters (x1, x2, x3) where the first one is the coordinate of the

length along the axis of the beam and the other two are the coordinates of the cross–

section along its principal axes. This can be written as

X(x1, x2, x3) = r(x1) + Λ(x1)


0

x2

x3

 , (5)

where r(x1) is the position vector of the point on the deformed axis of the beam, Λ is

the rotational matrix of the cross section and [0 x2 x3]T is the vector within the cross

section for a given x1 in the reference state. In this way the kinematics of the beam

is completely defined by a position vector on the axis of the beam and the orientation

of the cross section (r(x1),Λ(x1)). Further, the position vector r(x1) can be expressed

in terms of the displacement vector u(x1) and the position vector of the point on the

axis of the beam in the undeformed state R(x1) as r(x1) = R(x1) + u(x1) with Λ(x1)

given by Rodrigues formula [33] as

Λ(x1) = exp θ̂ = I +
sin θ

θ
θ̂ +

1− cos θ

θ2
(θ̂)2 , (6)

where θ̂ is a skew–symmetric matrix of a rotation vector θ = [θ1 θ2 θ3]T of a magnitude

θ =
√
θ2

1 + θ2
2 + θ2

3 and the components along the coordinate axis x1, x2, x3 denoted

as θ1, θ2, θ3.

The hat ( ̂ ) above a 3D vector here and throughout the text denotes a cross-product

operator such that for any two vectors v, w we have v̂w = v×w = −w× v = −ŵv,

i.e.
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v̂ =

 0 −v3 v2

v3 0 −v1

−v2 v1 0

 ,

with v1, v2, v3 as the Cartesian components of v in a chosen basis.

The Timoshenko beam theory is based upon the hypothesis that while the initially

planar cross-sections of the beam remain planar after the deformation (the Bernoulli

hypothesis), the angle which they close with the centroidal axis is not necessarily

retained during the deformation. This theory is widely applied to linear analysis of

engineering beam problems and it follows from the non-linear Simo–Reissner theory if

all the non–linearities with respect to the position and rotations of the cross-section

are consistently eliminated. Assuming the rotation vector to be infinitesimally small,

sin θ → θ, cos θ → 1 and all the higher-order terms in θ vanish, so that (6) reduces to

Λ(x1) =

 1 −θ3 θ2

θ3 1 −θ1

−θ2 θ1 1

 . (7)

2.2.2 Strain measures

Strain measures are given as [34]

Γ = ΛT dr

dx1

−G1 , (8)

κ̂ = ΛT dΛ

dx1

, (9)

where Γ is a vector of translational strain measures made up of one axial (ε) and

two shear strains (γ2, γ3). The skew–symmetric matrix of rotational strain measures

is represented with a symbol κ̂ and it consists of one torsional (κ1) and two bending

strains (κ2, κ3). The material vector is given as G1 =


1

0

0

.

Neglecting non–linear terms and taking (7), expression (8) can be written in terms of

displacements and rotations as

Γ =


ε

γ2

γ3

 =

 1 −θ3 θ2

θ3 1 −θ1

−θ2 θ1 1


T 

dr1
dx1
dr2
dx1
dr3
dx1

−


1

0

0

 =


du
dx1

dv
dx1
− θ3

dw
dx1

+ θ2

 =
du

dx1

+G1×θ, (10)
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since

dr

dx1

=
dR

dx1

+
du

dx1

= lim
∆x1→0

R(x1 + ∆x1)−R(x1)

∆x1

+
du

dx1

=


1 + du

dx1
dv
dx1
dw
dx1

 = G1 +
du

dx1

.

The matrix of rotational strain measures (9) can be written in terms of the rotation

components

 0 −κ3 κ2

κ3 0 −κ1

−κ2 κ1 0

 =

 1 θ3 −θ2

−θ3 1 θ1

θ2 −θ1 1


 0 − dθ3

dx1

dθ2
dx1

dθ3
dx1

0 − dθ1
dx1

− dθ2
dx1

dθ1
dx1

0

 =

 0 − dθ3
dx1

dθ2
dx1

dθ3
dx1

0 − dθ1
dx1

− dθ2
dx1

dθ1
dx1

0

 ,
after eliminating the higher–order terms. The vector of the rotational strain measures

is thus

κ =


κ1

κ2

κ3

 =


dθ1
dx1
dθ2
dx1
dθ3
dx1

 =
dθ

dx1

. (11)

2.2.3 Constitutive equations

The constitutive law for a linear elastic material is given by

N = CNΓ , M = CMκ , (12)

where CN = diag(EA,GA2, GA3) and CM = diag(GIt, EI2, EI3) are constant consti-

tutive matrices of a linear elastic material. N and M are the stress and stress–couple

resultant vectors. Here, E and G denote the Young’s and shear modulus of the mate-

rial, A is the cross–sectional area, A2 and A3 are the shear areas of the cross section,

It is the torsional constant and I2 and I3 are the second moments of area of the cross–

section.

Using (10) and (25), the stress resultant vector can be written as

N =


EA du

dx1

GA2( dv
dx1
− θ3)

GA3( dw
dx1

+ θ2)

 , (13)

and the stress–couple resultant vector can be written as
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M =


GIt

dθ1
dx1

EI2
dθ2
dx1

EI3
dθ3
dx1

 . (14)

2.2.4 Equilibrium equations

Differential equilibrium equations follow from the equilibrium of an infinitesimally small

part of the beam of length dx1 as shown in Figure 2.3. Here, n and m denote vectors

of the applied distributed forces and torques.
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Figure 2.3: Equilibrium of an infinitesimal part of the beam in deformed state.

With Ng = ΛN and Mg = ΛM from Figure 2.3 force equilibrium follows as

−Ng(x1) + Ng(x1 + ∆x1) + n∆x1 = 0,

and the torque equilibrium with respect to point A is

−Mg(x1) + Mg(x1 + ∆x1) + m∆x1 +

(
r(x1 + ∆x1)− r(x1)

)
×Ng(x1 + ∆x1)

+
1

2

(
r(x1 + ∆x1)− r(x1)

)
× n∆x1 = 0

If both of these equations are divided by ∆x1, their limiting case (when ∆x1 → 0) is

dNg

dx1

+ n = 0 (15)
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dMg

dx1

+
dr

dx1

×Ng + m = 0. (16)

Inserting linear expressions (7), (13) and (14) into (15) and (16) and eliminating the

non–linear terms that arise when multiplying Λ and N as well as Λ and M, a system

of two linear differential equations is obtained which is given as

d3θ

dx3
1

= C−1
M

(
G1 × n− dm

dx1

)
(17)

and

d2r

dx2
= −C−1

N n−G1 ×
dθ

dx1

. (18)

These two equations define the Timoshenko beam problem for a straight beam of a

uniform cross–section made of a linearly elastic material.

Solution of these differential equations (with the particular boundary conditions) are

the vector functions r(x1) and θ(x1) that describe the position of the deformed cen-

troidal axis and the rotation distribution of the cross–section along the length of the

beam.

Let us introduce the natural coordinate system and the following linear transforma-

tion

x1 =
L

2
(1 + ξ) ⇔ ξ = 2

x1

L
− 1 ⇒ dx1 =

dx1

dξ
dξ =

L

2
dξ.

With dimensionless loading functions

µ =
L3

8
C−1
M

(
G1 × n− dm

dx1

)
(19)

and

ν =
L

2
C−1
N n , (20)

equations (17) and (18) can be re–written as

θ′′′ = µ , (21)

r′′ = −L
2

(ν + G1 × θ′) . (22)

Here, the prime (’) denotes differentiation with respect to the natural coordinate ξ.

Assuming the load is independent on the position or the rotation vector, solution of

equations (21) and (22) is
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θ =

∫∫∫
µ dξdξdξ +

1

2
C1ξ

2 + C2ξ + C3 (23)

r = −L
2

[ ∫∫
νdξdξ+C4ξ+C5+G1×

(∫∫∫∫
µdξdξdξdξ +

1

6
C1ξ

3 +
1

2
C2ξ

2

)]
, (24)

where C1, ...,C5 represent vector integration constants which are to be determined

from the boundary conditions.

Strain measures given in (10) and (25) can now be written using the solutions of the

differential equations given above, allowing us to write them in terms of the integration

constants C1, ...C4 as

κ =
2

L

(∫∫
µdξdξ + C1ξ + C2

)
, (25)

Γ = −
∫
νdξ −C4 + G1 ×C3 −G1. (26)

The equations (25)–(26) represent relation between the strain measures Γ and κ

and dimensionless loading functions µ and ν. The translational strain measures Γ

are described by a polynomial one order higher than the loading function ν, i.e. for

a polynomial force loading n of order N , the translational strain measures are always

a polynomial of order N + 1. On the other hand, the rotational strain measures are

described by a polynomial two degrees higher than the polynomial that is describing

the loading function µ.

2.3 Problem–dependent exact finite–element representation of

the solution

Integration constants in (23) and (24) can be computed from a sufficient number of

kinematic or static boundary conditions. They can be expressed in terms of the known

boundary values for θ and r thus leading to a finite element capable of providing the

analytic solution [27].

2.3.1 Kinematic boundary conditions

We will evaluate equations (23) and (24) at the boundaries (ξ = −1 and ξ = 1) to

obtain the kinematic boundary conditions. By doing so, we can write
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1

2
C1 −C2 + C3 = θ0 (27)

1

2
C1 + C2 + C3 = θL − µ̄ (28)

−C4 + C5 + G1 ×
(
−1

6
C1 +

1

2
C2

)
= − 2

L
r0 (29)

C4 + C5 + G1 ×
(

1

6
C1 +

1

2
C2

)
= − 2

L
rL − ν̄, (30)

where

µ̄ =

∫ 1

−1

∫∫
µdξdξdξ, ν̄ =

∫ 1

−1

∫ (
ν + G1 ×

∫∫
µdξdξ

)
dξdξ. (31)

Integration constants C2 and C5 can be computed respectively if expression (27)

is subtracted from expression (28) and if the expressions (29) and (30) are summed

together. This leaves us with

C2 =
1

2
(θL − θ0)− 1

2
µ̄ (32)

C5 = − 1

L
(r0 + rL)− 1

4
G1 × (θL − θ0)− 1

2
ν̄ +

1

4
G1 × µ̄. (33)

The remaining integration constants can be written in terms of the other constants,

therefore summing up equations (27) and (28) and subtracting expression (29) from

(30) enables us to write constants C3 and C4 in terms of C1 as

C3 =
1

2
(θL + θ0)− 1

2
µ̄− 1

2
C1 (34)

and

C4 = − 1

L
(rL − r0)− 1

2
ν̄ − 1

6
G1 ×C1. (35)

One more condition is thus needed to evaluate constants C1, C3 and C4 and they

will be calculated using the equilibrium of the beam.

2.3.2 Static boundary conditions

Let our beam of length L be subjected to point forces and torques F0 and T0 at x1 = 0

and FL, TL at x1 = L and also to distributed force and moment loadings n and m as

shown in Figure 2.4.

The equilibrium equations of the whole beam in the reference configuration read
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Figure 2.4: Load acting on the reference line of the beam, here taken to be the cen-
troidal axis.

F0 + FL +

∫ L

0

ndx1 = 0 (36)

and

T0 + TL + LG1 × FL +

∫ L

0

(m + x1G1 × n)dx1 = 0. (37)

Noting the static boundary conditions F0 = −N0, T0 = −M0, FL = NL and

TL = ML, constitutive equations (12), and evaluating the strain measures at the

boundaries, the above equations turn into

−CN

∫ 1

−1

νdξ +

∫ L

0

ndx1 = 0, (38)

2

L
CM

(∫ 1

−1

∫
µdξdξ + 2C1

)
+ LG1 ×CN

(
−
∫ 1

−1

νdξ −C4 + G1 ×C3 −G1

)
+

∫ L

0

(m + x1G1 × n) dx1 = 0. (39)

The first of these equations is identical as equation (20), hence does not represent

additional equation required to evaluate the integration constants. With already in-

troduced substitution x1 =
L

2
(1 + ξ), we are able to simplify the sum of the first and

the second term in (39)

2

L
CM

∫ 1

−1

∫
µdξdξ +

∫ L

0

(m + x1G1 × n) dx1 =
L

2

∫ 1

−1

(
G1 ×CN

∫
νdξ −m

)
dξ+

L

2

∫ 1

−1

[m + (1 + ξ)G1 ×CNν] dξ =
L

2
G1 ×CN

∫ 1

−1

[
(1 + ξ)ν +

∫
νdξ

]
dξ,

which when considered the moment equilibrium equation (39) and noting that G1×
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CNG1 = 0 gives

4

L
CMC1 + LG1 ×CN(G1 ×C3 −C4) =

L

2
G1 ×CN η̄, (40)

where,

η̄ =

∫ N

−1

[
(1− ξ)ν −

∫
νdξ

]
dξ. (41)

With five equations (27), (28), (29), (30), (40) defining the boundary conditions, all

five integration constants can be determined. Constants C2 and C5 have been deter-

mined earlier and are given by (32) and (33) respectively. Remaining three constants

C1, C3 and C4 are obtained from (34), (35), (40) and are given as follows:

C1 = −A

[
1

L
(rL − r0) +

1

2
Ĝ1(θ0 + θL)− 1

2
η̄ − 1

2
Ĝ1µ̄+

1

2
ν̄

]
, (42)

C3 =
1

2L
A(rL−r0)+

1

2

(
I +

1

2
AĜ1

)
(θ0+θL)− 1

4A
η̄−1

2

(
I +

1

2
AĜ1

)
µ̄+

1

4
Aν̄ (43)

and

C4 = −
(

I− 1

6
Ĝ1A

)[
1

L
(rL − r0) +

1

2
ν̄

]
+

1

12
Ĝ1A

[
Ĝ1(θ0 + θL − µ̄)− η̄

]
, (44)

with

A =
L2

4

(
CM −

L2

12
Ĝ1CNĜ1

)−1

Ĝ1CN = 3


0 0 0

0 0 − 1

1 + φ3

0
1

1 + φ2

0

 , (45)

where

φ2 =
12EI3

L2GA2

(46)

φ3 =
12EI2

L2GA3

. (47)

2.3.3 Exact solution in terms of the boundary kinematics and

the problem data

Having determined all the integration constants C1, ...,C5, exact solutions of the dif-

ferential equations (23) and (24) can now be expressed in terms of the boundary kine-
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matics and the problem data. The exact solution for the rotation field thus becomes

θ = [Rr0 Rθ0 RrL RθL]


r0

θ0

rL

θL

+ [0 RrL RθL]


L

2
η̄

L

2
(ν̄ − η̄)

−µ̄

+

∫∫∫
µdξdξdξ, (48)

where

Rr0 = −1− ξ2

2L
A (49)

Rθ0 =
1

2

[(
I +

1

2
AĜ1

)
− Iξ − 1

2
AĜ1ξ

2

]
(50)

RrL =
1− ξ2

2L
A (51)

RθL =
1

2

[(
I +

1

2
AĜ1

)
+ Iξ − 1

2
AĜ1ξ

2

]
. (52)

The exact solution for the displacement field expressed in terms of the boundary

kinematics and the problem data becomes

r = [Pr0 Pθ0 PrL PθL]


r0

θ0

rL

θL

+

[
1 + ξ

2
I PrL PθL

]
L

2
η̄

L

2
(ν̄ − η̄)

−µ̄


− L

2

∫∫ (
ν + Ĝ1

∫∫
µdξdξ

)
dξdξ, (53)

with

Pr0 =
1− ξ

2
I + ξ

1− ξ2

12
Ĝ1A (54)

Pθ0 =
L

8

[
−Ĝ1 −

ξ

3
Ĝ1AĜ1 + ξ2Ĝ1 +

ξ3

3
Ĝ1AĜ1

]
(55)

PrL =
1 + ξ

2
I− ξ 1− ξ2

12
Ĝ1A (56)
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PθL =
L

8

[
Ĝ1 −

ξ

3
Ĝ1AĜ1 − ξ2Ĝ1 +

ξ3

3
Ĝ1AĜ1

]
. (57)

It should be noted that, for a 2D case, the functions in (49)-(52)and (54)–(57) coin-

cide with the results given by Rakowski [30] in Table 1.

Yunhua introduced field–consistent interpolation in [40] and Reddy introduced interde-

pendent interpolation in [31]. The denominations consistent and interdependent orig-

inate from the consistence of interpolation between the kinematic fields and the in-

terdependence between the fields. These interpolations are independent of the beam

material and cross–sectional properties, which is exactly the opposite from the solutions

proposed in (48) and (53) of this work. And for this reason, we call the interpolations

introduced here the problem–dependent interpolation.

2.3.4 Finite element implementation of the problem-dependent

interpolation

Equations (48) and (53) can be used to derive the beam equilibrium in the finite–

element sense, using e.g. the principle of stationarity of the total potential energy

V = Vdef − U , where Vdef is the strain energy and U is the potential of the applied

loading. The strain energy is defined as

Vdef =
1

2

∫ L

0

〈
ΓT κT

〉 [CN 0

0 CM

]{
Γ

κ

}
dx1, (58)

and the potential of the applied loading is

U =

∫ L

0

〈
uT θT

〉{n

m

}
dx1 +

〈
uT0 θT0

〉{F0

T0

}
+
〈
uTL θTL

〉{FL

TL

}
. (59)

For the conservative loading and the considered beam problem the principle of min-

imum total potential energy reads

δV = δVdef−δU =

∫ L

0

〈
δΓT δκT

〉 [CN 0

0 CM

]{
Γ

κ

}
dx1−

∫ L

0

〈
δuT δθT

〉{n

m

}
dx1

−
〈
δuT0 δθT0

〉{F0

T0

}
−
〈
δuTL δθTL

〉{FL

TL

}
, (60)

where δΓ, δκ, δu, δθ are the variations of the translational and rotational strain

measures, displacements and rotation. Substituting strain measures from (10, 25)

gives
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δVdef =

∫ 1

−1

〈
δu

′T δθT δθ
′T
〉


2

L
CN CNĜ1 0

−Ĝ1CN −L
2

Ĝ1CNĜ1 0

0 0
2

L
CM




u′

θ

θ′

 dξ (61)

and

δU =
〈
δuT0 δθT0 δuTL δθTL

〉
L2

∫ 1

−1


PT
r0 RT

r0

PT
θ0 RT

θ0

PT
rL RT

rL

PT
θL RT

θL


{

n

m

}
dξ +


F0

T0

FL

TL




︸ ︷︷ ︸

R

. (62)

Substituting (48) and (53) into the minimum of the total potential energy results in

a standard finite–element equilibrium

δpT (Kp−R) = 0 =⇒ Kp−R = 0, (63)

where pT =
〈
uT0 θT0 uTL θTL

〉
, K is the element stiffness matrix and R is the vector

of the equivalent nodal loading given in (62). The stiffness matrix and the equivalent

loading vector obtained in this way are identical to the ones obtained from the engi-

neering beam theory given in [29]. That this is so in the case of the stiffness matrix, it

is obvious from (61) after terms with u′ and θ′ are integrated by parts

δVdef = δpTKp =

〈δu′T δθT δθ
′T
〉

2

L
CN 0

−Ĝ1CN 0

0
2

L
CM


{

u

θ

}
∣∣∣∣∣
1

−1

− 2

L

∫ 1

−1

{[
CN(δr′ +

L

2
Ĝ1δθ)′

]
u +

[
CMδθ

′′′ + Ĝ1CN
L

2
(δr′ +

L

2
Ĝ1δθ)

]
θ

}
dξ ,

(64)

where the second term vanishes since the expression in the brackets represent the

variations of the differential equations. This is the sufficient condition for a finite–

element formulation to result in the exact nodal solution, as it is shown in the Appendix

H of [42]. The stiffness matrix for the problem-dependent interpolation follows from

(64) as
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K =
2

L




(P′r0 + L
2
Ĝ1Rr0)T R

′T
r0

(P′θ0 + L
2
Ĝ1Rθ0)T R

′T
θ0

(P′rL + L
2
Ĝ1RrL)T R

′T
rL

(P′θL + L
2
Ĝ1RθL)T R

′T
θL


[
CN 0

0 CM

][
Pr0 Pθ0 PrL PθL

Rr0 Rθ0 RrL RθL

]
∣∣∣∣∣
1

−1

(65)

Substituting (49)–(52) and (54)–(57) in the first matrix of the above expression and

multiplying it with the constitutive matrix gives

K =
2

L



−1

2
(I + 1

3
Ĝ1A)CN

ξ
L
ATCM

−L
4
Ĝ1(I + 1

3
Ĝ1A)CN −1

2
(I + ξAĜ1)CM

1
2
(I + 1

3
Ĝ1A)CN − ξ

L
ATCM

−L
4
Ĝ1(I + 1

3
Ĝ1A)CN

1
2
(I− ξAĜ1)CM


[
Pr0 Pθ0 PrL PθL

Rr0 Rθ0 RrL RθL

]
∣∣∣∣∣
1

−1

(66)

With
L

4
Ĝ1(I +

1

3
Ĝ1A)CN =

1

L
CMA and substituting (49)–(52) and (54)–(57) in

the second matrix of the upper expression finally gives the stiffness matrix in a form

K =


1
L

(I + 1
3
Ĝ1A)CN Symm.

2
L2 CMA 1

L
(I−AĜ1)CM

− 1
L

(I + 1
3
Ĝ1A)CN − 2

L2 A
TCM

1
L

(I + 1
3
Ĝ1A)CN

2
L2 CMA − 1

L
(I + AĜ1)CM − 2

L2 CMA 1
L

(I−AĜ1)CM

 .
(67)

If the blocks of the stiffness matrix are written in terms of coefficients φ2 and φ3

from (46)–(47), it follows that

1

L
(I +

1

3
Ĝ1A)CN =


EA

L
0 0

0
12EI3

L3(1 + φ2)
0

0 0
12EI2

L3(1 + φ3)

 ,

2

L2
CMA =


0 0 0

0 0 − 6EI2

L2(1 + φ3)

0
6EI3

L2(1 + φ2)
0

 ,
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1

L
(I−AĜ1)CM =


GIt
L

0 0

0
4 + φ3

1 + φ3

EI2

L
0

0 0
4 + φ2

1 + φ2

EI3

L

 ,

− 1

L
(I + AĜ1)CM =


−GIt

L
0 0

0
2− φ3

1 + φ3

EI2

L
0

0 0
2− φ2

1 + φ2

EI3

L

 .
These block matrices are the same as the result given by Przemieniecki in [29].

With R and K from (62) and (67) we write the element equilibrium Kp −R = 0

that enables us to obtain the nodal degrees of freedom p within the standard finite–

element procedure. In this way the exact analytical distribution of the displacement

and rotation fields follows from the problem–dependent interpolation defined by (53)

and (48). Further, the exact analytical distribution of the strain measures and the

stress and stress–couple resultants follow from (10) and (25).

2.4 Problem–independent exact finite–element representation

of the solution

In the previous subsection a problem–dependent interpolation has been described. This

interpolation depends on a minimum number of the unknown parameters, that include

boundary positions and rotations, but also on the material and cross–sectional prop-

erties CN , CM and the loading functions µ(ξ) and ν(ξ). For the mechanical problem

considered here (linear problem, straight beam, constant cross section, static loading)

there is very little motivation for re–shaping this result in an alternative form with

additional nodal degrees of freedom, but such alternatives may become interesting in

the situations where complete adherence to the analytical solution cannot be claimed.

In materially non–linear problems, an additional internal kinematic constraint can be

a better choice than the static boundary condition.

If the loading functions are given as polynomials of an arbitrary order:

µ =
m∑
i=0

µiξ
i and ν =

n∑
i=0

νiξ
i, (68)

solutions of the differential equations (23) and (24) can be written in terms of finite

number of parameters C1, ...C5,µ0, ...µm,ν0, ...νn in the following way
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θ =
m∑
i=0

1

i+ 3

1

i+ 2

1

i+ 1
µiξ

i+3 +
1

2
C1ξ

2 + C2ξ + C3, (69)

r = −L
2

[ n∑
i=0

1

i+ 2

1

i+ 1
νiξ

i+2 + C4ξ + C5

+ G1 ×

(
m∑
i=0

1

i+ 4

1

i+ 3

1

i+ 2

1

i+ 1
µiξ

i+4 +
1

6
C1ξ

3 +
1

2
C2ξ

2

)]
. (70)

These two expressions may be re–written in terms of the known nodal positions

and rotation and in this way we may construct a so-called displacement–based finite

element with exact polynomial interpolation. In the following subsections the exact

solutions for the rotation and the position fields will be given in terms of the nodal

rotations and nodal positions.

2.4.1 Exact solution for the rotation field

This solution for the rotational field will be given in terms of the nodal rotations. First,

let us re–write expression (69) as

θ(ξ) =
m+3∑
q=0

αqξ
q, (71)

where α0 = C3, α1 = C2, α2 =
1

2
C1 and αq =

1

q

1

q − 1

1

q − 2
µq−3 for 3 ≤ q ≤ m + 3.

A finite element interpolation for the rotation field has to be of order m+ 3 or higher

in order to provide the exact solution. For the chosen co–ordinates ξ1, ...ξM , where the

number of nodes M has to be M ≥ m+ 4 (M ≥ 3 if µ = 0), the nodal rotations are

θ1 = θ(ξ1), ...θM = θ(ξM).

Evaluating (71) at these points results inM conditions on the nodal rotationsα0, ...αm+3.

To express this conditions in the terms of the nodal rotations θ1, ...θM , let us re–write

(71) as

θ(ξ) =
m+3∑
q=0

αqξ
q +

M−1∑
q=m+4

=0︷︸︸︷
αq ξ

q =
M−1∑
q=0

αqξ
q, (72)

and evaluate it at the chosen nodal co–ordinates ξ1, ...ξM to obtain
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M−1∑
q=0

ξqiαq = θi, i = 1, ...,M. (73)

The above expression presents the system of linear equations where the coefficients

constitute the so–called Vandermonde matrix. This matrix can be explicitly inverted as

reported in e.g. [14, 13, 12]. The columns of this matrix are coefficients of Lagrangian

polynomials expressed in the basis (ξ0, ξ1, ξ2, ..., ξM−2, ξM−1). The proof is given in

Appendix A. For a Lagrangian polynomial

Ip(ξ) =
M−1∑
q=0

dp,qξ
q, (74)

where p = 1, ...M , the solution of (73) is αq =
∑M

p=1 dp,qθp (for q > m + 3, αq = 0),

with coefficients dp,q also given in the Appendix A. When this is substituted into (72)

we obtain

θ(ξ) =
M−1∑
q=0

M∑
p=1

dp,qθpξ
q =

M∑
p=1

M−1∑
q=0

dp,qξ
qθp =

M∑
p=1

Ip(ξ)θp. (75)

This result shows that the standard Lagrangian interpolation for rotations of order

m + 3 or higher provides exact solution for rotations of a thick beam problem. If the

problem is limited to point loads only, or if G1×n− dm
dx1

= 0, a quadratic interpolation

for rotations is sufficient for obtaining the exact solution.

2.4.2 Exact solution for the position field

The solution for the position field will be given in terms of the nodal positions and the

nodal rotations. Let us first re–write expression (70) as

r(ξ) = −L
2

(
n+2∑
j=0

βjξ
j + G1 ×

∫ ξ

−1

θdη

)
, (76)

where β0 = C5, β1 = C4, and for 2 ≤ j ≤ n + 2, βj =
1

j

1

j − 1
νj−2. To provide

the exact solution, a finite–element interpolation for the part of the position field

defined by parameters β0,β1, ...,βn+2 has to be of order n + 2 or higher for which

N ≥ n + 3 (N ≥ 2 if ν = 0) nodes are needed. At a chosen set of nodal co-ordinates

ξ̄1, ..., ξ̄N , that do not necessarily coincide with the ones used to interpolate rotations,

these positions are

r1 = r(ξ̄1), ..., rN = r(ξ̄N). (77)
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If the sum in (76) is written in a way

n+2∑
j=0

βjξ
j =

n+2∑
j=0

βjξ
j +

N−1∑
j=n+3

=0︷︸︸︷
βj ξ

j =
N−1∑
j=0

βjξ
j,

the summation limits in (76) may be changed and the expression re–written as

r(ξ) = −L
2

(
N−1∑
j=0

βjξ
j + G1 ×

∫ ξ

−1

θdη

)
. (78)

Evaluating it at the nodal points gives

N−1∑
j=0

ξ̄jiβj = −

(
2

L
ri + G1 ×

∫ ξ̄i

−1

θ(η)dη

)
, i = 1, ..., N, (79)

where β0, ...,βN−1 can be expressed in terms of the nodal positions and rotations (for

j > n + 2, βj vanish). It can be seen from the upper equation that each of the

unknown parameters consists of two parts: the one dependent on the nodal positions

ri, i = 1, ..., N and the other dependent on the nodal rotations θp, p = 1, ...,M . We

will denote these parts as βj,r and βj,θ respectively, so that for j = 1, ..., N − 1

βj = βj,r + βj,θ, (80)

where βj,r and βj,θ are obtained from the following two systems of linear equations:

N−1∑
j=0

ξ̄jiβj,r = − 2

L
ri and (81)

N−1∑
j=0

ξ̄jiβj,θ = −G1 ×
∫ ξ̄i

−1

θ(η)dη, (82)

for i = 1, ..., N . This means that the solution for the position field may be decomposed

into a part related to nodal positions and the other part related to the nodal rotations,

meaning it can be written as

r(ξ) = rr(ξ) + rθ(ξ), (83)

with

rr(ξ) = −L
2

N−1∑
j=0

βj,rξ
j (84)

and
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rθ(ξ) = −L
2

(
N−1∑
j=0

βj,θξ
j + G1 ×

∫ ξ

−1

θ(η)dη

)
. (85)

From (84), (85) and (82) it follows that, at the nodes (ξ̄1, ..., ξ̄N), rr(ξ̄i) and rθ(ξ̄i)

turn out to be

rr(ξ̄i) = ri and rθ(ξ̄i) = 0. (86)

This allows us to write rr(ξ) in terms of Lagrangian polynomials

Jk(ξ) =
N−1∑
j=0

d̄k,lξ
j (87)

as

rr(ξ) =
N∑
k=1

Jk(ξ)rk. (88)

Since it has been shown that rθ(ξ̄i) = 0, we can say that rθ(ξ) is a polynomial with

zeroes at the nodes ξ̄1, ..., ξ̄N , i.e. rθ(ξ) can be written as a product of a polynomial

function with zeroes at the nodes ΠN+1
k=1 (ξ − ξ̄k) and a vector coefficient depending on

the nodal rotations θp = θ(ξp), p = 1, ...,M .

Part of the solution for the position field dependent on the nodal positions rr(ξ) is

obtained by solving the system of linear equations (81) for βj,r and substituting the

result into (84). The matrix of coefficients of this system is again the Vandermonde

matrix and, as given in Appendix A, the solution of the Vandermonde system gives

βj,r = − 2

L

N∑
k=1

d̄k,jrk, (89)

with the parameters d̄k,j as the coefficients of the Lagrangian polynomials for j =

1, ..., N . When (89) is substituted in (84) the following expression is obtained

rr(ξ) = −L
2

N−1∑
j=0

(
− 2

L

N∑
k=1

d̄k,jrk

)
ξj =

N∑
k=1

N−1∑
j=0

d̄k,jξ
jrk =

N∑
k=1

Jk(ξ)rk. (90)

This results shows not only that rr(ξ) may be given in terms of the Lagrangian poly-

nomials Jk(ξ) together with the nodal values rk, but in fact such a result is equivalent

to (84).

Part of the solution for the position field dependent on the nodal rotations rθ(ξ) is

obtained by solving the system of linear equations given by (82) for βj,θ and substituting
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the result into (85). Again, we get the same Vandermonde matrix as for the previous

case and the solution is

βj,θ = −
N∑
k=1

d̄k,jG1 ×
∫ ξ̄k

−1

θdη , j = 1, ..., N. (91)

Substituting parameters βj,θ into (85) gives

rθ(ξ) =
L

2

(
N−1∑
j=0

N∑
k=1

d̄k,jG1 ×
∫ ξ̄k

−1

θdηξj −G1 ×
∫ ξ

−1

θdη

)

=
L

2
G1×

(
N∑
k=1

N−1∑
j=0

d̄k,jξ
j

∫ ξ̄k

−1

θdη −
∫ ξ

−1

θdη

)
=
L

2
G1×

(
N∑
k=1

Jk

∫ ξ̄k

−1

θdη −
∫ ξ

−1

θdη

)
.

(92)

Since the completeness property of the Lagrangian polynomials states
∑N

k=1 Jk(ξ) =

1, the upper result can be written as

rθ(ξ) =
L

2
G1 ×

N∑
k=1

Jk

(∫ ξ̄k

−1

θdη −
∫ ξ

−1

θdη

)
=
L

2
G1 ×

N∑
k=1

Jk

∫ ξ̄k

ξ

θdη. (93)

Substituting (74) and (75) this becomes

rθ(ξ) =
L

2
G1×

M∑
p=1

θp

N∑
k=1

Jk

∫ ξ̄k

ξ

M−1∑
q=0

dp,qξ
qdη =

L

2
G1×

M∑
p=1

θp

N∑
k=1

Jk

M−1∑
q=0

ξ̄q+1
k − ξq+1

q + 1
dpq

=
L

2
G1 ×

M∑
p=1

θp

M−1∑
q=0

∑N
k=1 Jkξ̄

q+1
k −

∑N
k=1 Jkξ

q+1

q + 1
dp,q. (94)

Substituting (87) this further becomes

rθ(ξ) =
L

2
G1 ×

M∑
p=1

θp

M−1∑
q=0

∑N−1
j=0 ξj

∑N
k=1 d̄k,j ξ̄

q+1
k − ξq+1

q + 1
dp,q, (95)

where, for q+ 1 < N ,
∑N

k=1 d̄k,j ξ̄
q+1
k = δq+2,j+1, with δs,r as the Kronecker symbol that

is equal to unity for s = r and zero otherwise. The proof is given in Appendix A.

Consequently, the sum over the fraction in the above expression becomes
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N−2∑
q=0

∑N−1
j=0 ξjδq+2,j+1 − ξq+1

q + 1
dp,q +

M−1∑
q=N−1

∑N−1
j=0 ξj

∑N
k=1 d̄k,j ξ̄

q+1
k − ξq+1

q + 1
dp,q,

where the first term vanishes leaving

rθ(ξ) =
L

2
G1 ×

M∑
p=1

θp

M−1∑
q=N−1

∑N
k=1(

∑N−1
j=0 d̄k,jξ

j)ξ̄q+1
k − ξq+1

q + 1
dp,q

= −L
2

G1 ×
M∑
p=1

θp

M−1∑
q=N−1

∑N
k=1 Jk(ξ

q+1 − ξ̄q+1
k )

q + 1
dp,q, (96)

since
∑N−1

j=0 d̄k,jξ
j = Jk and

∑N
k=1 Jk = 1. Further simplification of expression (96) can

be done, since the sum
∑N

k=1 Jk(ξ
q+1 − ξ̄q+1

k ) may be simplified. To do so, let us first

factorise the difference of equal powers ξq+1 − ξ̄q+1
k as

ξq+1 − ξ̄q+1
k = (ξ − ξ̄k)(ξq + ξq−1ξ̄k + ...+ ξ̄qk) = (ξ − ξ̄k)

q+1∑
r=1

ξq+1−rξ̄r−1
k .

The Lagrangian polynomials (from Appendix A) can be written as

Jk(ξ) =
N∏

i=1,i 6=k

(ξ − ξ̄i)
(ξ̄k − ξ̄i)

= d̄k,N−1

N∏
i=1,i 6=k

(ξ − ξ̄i) (97)

and we obtain

N∑
k=1

Jk(ξ
q+1 − ξ̄q+1

k ) =
N∑
k=1

d̄k,N−1

N∏
i=1,i 6=k

(ξ − ξ̄i)(ξ − ξ̄k)
q+1∑
r=1

ξq+1−rξ̄r−1
k

=
N∏
i=1

(ξ − ξ̄i)
q+1∑
r=1

(
N∑
k=1

d̄k,N−1ξ̄
r−1
k

)
ξq+1−r = ξq+1−N

N∏
i=1

(ξ − ξ̄i) (98)

since, as shown in Appendix A,
∑N

k=1 d̄k,N−1ξ̄
r−1
k = δr,N . Finally, the solution for the

position field dependent on the nodal rotations can be written as

rθ(ξ) = −L
2

N∏
i=1

(ξ − ξ̄i)G1 ×
M∑
p=1

θp

M−1∑
q=N−1

ξq+1−N

q + 1
dp,q. (99)
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2.4.3 Relationship between the number of nodal points for po-

sitions and rotations

For an arbitrary number M ≥ m+ 4 of nodal co–ordinates for rotations ξ1, ..., ξM and

an arbitrary number N ≥ n+ 3 of nodal co–ordinates for positions ξ̄1, ..., ξ̄N , the exact

solution for the rotation vector is given in (75) and the exact solution for the position

vector is obtained by substituting (90) and (99) into (83) giving

θ(ξ) =
M∑
p=1

Ip(ξ)θp (100)

r(ξ) =
N∑
k=1

Jk(ξ)rk −
L

2

N∏
i=1

(ξ − ξ̄i)G1 ×
M∑
p=1

θp

M−N∑
j=0

dp,N−1+j

N + j
ξj, (101)

where dp,N−1+j is a coefficient in pth Lagrangian polynomial of order N −1 multiplying

ξN−1+j. As explained earlier, m and n are the orders of the polynomial loading functions

µ =
L3

8
C−1
M (G1 × n− dm

dx1

) and ν =
L

2
C−1
N n, respectively.

With a minimum number of nodal points M = m+ 4 and N = n+ 3, the number of

integration constants in solution (69) and (70) of the differential equations is exactly

matched by the number of nodal rotations and positions. Interpolation (101) therefore

implicitly includes the one–to–one correspondence between the two sets of parameters.

A particularly interesting case is the one with m = n, i.e. the case where the dis-

tributed moment loading is of a degree at most one order higher than the degree of the

distributed force loading, including the situation with no moment loading at all. The

minimum number of nodes for the exact solution is then M = n + 4 and N = n + 3,

i.e. N = M − 1 and r(ξ) in (101) becomes

r(ξ) =
M−1∑
k=1

Jk(ξ)rk −
L

2

M−1∏
i=1

(ξ − ξ̄i)G1 ×
M∑
p=1

θp

1∑
j=0

dp,M−2+j

M − 1 + j
ξj

=
M−1∑
k=1

Jk(ξ)rk −
L

2

M−1∏
i=1

(ξ − ξ̄i)G1 ×
M∑
p=1

θp

(
dp,M−2

M − 1
+
dp,M−1

M
ξ

)

=
M−1∑
k=1

Jk(ξ)rk −
L

2

M−1∏
i=1

(ξ − ξ̄i)G1 ×
M∑
p=1

ξ

M
−
∑M

q=1,q 6=p ξq

M − 1∏M
r=1,r 6=p(ξp − ξr)

θp, (102)

since dp,M−2 = −dp,M−1

∑M
q=1,q 6=p ξq and dp,M−1 =

1∏M
r=1,r 6=p(ξp − ξr)

(see Appendix A).
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This result can be understood as a generalisation of the result given in Chapter

10.5 of [41] for arbitrary order of interpolation. In this work the authors have con-

sidered Timoshenko beam subject to point loads for which they have presented an

exact interpolation, which is free from geometric and material characteristics (problem–

independent). For M = 3 and evenly spaced nodes, the solution for the position vector

reads r =
1− ξ

2
r1 +

1 + ξ

2
r2 +L(1−ξ2)G1×

[
(
ξ

12
− 1

8
)θ1 −

ξ

6
θ2 + (

ξ

12
+

1

8
)θ3

]
, which

is equivalent to the 2D form given in equation (10.75) of [41].

At times it may be convenient to use a larger set of mutually dependent nodal pa-

rameters, i.e. M > m+4 with N = n+3 or N > n+3 with M = m+4 or both. There

exist two particularly interesting and computationally useful sets of such redundant de-

grees of freedom: the first with the number of the nodal points used for interpolating

the position vector larger than the number of the nodal points used for interpolating

the rotation vector by one (N = M + 1), and the second with the equal number of the

same nodal points used for interpolating the position and the rotation vector (M = N

and ξ̄i = ξi for i = 1, ..., N). These two cases will be analysed in more detail.

Number of nodal points for positions larger than the number of nodal points for

rotations by one (N = M + 1).

In this case expression (101) turns into

r(ξ) =
M+1∑
k=1

Jk(ξ)rk, (103)

showing that for M ≥ m+4 and N ≥ n+3, N = M+1 is the minimum number of the

position nodal points needed to separate the interpolation for positions from the rota-

tional degrees of freedom. At the same time, therefore, it is also the minimum number

of the position nodal points needed to express the exact solution using independent

interpolations for the positions and the rotations (100) and (103). In [39] elements

with this kind of interpolation are called the virgin elements.

Same nodal points for positions and rotations (ξ̄i = ξi for i = 1, ..., N).

In this case Jk(ξ) = Ik(ξ) and (101) simply turns into

r(ξ) =
N∑
k=1

Ik(ξ)rk −
L

2

N∏
i=1

(ξ − ξi)G1 ×
N∑
p=1

θp
dp,N−1

N
. (104)

From (74) note that (N − 1)st derivative of Ip(ξ) is IN−1
p (ξ) = dp,N−1(N − 1)!, the

above result becomes
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r(ξ) =
N∑
k=1

Ik(ξ)rk −
1

N !

L

2

N∏
i=1

(ξ − ξi)G1 × θ(N−1)
p (105)

showing that the standard Lagrangian interpolation using only the translational degrees

of freedom suffices for the exact solution when (N −1)st derivative of the interpolation

for rotations vanishes. This, of course, is precisely the last situation analysed in which

this derivative would vanish due to the fact that the rotation was interpolated using a

polynomial of the order smaller than N−1. Equation (104) is worth analysing further.

As, for N = M, dp,N−1 =
1∏N

r=1,r 6=p(ξp − ξr)
(Appendix A), this result turns into

r(ξ) =
N∑
k=1

Ik(ξ)rk −
1

N

L

2

N∏
i=1

(ξ − ξi)G1 ×
N∑
p=1

θp∏N
r=1,r 6=p(ξp − ξr)

(106)

and takes a particularly elegant form for the elements with equidistant spacing between

the nodes. In this case, the nodal co–ordinates are given as ξi =
2i− (N + 1)

N − 1
and[∏N

r=1,r 6=p(ξp − ξr)
]−1

becomes

1∏N
r=1,r 6=p(ξp − ξr)

=
(
N − 1

2
)N−1∏N

r=1,r 6=p(p− r)
=

(
N − 1

2
)N−1

(p− 1)(p− 2)...1

1

(−1)(−2)...(p−N)

=
(
N − 1

2
)N−1

(p− 1)!

(−1)N−p

(N − p)!
=

(
N − 1

2

)N−1 (−1)p−N
(N − 1)!

(N − p)!
(N − 1)!(p− 1)!

=

(
−N − 1

2

)N−1
(−1)p−1

(N − 1)!

(
N − 1

p− 1

)
.

As ξ − ξi now turns out to be 2

(
1 + ξ

2
− i− 1

N − 1

)
, expression (106) becomes

r =
N∑
k=1

Ikrk −
L

N

(−(N − 1))N−1

(N − 1)!

N∏
i=1

(
1 + ξ

2
− i− 1

N − 1

)
G1 ×

N∑
p=1

(−1)p−1

(
N − 1

p− 1

)
θp

=
N∑
k=1

Ikrk −
L

N

N∏
j=2

(
−N − 1

j − 1

) N∏
i=1

(
1 + ξ

2
− i− 1

N − 1

)
G1 ×

N∑
p=1

(−1)p−1

(
N − 1

p− 1

)
θp
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=
N∑
k=1

Ikrk −
L

N

1 + ξ

2

N∏
j=2

(
1− N − 1

i− 1

1 + ξ

2

)
G1 ×

N∑
p=1

(−1)p−1

(
N − 1

p− 1

)
θp,

where the coefficients in the second sum are the binomial coefficients forming a Pascal

triangle. Introducing a set of linear functions Ni(ξ) that have a zero value at the node

ξi and a unit value at the node ξ1 = −1 (apart from N1(ξ) which has a unit value at

the node ξN = 1), correspondingly defined as

N1(ξ) =
1 + ξ

2
, and Ni(ξ) = 1− N − 1

i− 1

1 + ξ

2
, for i = 2, ..., N. (107)

These functions are shown in Figure 2.5. Interpolation from (106) now becomes

r(ξ) =
N∑
k=1

Ikrk −
L

N

N∏
i=1

Ni(ξ)
N∑
p=1

(−1)p−1

(
N − 1

p− 1

)
G1 × θp. (108)
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1 2 N-1 N

1 2 N-1 N

Figure 2.5: Linear functions Ni(ξ) used in interpolation (108).

Some special cases of this result are well-known. For a two–noded element (106) gives

r(ξ) =
1− ξ

2
r1 +

1 + ξ

2
r2 +

L

8
(1−ξ2)G1× (θ1−θ2), that has been often used as a basis

for development of constant strain beam elements (expression (10.84) in [41]) and also

plate elements and their extensions (see [2] for an application to Mindlin plates). The

three–node case of (106) reads r(ξ) = −ξ 1− ξ
2

r1 + (1 − ξ2)r2 + ξ
1 + ξ

2
r3 −

L

12
ξ(1 −

ξ2)G1×(θ1−2θ2 +θ3) and has been also reported and used for development of higher–

order Timoshenko beam elements [39] as well as triangular and rectangular Mindlin
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plate elements [38, 16].

The schematic representation of the interpolation given in (108) is illustrated in Figure

2.6.
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Figure 2.6: Graphical representation of interpolation (108).

Obviously, the exact solution is obtained by enhancing the standard Lagrangian in-

terpolation of order N −1 with an extra polynomial of order N passing through all the

nodal points scaled by a linear combination of the nodal rotations using the binomial

coefficients proportional to the length of the beam and inversely proportional to the

number of nodes.

Speaking of internal nodes with arbitrary spacing gives another illustrative view at

equation (106). Since Ik(ξ) =
∏N

i=1,i 6=k
(ξ − ξi)
(ξk − ξi)

, this equation simplifies considerably

and becomes

r(ξ) =
N∑
k=1

Ik(ξ)rk−
1

N

L

2
G1×

N∑
p=1

Ip(ξ)(ξ−ξp)θp =
N∑
k=1

Ik(ξ)

[
rk −

1

N

L

2
G1 × (ξ − ξk)θk

]
.

After introducing the material position vector R0(ξ) =
L

2
(1 + ξ)G1 and having in

mind that for a straight beam R0 =
∑N

k=1 IkR0k, the upper expression can be re–

written as
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r(ξ) =
N∑
k=1

Ik

[
rk −

1

N
(R0 −R0k)× θk

]
=

N∑
k=1

Ikrk−
1

N

(
R0 ×

N∑
k=1

Ikθk −
N∑
k=1

IkR0k × θk

)

=
N∑
k=1

Ikrk −
1

N

(
R0 × θ −

N∑
k=1

IkR0k × θk

)
=

N∑
k=1

Ik

[
rk −

1

N
(R0k × θ −R0k × θk)

]

=
N∑
k=1

Ik

[
rk +

1

N
(θ − θk)×R0k

]
. (109)

Since u(x1) = r(x1)−R(x1) as it has been stated earlier, the same interpolation can

also be applied to the displacement vector, i.e.

u(ξ) =
N∑
k=1

Ik(ξ)

[
uk −

1

N

L

2
G1 × (ξ − ξk)θk

]
=

N∑
k=1

Ik

[
uk +

1

N
(θ − θk)×R0k

]
,

(110)

because, from Figure 2.2 it can be stated

R(x1) = R(0) + R0(x1) = R(0) +
N∑
k=1

Ik(x1)R0k =
N∑
k=1

Ik(x1)R(0) +
N∑
k=1

Ik(x1)R0k

=
N∑
k=1

Ik(x1)[R(0) + R0k] =
N∑
k=1

Ik(x1)Rk. (111)

Very elegant alternative expression for the interpolation of the position vector follows

from (109) by noting rk = R(0) + R0k + uk ⇔ R0k = rk − uk −R(0):

r(ξ) =
N∑
k=1

Ik

rk +
1

N

(θ − θk)× rk −
sec.ord.term︷ ︸︸ ︷

(θ − θk)× uk

− 1

N

=0︷ ︸︸ ︷(
θ −

N∑
k=1

Ikθk

)
×R(0).

(112)

Having in mind that in linear analysis all second order terms vanish, we further have

[20]

r(ξ) =
N∑
k=1

Ik

(
I +

1

N
θ̂ − θk

)
rk. (113)

Let us introduce a generalised interpolation Ĩk and write
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r =
N∑
k=1

Ĩkrk, with Ĩk = Ik

(
I +

1

N
θ̂ − θk

)
. (114)

Expression (114) holds both for parameters ξ and x1, depending on the parameters

used for Lagrangian polynomial Ik and interpolated rotation vector θ. It appears that

this result may be taken as a useful basis for the development of non–linear finite

elements with a capability to provide the exact analytical result in a linear analysis.

2.4.4 Finite element implementation of the problem–independent

interpolation

The exact problem–independent interpolation for the rotation and the position field

is given by the expressions (100) and (101) that can be used for the derivation of the

beam equilibrium in the finite-element sense in the same manner as done previously for

the case of the problem–dependent interpolation, e.g. using the principle of minimum

total potential energy V = Vdef − U with Vdef as a strain energy and U as the work

of the applied loading. Exact solution for the position field given by (101) can be

re-written as

r(ξ) =
N∑
i=1

Ji(ξ)ri +
M∑
p=1

Kp(ξ)Ĝ1θp, (115)

where Kp(ξ) = −L
2

∏N
j=1(ξ− ξ̄i)

∑M−N
j=0

dp,N−1+j

N + j
ξj. Variations of the strain energy and

the work of the applied conservative loading are

δVdef =
N∑
i=1

δuTi

N∑
j=1

∫ 1

−1

[J ′iI 0 0]


2

L
CN CNĜ1 0

−Ĝ1CN −L
2

Ĝ1CNĜ1 0

0 0
2

L
CM


J
′
iI

0

0

 dξuj

+
N∑
i=1

δuTi

M∑
q=1

∫ 1

−1

[J ′iI 0 0]


2

L
CNĜ1 CNĜ1 0

−Ĝ1CNĜ1 −
L

2
Ĝ1CNĜ1 0

0 0
2

L
CM


K

′
qI

IqI

I ′qI

 dξθq
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+
M∑
p=1

δθTp

N∑
j=1

∫ 1

−1

[K ′pI IpI I ′pI]


− 2

L
Ĝ1CN −Ĝ1CNĜ1 0

−Ĝ1CN −L
2

Ĝ1CNĜ1 0

0 0
2

L
CM


J
′
jI

0

0

 dξuj

+
M∑
p=1

δθTp

M∑
q=1

∫ 1

−1

[K ′pI IpI I ′pI]


− 2

L
Ĝ1CNĜ1 −Ĝ1CNĜ1 0

−Ĝ1CNĜ1 −L
2

Ĝ1CNĜ1 0

0 0
2

L
CM


K

′
qI

IqI

I ′qI

 dξθq
and

δU =
N∑
i=1

δuTi

(
L

2

∫ 1

−1

Jindξ + Fi

)

+
M∑
p=1

δθTp

[
L

2

∫ 1

−1

(
−KpĜ1n + Ipm

)
dξ +

(
−Kp(ξp)Ĝ1Fp + Mp

)]
. (116)

This leads to the standard finite–element equilibrium

δpT (Kp−R) = 0 =⇒ Kp−R = 0,

where p is the vector of N unknown nodal displacements uj and M unknown nodal

rotations θp, K and R are the element stiffness matrix and the vector of the equivalent

nodal loading.

If the same nodes are chosen for the unknown displacements and rotations (M = N ⇔
Ji = Ii and Ki = − 1

N

L

2
Ii(ξ − ξi)), the stationarity principle becomes

N∑
p=1

δpTi

M∑
j=1

(Kijpj −Ri) = 0 =⇒
M∑
j=1

Kijpj = Ri,

where pTi =
〈
uTi θTi

〉
,

Ri =
L

2

∫ 1

−1

[
IiI 0

−KiĜ1 IiI

]{
n

m

}
dξ +

{
Fi

Mi

}
,

Kij =
2

L

∫ 1

−1

 I ′iI
′
jCN I ′iCN(K ′jI +

L

2
IjĜ1)

(K ′iI−
L

2
IiĜ1)I ′jCN (K ′iI−

L

2
IiĜ1)CN(K ′jI +

L

2
IjĜ1) + I ′iI

′
jCM

 dξ.
It is instructive to compare these results with the corresponding expressions for

– 36–



the residual force vector and the material stiffness matrix in [34] evaluated in the

undeformed configuration. The only difference arises from the presence of the linked

interpolation.

For the beams with the internal degrees of freedom (that are written within a part of

the vector of the nodal unknowns p denoted as pa) it is always possible to perform

static condensation of these degrees of freedom in order to reduce the size of the global

problem. This is performed by suitable ordering of the degrees of freedom so that the

element equilibrium Kp = R may be written in a block-matrix form as[
Kaa Kab

Kba Kbb

]{
pa

pb

}
=

{
Ra

Rb

}
,

where pb contains only the unknown rotations and displacements of the boundary nodes

pTb =
〈
uT1 θT1 uTN θTN

〉
. Further we have

pa = K−1
aa (Ra −Kabpb), (117)

which allows us to compute the internal degrees of freedom once the global unknowns

pb have been determined. These global unknowns are computed from

K︷ ︸︸ ︷
(Kbb −KbaK

−1
aa Kab) pb =

R︷ ︸︸ ︷
Rb −KbaK

−1
aa Ra . (118)

The condensed stiffness matrix and load vector indicated above are identical to those

given in (62) and (67) since the interpolation employed here has been designed to

provide the exact solution to the problem. The proof to this follows from the variation

of the strain energy, which for a problem–independent formulation reads

δVdef = 〈δpTa δpTb 〉

[
Kaa Kab

Kba Kbb

]{
pa

pb

}
. (119)

With pa given in (117), variation of this internal degrees of freedom is

δpa = −K−1
aa Kabδpb. (120)

Substituting (120) into the variation of the strain energy (119) gives

δVdef = pTb (Kbb −KbaK
−1
aa Kab)pb, (121)

where the term in the bracket presents the stiffness matrix which is identical to the K

in expression (118).

The variation of the strain energy for a problem–dependent formulation reads
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δVdef = δpTb K pb, (122)

where K is the stiffness matrix given by (67). Since the strain energy is the same

regardless of the formulation used, it follows that K = Kbb −KbaK
−1
aa Kab.

From the variation of the work of the applied loading, the same can be proven for

load vector R.

The exact analytical distribution of the displacement and the rotation field follows from

the full problem–independent interpolation defined by (100) and (115). The exact an-

alytical distribution of the strain measures and the stress and stress-couple resultants

further follows from (10) and (25).

2.5 Examples

In this section we will consider a few problems with different distributed loading and

apply the results derived in order to obtain a number of interpolations for the unknown

quantities, all of which provide the exact theoretical result. In all examples the nodal

points will be taken to be equally spaced along the element including element bound-

aries as the nodal points, i.e. ξi =
2i−M − 1

M − 1
for i = 1, ...,M and ξ̄j =

2j −N − 1

N − 1
for j = 1, ..., N .

2.5.1 Thick beam element with no distributed loading

For a beam without distributed loading ( m = 0 and n = 0) the dimensionless loading

functions vanish (µ = 0 and ν = 0) and, as stated earlier, the exact solution is returned

by the proposed interpolation provided M ≥ 3 and N ≥ 2. In what follows we take

the interpolation for the rotation field of a minimum order, i.e. M = 3, for which the

equally spaced nodal points are ξ1 = −1, ξ2 = 0 and ξ3 = 1 with the corresponding

nodal rotations θ1, θ2 and θ3 and the Lagrangian interpolation

I1 =
1

2
ξ(ξ − 1), I2 = −(ξ + 1)(ξ − 1), I3 =

1

2
(ξ + 1)ξ, (123)

while for the position field we take different number of nodes: minimum (N = 2), equal

to the number of nodes for the rotation field (N = 3) or larger than the number of

nodes for the rotation field by one (N = 4). This will result in different expressions for

the position field, which are all however equivalent to one another. For the rotation

field, (123) in conjunction with (100) always leads to

θ(ξ) =
1

2
ξ(ξ − 1)θ1 − (ξ + 1)(ξ − 1)θ2 +

1

2
(ξ + 1)ξθ3. (124)
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Element with a minimum number of nodal parameters

For N = 2 the nodal points to interpolate the position field are ξ̄1 = −1 and ξ̄2 = 1,

with the corresponding nodal positions r1 and r2 and the Lagrangian interpolation

polynomials

J1 = −1

2
(ξ − 1), J2 =

1

2
(ξ + 1). (125)

Substituting this into (101) gives

r(ξ) = −1

2
(ξ − 1)r1 +

1

2
(ξ + 1)r2 +

L

4
(1− ξ2)G1 ×

[
ξ

3
(θ1 − 2θ2 + θ3) +

1

2
(θ3 − θ1)

]
,

(126)

which evaluated, for example, at ξ = −1

3
, ξ = 0, ξ =

1

3
gives

r(−1

3
) =

1

3
(2r1 + r2) +

L

81
G1 × (−11θ1 + 4θ2 + 7θ3) (127)

r(0) =
1

2
(r1 + r2) +

L

8
G1 × (θ3 − θ1) (128)

r(
1

3
) =

1

3
(r1 + r2) +

L

81
G1 × (−7θ1 − 4θ2 + 11θ3). (129)

It is known from elementary engineering beam theory that in the absence of dis-

tributed loadings the beam is exposed to constant extensional and shear strains. This

results is confirmed by the present interpolation and becomes obvious upon substitution

of (124) and (126) into (10):

Γ =
du

dx1

+ Ĝ1θ =
2

L
(r−R)′ + G1 × θ =

2

L
r′ −G1 + G1 × θ

=
r2 − r1

L
+

1

2
G1 ×

[
1− 3ξ2

3
(θ1 − 2θ2 + θ3)− ξ(θ3 − θ1)

]
−G1 + G1 × θ

=
r2 − r1

L
+

1

6
G1 × (θ1 + 4θ2 + θ3)−G1. (130)

Element with same nodes for positions and rotations

Introducing an additional node to interpolate the position vector in the middle of

the beam we obtain redundant nodal degrees of freedom, which, however, make a

particularly convenient option as the nodes used to interpolate the position and the

rotation vector coincide.

In other words, N = M = 3 and the nodal points to interpolate the position field
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are the same as the nodal points for rotations, with the corresponding nodal positions

r1, r2 and r3. The Lagrangian interpolation is the same as the one used in (123). In

conjunction with the solution for position field for the elements with equidistant nodes

given in (106) gives

r(ξ) =
1

2
ξ(ξ−1)r1− (ξ2−1)r2 +

1

2
ξ(ξ+ 1)r3 +

L

12
ξ(1− ξ2)G1× (θ1−2θ2 +θ3). (131)

This result can be obtained from the solution with minimum number of nodal param-

eters (126) that is given for r(−1) = r1 and r(1) = r2, where in this case (N = M = 3)

r(−1) = r1, r(0) = r2 and r(1) = r3. Also, we introduce
L

8
G1 × (θ3 − θ1) from (128)

with the same nodal renumeration.

Element with independent interpolation for positions and rotations

Introducing two internal nodes to interpolate the position vector we get another set of

redundant nodal degrees of freedom which is also interesting since the interpolations

for the position and the rotation vector turn out to be independent.

Now, N = M + 1 = 4 and the nodal points to interpolate the position field are

ξ̄1 = −1, ξ̄2 = −1

3
, ξ̄3 =

1

3
and ξ̄4 = 1, with the nodal positions r1, r2, r3 and r4. The

Lagrangian interpolation functions are

J1 = − 9

16
(ξ +

1

3
)(ξ − 1

3
)(ξ − 1), J2 =

27

16
(ξ + 1)(ξ − 1

3
)(ξ − 1),

J3 = −27

16
(ξ + 1)(ξ +

1

3
)(ξ − 1), J4 =

9

16
(ξ + 1)(ξ +

1

3
)(ξ − 1) (132)

and the interpolation for the position vector is simply given by (103). The same result

would be obtained from the solution with minimum number of nodal parameters (126)

upon expressing G1×(θ1−2θ2+θ3) by the difference of (129) and (127) and expressing

G1 × (θ3 − θ1) from the sum of the same expressions. Nodes r(−1) = r1, r(1) = r2

from (126) are renumbered as r(−1) = r1, r(−1

3
) = r2, r(

1

3
) = r3 and r(1) = r4. The

result is given here:
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r(ξ) = −1

2
(ξ − 1)r1 +

1

2
(ξ + 1)r4

+ (1− ξ2)
9

16
[ξ(3r3 − 3r2 − r4 + r1) + (r2 + r3 − r1 − r4)]

= −1

2
(ξ − 1)

[
9

8
(ξ2 − 1) + 1

]
r1 +

9

16
(3ξ − 1)(ξ2 − 1)r2 −

9

16
(3ξ + 1)(ξ2 − 1)r3

+
1

2
(ξ + 1)

[
9

8
(ξ2 − 1) + 1

]
r4 =

4∑
j=1

Jj(ξ)rj. (133)

2.5.2 Thick beam element with constant distributed loading n

and m

Constant distributed loading ( m and n) results in constant dimensionless loading

functions µ and ν and the exact solution is obtained by the proposed interpolation

with M ≥ 4 and N ≥ 3. The interpolation of the rotation field is of a minimum

order, i.e. M = 4, for which the equally spaced nodal points ξi ( i = 1, ..., 4 ) are the

same as the nodal points ξ̄j (j = 1, ..., 4) in the previous part, ξ2 = 0, ξ3 = 1 with

the corresponding nodal rotations θ1, θ2, θ3 and θ4 and the Lagrangian interpolation

functions Ii(ξ) i = 1, ..., 4 the same as the interpolation functions Jj(ξ), j = 1, ..., 4

also given in the previous part by (132). This leads to the same interpolation for the

rotation field θ(ξ) =
∑4

i=1 Ii(ξ)θi.

For the position field, we take different number of nodes: minimum (N = 3), equal to

the number of nodes for the rotation field ( N = 4) or larger than the number of nodes

for the rotation field by one (N = 5). This will result in different expressions of the

position field equivalent to one another.

Element with a minimum number of nodal parameters

For N = 3 the nodal points used to interpolate the position field are ξ̄1 = −1, ξ̄2 =

0, ξ̄3 = 1, with the corresponding nodal positions r1, r2 and r3 and the Lagrangian

interpolation functions

J1 =
1

2
ξ(ξ − 1), J2 = −(ξ + 1)(ξ − 1), J3 =

1

2
(ξ + 1)ξ. (134)

In conjunction with (101) this leads to
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r(ξ) =
1

2
ξ(ξ − 1)r1 − (ξ + 1)(ξ − 1)r2 +

1

2
(ξ + 1)ξr3

+
L

2
ξ(ξ2 − 1)G1 ×

9

16

[
ξ

4
(θ1 − 3θ2 + 3θ3 − θ4)− 1

3
(θ1 − θ2 − θ3 + θ4)

]
, (135)

which, evaluated, for example, at ξ = −1

2
, ξ = −1

3
, ξ =

1

3
and ξ =

1

2
, gives

r(−1

2
) =

3

8
r1 +

3

4
r2 −

1

8
r3 +

3

8

L

2
G1 ×

9

16

(
−11

24
θ1 +

17

24
θ2 −

1

24
θ3 −

5

24
θ4

)
(136)

r(−1

3
) =

2

9
r1 +

8

9
r2 −

1

9
r3 +

8

27

L

2
G1 ×

9

16

(
− 5

12
θ1 +

7

12
θ2 +

1

12
θ3 −

1

4
θ4

)
(137)

r(
1

3
) = −1

9
r1 +

8

9
r2 +

2

9
r3 −

8

27

L

2
G1 ×

9

16

(
−1

4
θ1 +

1

12
θ2 +

7

12
θ3 −

5

12
θ4

)
(138)

r(
1

2
) = −1

8
r1 +

3

4
r2 +

3

8
r3 −

3

8

L

2
G1 ×

9

16

(
− 5

24
θ1 −

1

24
θ2 +

17

24
θ3 −

11

24
θ4

)
(139)

For constant distributed loadings the beam is exposed to linearly varying direct and

shearing strains, which is confirmed by the present interpolation upon substitution of

θ =
∑4

i=1 Ii(ξ)θi in (10):

Γ =
2

L
r′ + G1 × θ −G1 =

2

L

[
(ξ − 1

2
)r1 − 2ξr2 + (ξ +

1

2
r3)

]
+

9

16
G1 ×

[(
ξ3 − ξ

2

)
(θ1 − 3θ2 + 3θ3 − θ4)−

(
ξ2 − 1

3

)
(θ1 − θ2 − θ3 + θ4)

]

− 9

16
G1 ×

[(
ξ3 − ξ2 − 1

9
ξ +

1

9

)
θ1 − 3

(
ξ3 − 1

3
ξ2 − ξ +

1

3

)
θ2

+3

(
ξ3 +

1

3
ξ2 − ξ − 1

3

)
θ3 −

(
ξ3 + ξ2 − 1

9
ξ − 1

9

)
θ4

]
−G1
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=
r3 − r1

L
+

2ξ

L
(r1 − 2r2 + r3)

+
9

16
G1 ×

[
− ξ

2
(θ1 − 3θ2 + 3θ3 − θ4) +

1

3
(θ1 − θ2 − θ3 + θ4)

]

+
9

16
G1 ×

[
ξ

9
(θ1 − 27θ2 + 27θ3 − θ4)− 1

9
(θ1 − 9θ2 − 9θ3 + θ4)

]
−G1

=
r3 − r1

L
+

2ξ

L
(r1 − 2r2 + r3)

+
1

32
G1 × [4(θ1 + 3θ2 + 3θ3 + θ4) + ξ(−7θ1 − 27θ2 + 27θ3 + 7θ4)]−G1. (140)

Element with same nodes for positions and rotations

Introducing an additional node to interpolate the position vector and setting the nodes

to coincide with the nodes used to interpolate the rotation vector, we arrive at a

set of redundant nodal degrees of freedom with N = M = 4, ξ̄i = ξi, i = 1, ..., 4,

r1 = r(−1), r2 = r(−1

3
), r3 = r(

1

3
) and r4 = r(1) and the Lagrangian interpolation as

in (132). This gives the following expression for the displacement field

r(ξ) = − 9

16
(ξ2 − 1

9
)(ξ − 1)r1 +

27

16
(ξ − 1

3
)(ξ2 − 1)r2 −

27

16
(ξ +

1

3
)(ξ2 − 1)r3

+
9

16
(ξ + 1)(ξ2 − 1

9
)r4 +

9L

128
(ξ2 − 1)(ξ2 − 1

9
)G1 × (θ1 − 3θ2 + 3θ3 − θ4), (141)

which is again exactly the result obtained from the solution with minimum number

of nodal parameters (135) upon noting that r(−1

3
), r(

1

3
) and r3 = r(1) in (135)

respectively correspond to r2 = r(−1

3
), r3 = r(

1

3
) and r4 = r(1) here. To show this, it

is necessary to express
1

3

L

2
G1 ×

9

16
(θ1 − θ2 − θ3 + θ4) and r(0) from the difference of

the sum of (137) and (138), respectively, and substitute the result in (135).

Element with independent interpolation for positions and rotations

Now N = M + 1 = 5 and the nodal points to interpolate the position field are ξ̄1 =

−1, ξ̄2 = −1

2
, ξ̄3 = 0, ξ̄4 =

1

2
and ξ̄5 = 1, with the nodal positions r1, r2, r3, r4 and

r5. The corresponding Lagrangian interpolation functions are
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J1 =
2

3
(ξ +

1

2
)ξ(ξ − 1

2
)(ξ − 1), J2 = −8

3
(ξ + 1)ξ(ξ − 1

2
)(ξ − 1),

J3 = 4(ξ + 1)(ξ +
1

2
)(ξ − 1

2
)(ξ − 1), J4 = −8

3
(ξ + 1)(ξ +

1

2
)ξ(ξ − 1),

J5 =
2

3
(ξ + 1)(ξ +

1

2
)ξ(ξ − 1

2
) (142)

and the interpolation for the position vector is simply given by (103). As expected,

the same result would be obtained from the solution with minimum number of nodal

parameters (135) upon introduction of
L

2
G1 ×

9

16

1

4
(θ1 − 3θ2 + 3θ3 − θ4) =

2

3
(r1 −

4r2 + 6r3 − 4r4 + r5) and
L

2
G1 ×

9

16

1

3
(θ1 − θ2 − θ3 + θ4) =

2

3
(r1 − 2r2 + 2r4 −

r5) from the sum of the difference of (139) and (137), respectively, and noting that

r(−1

2
), r2 = r(0), r(

1

2
) and r3 = r(1) in the previous part respectively correspond to

r2 = r(−1

2
), r3 = r(0), r4 = r(

1

2
) and r5 = r(1) here:

r(ξ) =
1

2
ξ(ξ − 1)r1 − (ξ + 1)(ξ − 1)r3 +

1

2
(ξ + 1)ξr5

+
2

3
ξ(ξ2 − 1)[ξ(r1 − 4r2 + 6r3 − 4r4 + r5)− (r1 − 2r2 + 2r4 − r5)]

= ξ(ξ − 1)

[
2

3
ξ(ξ + 1)− 2

3
(ξ + 1) +

1

2

]
r1 −

4

3
ξ(ξ2 − 1)(2ξ − 1)r2 + (ξ2 − 1)(4ξ2 − 1)r3

− 4

3
ξ(ξ2 − 1)(2ξ + 1)r4 + ξ(ξ + 1)

[
2

3
ξ(ξ − 1) +

2

3
(ξ − 1) +

1

2

]
r5 =

5∑
j=1

Jj(ξ)rj.

(143)
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3 Static non–linear analysis of beam elements and

configuration–dependent interpolation of arbitrary

order

In this chapter, numerical approaches for solving governing equations of the geomet-

rically non-linear Reissner–Simo beam theory will be studied. We will present an

original novel configuration–dependent interpolation [28] for the kinematic quantities

of the Reissner–Simo beam.

3.1 Introduction to non–linear beam problems

Geometrically exact beam theory and its finite element implementation have been the

subject of extensive research in the recent past(see e.g. [9, 19, 21, 33, 35, 43]). We

are concerned with the geometrically exact 3D beam theory of Reissner [32] and Simo

[33] which has provided the basis for many of the recent finite element formulations

for 3D beams (e.g. [9, 17]). The geometrically exact theory provides the relationship

between the configuration and the adopted strain measures which are fully consistent

with the virtual work principle and the differential equations of motion, regardless of

the magnitude of displacements, rotations and strains involved [33].

Standard procedures in the finite element method use Lagrangian polynomials as in-

terpolation functions to describe unknown functions approximately. Since non–linear

analysis employs Newton–Raphson solution procedure to solve the system of equations

iteratively, this allows us to generalise the interpolation procedure without additional

computational efforts apart from the changes made on the element level.

When dealing with 3D problems, rotations in space can present very serious prob-

lems. These are the problems of additivity and objectivity (invariance). The geomet-

rically exact theory says that the strain measures are objective which means that they

have the ability to remain unaffected by a constant motion of the configuration. How-

ever, this is not necessarily automatically satisfied when the problem is implemented

into a finite element method environment. The reason for this is the additive character

of the interpolation functions that are used in the finite element method, whereas the

rotations in space cannot be presented in this way.

Jelenić and Crisfield [18] introduced a strain–invariant and path–independent ge-
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ometrically exact isoparametric 3D beam element with arbitrary number of nodes.

The key to the formulation is found in the interpolation of current local rotations. A

different approach, aimed at resolving a more general type of non-objectivity of the nu-

merical results with respect to the chosen definition of the beam reference line, is given

in [4] by Borri and Bottasso. The resulting formulation in the process returns exactly

the same solution for the interpolation of the rotation field as [18], and it additionally

eliminates the problem of shear locking by design. However, the formulation is only

applicable to two–noded elements and the given methodology has been strictly limited

to that case. Both of these formulations [4, 5, 18] present a problem dependent on the

configuration of the beam, hence configuration–dependent interpolation term can be

used.

In non–linear 3D beam theory with rotational degrees of freedom [33] configuration–

dependent interpolation therefore may be utilised to provide a result invariant to the

choice of the beam reference axis [5] or invariant to a rigid–body rotation [18]. For

2D beam elements, the latter issue vanishes, and such elements are more illustrative

for the study of accuracy of the configuration–dependent interpolation in higher–order

elements.

When choosing new interpolation functions we demand they result in exact solution

where such exists, such as linear analysis and pure bending in non–linear analysis. In

order to define the new configuration–dependent interpolation, existing configuration–

dependent interpolations are used as a template [5, 18].

In the first three subsections of the second chapter we present the three basic ingre-

dients on which we build our family of elements with configuration–dependent inter-

polation.

The first of these is the family of generalised interpolation functions for the rotation

increments which, for a two–noded element, coincides with the interpolation for the

same quantity in the helicoidal interpolation, our second basic ingredient. Since the

helicoidal interpolation is only applicable to two–noded elements and it utilises the

same interpolation also for the position vector, it appears to be a natural idea to use

the generalised interpolation from our first ingredient when attempting to generalise

the helicoidal interpolation to higher–order elements. This interpolation is next fine–

tuned to provide the exact solution in linear analysis, our third ingredient.

In the following subsection we constrain this interpolation to satisfy the strain–
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invariance condition. Results for the 2D case are given as well as the graphical repre-

sentation of the proposed functions.

3.1.1 Summary of the strain–invariant 3D beam formulation

A strain–invariant path–independent formulation for geometrically exact higher–order

beam element has been derived in [18]. In this formulation the position vector of the

beam reference axis, taken to coincide with the line of centroids, in the deformed state

r(x1) has been interpolated in a standard Lagrangian manner as

r(x1) ≈ rh(x1) =
N∑
i=1

Ii(x1)ri , (144)

where x1 ∈ [0, L] is the material–point position parameter, N is the number of element

nodes, Ii(x1) are the Lagrangian polynomials of order N − 1 satisfying Ii(x1j) = δij

and ri = rh(x1i), where index h denotes an interpolated field, and δij is the Kronecker

symbol (δij = 1 if i = j and δij = 0 otherwise).

The rotations have been treated in a very specific manner. The rotation matrix Λ(x1)

has been decomposed into a part which is constant for the whole beam and rigidly

attached to a node (Λr), and the part due to a local Ψl rotation with respect to Λr:

Λ(x1) = Λr exp Ψl(x1) ≈ Λh(x1) = Λr exp Ψ̂
lh

(x1) , (145)

with

exp Ψ̂
lh

= I +
sin Ψlh

Ψlh
Ψ̂
lh

+
1− cos Ψlh

(Ψlh)2
(Ψ̂

lh
)2 , (146)

where Ψlh =‖ Ψlh ‖ and Λr may be taken to coincide with a particular node I or may

be related to two chosen nodes I and J via

Λr = ΛI exp(
1

2
φ̂) , (147)

where φ is the relative material rotation between the nodes I and J extracted from

exp φ̂ = ΛT
I ΛJ (148)

and index l denotes a local value of a rotation taken with respect to the reference triad

Λr. Note that for I = J, exp φ̂ = I or, in other words, there is no relative rotation φ.
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The local rotation Ψl(x1) is next interpolated in the standard Lagrangian way

Ψl(x1) ≈ Ψlh(x1) =
N∑
i=1

Ii(x1)Ψl
i , (149)

where the local nodal rotations Ψl
i are extracted from

exp Ψ̂
l

i = ΛT
r Λi . (150)

For the non–linear finite–element solution procedure it is necessary to interpolate the

Newton–Raphson increments ∆r and ∆ϑ in ∆Λ = ∆̂ϑΛ. Obviously

∆r ≈ ∆rh =
N∑
i=1

Ii ∆ri , (151)

while ∆ϑ has been closely investigated in [18] and the result found in the form

∆ϑ ≈ ∆ϑh =
N∑
i=1

Ĩ
i
(Λh)∆ϑi , (152)

with

Ĩ
i

=
N∑
j=1

N∑
k=1

∆ij
k Λr

{
(δIk + δJk)

[
I−H(Ψlh)

N∑
m=1

ImH−1(Ψl
m)

]
Vj

+ H(Ψlh)IkH
−1(Ψl

j)

}
ΛT
r , (153)

VI =
1

2
(I +

1

φ
tan

φ

4
φ̂) , (154)

VJ =
1

2
(I− 1

φ
tan

φ

4
φ̂) (155)

and

H(Ψl) = I +
1− cos Ψl

(Ψl)2
Ψ̂
l
+

Ψl − sin Ψl

(Ψl)3
(Ψ̂

l
)2 , (156)

H−1(Ψl) = I− 1

2
Ψ̂
l
− 1

2

Ψl sin Ψl + 2 cos Ψl − 2

(Ψl)2(1− cos Ψl)
(Ψ̂

l
)2 , (157)
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while

∆ij
k =

1 for i = j = k

0 otherwise
. (158)

3.1.2 Summary of the helicoidal 3D beam formulation

The helicoidal interpolation presented and developed in many different aspects in

[4, 5, 7, 6, 8] may be thought of as originating from a requirement that the finite-

element solution should be invariant to the choice of the beam reference line and kine-

matically consistent in the sense that it should belong to the solution space including

the orthogonality group SO(3).

The first of these requirements boils down simply to the condition that both the posi-

tion vector of the reference line (r) and the rotation tensor (Λ) should be interpolated

using the same interpolation functions. For instance, using the standard Lagrangian

polynomials this yields [8]

rh(x1) =
N∑
i=1

Ii(x1)ri (159)

Λh(x1) =
N∑
i=1

Ii(x1)Λi. (160)

The above interpolation of the rotation tensor, however, is clearly kinematically

inconsistent, i.e. Λh(x1) is in general neither orthogonal nor unimodular (see Subsection

2.2.1 for definitions). To satisfy this requirement, an alternative interpolation has been

proposed in [4] which reads

rh(x1) =
2∑
i=1

Ñiri (161)

Λh(x1) =
2∑
i=1

ÑiΛi ⇒ ∆ϑh(x1) =
2∑
i=1

Ñi∆ϑi, (162)

where the generalised interpolation functions Ñi are identical to Ĩi in (153) for two–

noded element N = 2 (see Appendix B). It is important to note that the proposed

helicoidal interpolation makes sense only for two–noded elements.

Linearised model

If we attempted to apply this result to a higher–order element, we would realise that

the exact result, even in the limit case of the analysis becoming linear, cannot be

– 49–



achieved. To show this let us first note that

ΛrΛ
T
r = I , (163)

ΛrH(Ψlh)ΛT
r = H(ΛrΨ

lh) , (164)

ΛrH
−1(Ψl

i)Λ
T
r = H−1(ΛrΨ

l
i) , (165)

ΛrVJΛ
T
r =

1

2
(I− 1

φ
tan

φ

4
Λ̂rφ) , (166)

ΛrVIΛ
T
r =

1

2
(I +

1

φ
tan

φ

4
Λ̂rφ) (167)

and also that ΛrΨ
l
i and Λrφ are the spatial counterparts of Ψl

i and φ:

ψl
i = ΛrΨ

l
i , (168)

ϕ = Λrφ . (169)

Now, for linearised model, the rotations become infinitesimally small which means

that Λr = Λ0, where Λ0 is a matrix of initial undeformed orientation. If we want to

write H(ψlh) and H−1(ψli) as linear functions of their arguments, we build up a Taylor

series of the trigonometric functions involved and keep the linear terms only. This gives

us linear functions

H(ψlh) = I +
1

2
ψ̂
lh

, (170)

H−1(ψl
i) = I− 1

2
ψ̂
l

i . (171)

Also

Λ0VIΛ
T
0 =

1

2
I +

1

2
lim
ϕ→0

(
tan

ϕ

4
ϕ

) ϕ̂ =
1

2
(I +

1

4
ϕ̂) , (172)

Λ0VJΛ
T
0 = ... =

1

2
(I− 1

4
ϕ̂) , (173)

ϕ = ψl
J −ψl

I , (174)
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and, owing to Λr = Λ0, the rotations cease to be local i.e. ψl
i = ψi.

For linearised model we thus have

Ĩ
i

=
N∑
j=1

N∑
k=1

∆ij
k (δIk + δJk)

[
I− (I +

1

2
ψ̂
h
)

N∑
m=1

Im(I− 1

2
ψ̂m)

]
Λ0VjΛ

T
0

+
N∑
j=1

N∑
k=1

∆ij
k Ik(I +

1

2
ψ̂
h
)(I− 1

2
ψ̂j) = Ii(I +

1

2
ψ̂h −ψi) . (175)

The results from (161) and (162) now become

rh =
N∑
i=1

Ii(I +
1

2
ψ̂h −ψi)ri =

N∑
i=1

Ii(I +
1

2
ψ̂h −ψi)(Ri + ui) , (176)

∆ϑh =
N∑
i=1

Ii(I +
1

2
ψ̂h −ψi)∆ϑi , (177)

where Ri is the vector of initial nodal positions and ui is the vector of nodal displace-

ments. Since rh = Rh + uh and Rh =
∑N

i=1 IiRi and because for linearised model

∆ϑi = ψi, we further have

N∑
i=1

IiRi + uh =
N∑
i=1

IiRi +
N∑
i=1

Iiui +
1

2

N∑
i=1

Iiψ̂
h
Ri −

1

2

N∑
i=1

Iiψ̂iRi , (178)

ψh = (I +
1

2
ψ̂
h
)

N∑
i=1

Iiψi , (179)

i.e.

(I− 1

2
ψ̂
h
)ψh =

N∑
i=1

Iiψi ⇒ ψh =
N∑
i=1

Iiψi (180)

and

uh =
N∑
i=1

Iiui +
1

2
ψ̂
h

N∑
i=1

IiRi −
1

2

N∑
i=1

Iiψ̂iRi =
N∑
i=1

Ii(ui +
1

2
R̂i −Rhψi) . (181)
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3.1.3 Exact interpolation in linear 3D beam theory

In the first chapter of the thesis it has been shown that in linear analysis the exact

result follows from the interpolation

ψh =
N∑
i=1

Iiψi , (182)

uh =
N∑
i=1

Ii

(
ui +

1

N
(ψ −ψi)×Ri

)
. (183)

With cross product being anticommutative operator, equation (183) can be rewritten

as

uh =
N∑
i=1

Ii

(
ui −

1

N
Ri × (ψ −ψi)

)
,

which can further be written as

uh =
N∑
i=1

Ii

(
ui +

1

N
R̂i −Rhψi

)
, (184)

which coincides with the result in (180) and (181) only for two–noded element where

N = 2. In other words, an attempt to generalise the helicoidal interpolation from (161)

and (162) to higher–order elements by using the generalised interpolation from (153)

would fail to provide the exact linear result.

In order to generalise the formulation from (161) and (162) to higher–order elements,

the generalised interpolation from (153) may still be used if accordingly modified. In

particular, to achieve the desired interpolation for uh in (183), we have to have a

generalised interpolation which will result in the linearised form which is

Ĩ
i

= Ii(I +
1

N
ψ̂h −ψi) , (185)

rather than the result obtained in (175). This is possible if the generalised interpolation

in (153) is modified into

Ĩ
i

=
N∑
j=1

N∑
k=1

∆ij
k Λr

{
(δIk + δJk)

[
I−H(Ψlh)

N∑
m=1

ImH−1(Ψl
m)

]
Vj

+ H(
2

N︸︷︷︸ Ψlh)IkH
−1(

2

N︸︷︷︸ Ψl
j)

}
ΛT
r , (186)

with the modifications indicated.
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Obviously, the above modification is in a sense artificial, since the original Ĩ
i
in (153) has

been derived from the strain-invariance condition. Nevertheless, the latter condition

is needed for the rotational, not translational interpolation, i.e. there are no principal

objections to applying the result from (186) to the interpolation for the position vector.

Given the basic requirement, however, i.e. that its linearised form should reduce to

Ĩ
i

= Ii(I +
1

N
ψ̂h −ψi), it makes sense to apply a more general modification of the

form

Ji =
N∑
j=1

N∑
k=1

∆ij
k Λr

{
(δIk + δJk)

[
I−H(βΨlh)

N∑
m=1

ImH−1(βΨl
m)

]
Vαj

+ H(γ Ψlh)IkH
−1(γ Ψl

j)

}
ΛT
r , (187)

with

VαI,J =
1

2
(I± 1

φ
tan

αφ

4
φ̂) (188)

and α, β, γ as free parameters. For α = β = γ = 1 we thus recover the original

interpolation from (153), while for α = β = 1 and γ =
2

N
we recover the modified

interpolation from (186).

As mentioned in Section 3.1.1, to keep the formulation strain invariant and at the

same time make it reduce to the exact form in linear analysis regardless of the number

of nodes, it turns out to be necessary to interpolate the rotational changes exactly as

in (152), with Ĩ
i

given in (153). It has to be remembered, however, that such duality

goes against the logic of the idea in [5] (see expressions (161) and (162)), which was

motivated by a desire to make the formulation independent of the choice of the beam

reference axis.

3.1.4 Strain invariance of the proposed formulation

Furthermore, as stated earlier, the strain invariant interpolation is given as ∆ϑh =∑N
i=1 Ĩ

i
∆ϑi and rh =

∑N
i=1 Iiri, not rh =

∑N
i=1 Ĩiri , or in this case the modified

interpolation rh =
∑N

i=1 Jiri. In other words, the latter interpolation is acceptable

only if we can prove that it also gives a strain–invariant solution.

To check this, we recall from [18] that a strain invariant interpolation rh must satisfy

rh = ΛR(rR + rh) , (189)
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where ΛR and rR are arbitrary constant rotation and translation and rh is the inter-

polated position of a configuration rotated by ΛR and displaced by rR, such that

Λi = ΛRΛi , (190)

ri = ΛR(rR + ri) . (191)

For the interpolation given in (187) we thus have to check if

N∑
i=1

Ji ri = ΛR(rR +
N∑
i=1

Jiri) . (192)

Since Ψl and φ in Ji in (187) are local rotations, which are by definition not affected

by any constant rotation it follows that Ji = Ji(ΛRΛ) = ΛRJiΛ
T
R and we are left to

check if
N∑
i=1

ΛRJiΛ
T
RΛR(rR + ri) = ΛR(rR +

N∑
i=1

Jiri) , (193)

i.e.
N∑
i=1

ΛRJirR +
N∑
i=1

ΛRJiri = ΛRrR + ΛR

N∑
i=1

Jiri . (194)

Since ΛR and rR are constant,

ΛR

N∑
i=1

Ji rR +

�
�

�
�

�
�

ΛR

N∑
i=1

Jiri = ΛRrR +

�
�

�
�

�
�

ΛR

N∑
i=1

Jiri .

After premultiplying by ΛT
R we are thus left to check if (

∑N
i=1 Ji − I)rR = 0 i.e. if∑N

i=1 Ji has a single arbitrary eigenvector and all the eigenvalues equal to unity. In

other, simpler words, the interpolation functions Ji will provide a strain–invariant

solution only if
∑N

i=1 Ji = I i.e. only if they are complete.

The condition for a strain-invariant solution is therefore (note that ψl = ΛrΨ
l)

∑N
i=1 Ji =

∑N
i=1{δIi

[
I−H(βψlh)

∑N
m=1 ImH−1(βψl

m)
] 1

2
(I +

1

φ
tan

αφ

4
φ̂)

+δJi

[
I−H(βψlh)

∑N
m=1 ImH−1(βψl

m)
] 1

2
(I− 1

φ
tan

αφ

4
φ̂)

+H(γψlh)IiH
−1(γψl

i)} = I ,
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i.e. (
1

2
+

1

2
)
[
I−H(βψlh)

∑N
m=1 ImH−1(βψl

m)
]

+ H(γψlh)
∑N

i=1 IiH
−1(γψl

i) = I ,

leading to

H(βψlh)
∑N

i=1 IiH
−1(βψl

i) = H(γψlh)
∑N

i=1 IiH
−1(γψl

i) .

The strain–invariance condition therefore requires that β = γ and, given the structure

of H and H−1 in (156) and (157), this appears to be the only condition. The resulting

interpolation, therefore, has only two free parameters (α, β):

Ji =
1

2
δIi

[
I−H(βψlh)

N∑
m=1

ImH−1(βψl
m)

]
(I +

1

φ
tan

αφ

4
φ̂)

+
1

2
δJi

[
I−H(βψlh)

N∑
m=1

ImH−1(βψl
m)

]
(I− 1

φ
tan

αφ

4
φ̂)

+ H(βψlh)IiH
−1(βψl

i) . (195)

In conclusion, the helicoidal interpolation may be generalised to higher–order ele-

ments in the following two ways:

1) β = 1, which provides a same interpolation for the position vector and the rotation

matrix and thus gives a solution which is independent to the position of the beam

reference axis; this solution, however, does not represent the exact field distribution in

the linear limit;

2) β =
2

N
, which provides the exact field distribution in the linear limit, but fails to

provide the solution which is independent of the position of the beam reference axis.

3.1.5 Application to 2D beam problems

It is obvious from the above presentation that one of the principal motivations for the

development of the generalised interpolation (195) lies in the analysis of the conditions

for objectivity of the numerical solution [18], which is a problem that exists only in

3D and is solved by introducing the generalised interpolation (152). However, since we

here study the implications of applying this result to the interpolation of translations, it

makes sense to limit our attention only to 2D, where the complexities of implementation

of the kinematics of 3D rotations vanish.

In 2D these results simplify considerably since all the rotations are coaxial. Owing to

the structure of matrices H and H−1, which contain the skew–symmetric matrices of
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rotational components, it turns out simply that

∆ϑh =
N∑
i=1

Ĩ
i
∆ϑi =

N∑
i=1

Ii∆ϑi , (196)

which means that the total rotations in 2D (let us denote them as ϕ rather than ϑ)

are interpolated simply as ϕ ≈ ϕh =
∑N

i=1 Iiϕi.

After the nodes I and J have been chosen, the rigid rotation from Λr in (147) is simply

ϕr =
ϕI +ϕJ

2
(197)

and the local nodal rotations are obtained as

ϕli = ϕi −ϕr , (198)

while the interpolated local rotations are

ϕlh = ϕh −ϕr =
N∑
i=1

Iiϕi −
N∑
i=1

Iiϕr =
N∑
i=1

Iiϕ
l
i . (199)

Since all the rotations are planar, note that ψl and Ψl in Ji are the same, and in 2D

we have denoted them as ϕl.

Since all the rotations are coaxial, ϕh = ϕhe3, ϕi = ϕie3, ϕr = ϕre3, ϕlh = ϕlhe3,

ϕli = ϕlie3, φ = φe3, where e3 is a unit vector orthogonal to the plane of the problem,

the products of matrices H(βϕlh) and H−1(βϕlm) in Ji in (195) simplify.

Denoting

e3 =


0

0

1

⇐⇒ ê3 =

0 −1 0

1 0 0

0 0 0

 ,

these matrices become

H(βϕlh) = I +
1− cos βϕlh

βϕlh
ê3 +

βϕlh − sin βϕlh

βϕlh
(ê3)2 , (200)

H−1(βϕlm) = I− βϕlm
2

ê3 −
1

2

βϕlm sin βϕlm + 2 cos βϕlm − 2

1− cos βϕlm
(ê3)2 (201)
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and noting that Ji only ever multiplies the position vector, which only has the first two

components different from zero, we may introduce ê =

[
0 −1

1 0

]
, where (ê)2 = −I.

Finally matrices H(βϕlh) and H−1(βϕlm) can be written as

H(βϕlh) =
sin βϕlh

βϕlh
I +

1− cos βϕlh

βϕlh
ê , (202)

H−1(βϕlm) =
βϕlm

2

sin βϕlm
1− cos βϕlm

I− βϕlm
2

ê . (203)

Let us analyse the product H(βϕlh)H−1(βϕlm) in expression (195). From (202) and

(203) it follows

H(βϕlh)H−1(βϕlm) =
βϕlm

2
(
sin βϕlh

βϕlh
I +

1− cos βϕlh

βϕlh
ê)(

sin βϕlm
1− cos βϕlm

I− ê) . (204)

Using the double angle trigonometric transformations, and the relations ϕlh = ϕh−ϕr
and ϕlm = ϕm − ϕr with ϕr =

ϕI + ϕJ
2

, we finally have the following result expressed

in terms of the actual rotational unknowns ϕ1, ..., ϕN :

H(βϕlh)H−1(βϕlm) =

sin
βϕlh

2
βϕlh

2

sin
βϕlm

2
βϕlm

2

[
cos(β

ϕh − ϕm
2

)I + sin(β
ϕh − ϕm

2
)ê

]
. (205)

Taking the above result and substituting it into (195), along with φ = ϕJ − ϕI , thus

gives

Ji = (I−
N∑
m=1

Nm)(
δIi + δJi

2
I +

δIi − δJi
2

tan(α
ϕJ − ϕI

4
)

ϕJ − ϕI
ê) + Ni , (206)

with

Ni = Ii

sin(β
ϕh − ϕr

2
)

β
ϕh − ϕr

2

sin(β
ϕi − ϕr

2
)

β
ϕi − ϕr

2

[
cos(β

ϕh − ϕi
2

)I + sin(β
ϕh − ϕi

2
)ê

]
(207)
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and ϕr =
ϕI + ϕJ

2
. Introducing substitutions ψh = β

ϕh − ϕr
2

and ψi = β
ϕi − ϕr

2
this

may be further compacted to

Ni = Ii

sinψh

ψh

sinψi
ψi

[
cos(ψh − ψi)I + sin(ψh − ψi)ê

]
, (208)

where the result in the brackets is the 2D orthogonal tensor of rotation ψh − ψi.
Note that the above result is well defined in the limit when ϕi → ϕr ⇐⇒ ψi → 0:

lim
ψi→0

Ni = Ii
sinψh

ψh
(cosψhI + sinψhê) .

If ψh → 0, too, Ni obviously reduces to the Lagrangian interpolation. In the case when

I = J :

Ji|I=J = δIi(I−
N∑
m=1

Nm) + Ni .

3.1.6 Kinematically consistent interpolation

Here we derive the conditions under which the solution of the beam problem does not

depend on the chosen reference axis. Two different reference axes will be considered,

denoted as p0 and pc in Figure 3.1.

Figure 3.1: Multiple reference axes.

The position vector in the undeformed state R can be defined with respect to both

reference lines as

R(x) = R0(x1) + Λ0Y0(x2, x3) = Rc(x1) + Λ0Yc(x2, x3), (209)
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where R0 is the position vector of the point on the reference line p0 in a cross–

section, Rc is the position vector of the point on the reference line pc in the cross-section

considered, E is the position vector of the point on reference line pc with respect to the

point on p0, Λ0 is the initial rotation matrix defining orientation of the cross–section,

Y0 is the position vector of the observed point in the cross–section with respect to the

point on p0, and Yc is the position vector of the observed point with respect to the

point on pc.

From (209) there follows

Y0 −Yc = ΛT
0 (Rc −R0). (210)

Further, the position vector in the deformed state can also be written with respect

to both of these axes as follows

r(x) = r0(x1) + ΛY0(x2, x3) = rc(x1) + ΛYc(x2, x3). (211)

Let us now assume an orientation–dependent interpolation C̃
i
(Λh(x1), x1) for the

position of a chosen reference line, i.e.

r0(x1) =
N∑
i=1

C̃
i
r0,i (212)

rc(x1) =
N∑
i=1

C̃
i
rc,i . (213)

Using (212) and (213), (211) can be written as

N∑
i=1

C̃
i
(x1)r0,i + Λ(x1)Y0(x2, x3) =

N∑
i=1

C̃
i
(x1)rc,i + Λ(x1)Yc(x2, x3)

Since r0,i = rc,i −ΛiE and Y0 = E + Yc, the above expression reduces to

(Λ−
N∑
i=1

C̃
i
Λi)E = 0. (214)

This expression has to be satisfied for any E, therefore

Λ =
N∑
i=1

C̃
i
Λi. (215)

This is the condition that has to be satisfied if a solution is to be independent of the

choice of the beam reference axis. In other words, such a solution is possible only if

the same interpolation functions are used to interpolate both the position vector field
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and the rotation tensor field.

If the interpolation from [18] is used as C̃
i
in (215), the result is an orthogonal matrix

even though the nodal rotation matrices are interpolated in an additive manner. The

proof is given in Appendix C.

3.2 Reissner beam theory and finite–element formulation

Kinematic of the beam is given in the subsection 2.2.1 of the second chapter of the

thesis.

3.2.1 Total potential energy

To apply the interpolation derived in the previous section, we consider the Reissner–

Simo beam [34] with the strain energy

φ =
1

2

∫ L

0

〈ΓTκT 〉

{
N

M

}
dx1 (216)

and the potential of the applied loading

U =

∫ L

0

〈uTϑT 〉

{
n

m

}
dx1 + 〈uT0ϑT0 〉

{
F0

T0

}
+ 〈uTLϑTL〉

{
FL

TL

}
, (217)

where n,m are the distributed force and moment loading, and F0, T0, FL, TL are

the endpoint concentrated force and moment loadings. Here u0,uL denote endpoint

displacement vectors, while ϑ0,ϑL denote endpoint rotation vectors. Note that the

potential in (217) makes sense only for conservative loading and in 3D the applied

moments are very often non–conservative.

For conservative loading, the equilibrium follows from the requirement that the varia-

tion of the total potential energy should be zero:

δ(φ− U) = 0⇐⇒
∫ L

0

〈δΓT δκT 〉

{
N

M

}
dx1 − δU = 0 , (218)

with

δU =

∫ L

0

〈δrT δϑT 〉

{
n

m

}
dx1 + 〈δrT0 δϑT0 〉

{
F0

T0

}
+ 〈δrTL δϑTL〉

{
FL

TL

}
. (219)
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3.2.2 2D application

Strain measures of a 2D problem contain only one shear strain γ2 = γ and one bending

strain κ3 = κ, hence the strain measures given in (8) and (9) can be simplified and

written in an expanded form as
ε

γ

κ

 =

 cos(ϕ0 + ϕ) sin(ϕ0 + ϕ) 0

− sin(ϕ0 + ϕ) cos(ϕ0 + ϕ) 0

0 0 1




cosϕ0 + u′

sinϕ0 + v′

ϕ′

−


1

0

0

 . (220)

The variation of the strain energy is

δφ ≈ δφh =

∫ L

0

〈δrT δϕ〉

I2
d

dx1

02

r
′T ê

d

dx1

[Λ 02

0T2 1

]{
N

M

}
dx1 , (221)

with 02 as the two–dimensional null–vector and matrix ê =

[
0 −1

1 0

]
. After application

of interpolation of δr and δϕ, the above becomes

δφ = δpTqi = 〈δpT1 ... δpTN〉


qi,1

...

qi,N

 =
N∑
j=1

δpTj qi,j ,

where

δpj =

{
δrj

δϕj

}
.

To find the internal force vector at a node j, qi,j, our interpolation will be introduced

r ≈ rh =
N∑
i=1

Jiri , (222)

ϕ ≈ ϕh =
N∑
i=1

Iiϕi , (223)

with Ji given in (206). Obviously,

δϕ ≈ δϕh =
N∑
i=1

Iiδϕi ,
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while

δr ≈ δrh =
N∑
i=1

(δJiri + Jiδri) =
N∑
i=1

Jiδri +
N∑
i=1

δJiri .

Since the expression for δJi will be needed in order to calculate the variation of the

total potential energy, variation of this interpolation and some parts of it will be given

here.

In order to write the complete variation of Ji given by (206), variation of the function

Ni and the coefficient (
1

ϕJ − ϕI
tanα

ϕJ − ϕI
4

) will be needed.

Variation of the function Ni is

δNi =
β

2
Ni

N∑
k=1

Mikδϕk , (224)

where (see Appendix D for the derivation)

Mik = Ik(−fhI + ê) + (fiI− ê)δik −
δIk + δJk

2
(fi − fh)I , (225)

with fi =
1

ψi
− cosψi

sinψi
and fh =

1

ψh
− cosψh

sinψh
.

Variation of the coefficient
tanα

ϕJ − ϕI
4

ϕJ − ϕI
is

δ

tanα
ϕJ − ϕI

4
ϕJ − ϕI

 =
N∑
k=1

(δJk − δIk)m δϕk ,

where

m =
α

4(ϕJ − ϕI) cos2 α
ϕJ − ϕI

4

−
tanα

ϕJ − ϕI
4

(ϕJ − ϕI)2
. (226)

Finally

δJi =
N∑
k=1

Pikδϕk , (227)
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where

Pik =
β

2

NiMik −

δIi + δJi
2

I +
δIi − δJi

2

tanα
ϕJ − ϕI

4
ϕJ − ϕI

ê

 N∑
m=1

NmMmk


+ (I−

N∑
m=1

Nm)
δIi − δJi

2
(δJk − δIk)m ê . (228)

Further

δJiri =
N∑
k=1

Pikriδϕk = [Pi1ri Pi2ri ... PiNri]


δϕ1

δϕ2

...

δϕN


and

δr ≈ δrh =
N∑
i=1

(Jiδri + δJiri) = [[J1 j1] ... [JN jN ]]



{
δr1

δϕ1

}
...{

δrN

δϕN

}


, (229)

where

jk =
N∑
i=1

Pikri .

Let us introduce the following notation{
δr

δϕ

}
=

N∑
j=1

Kjδpj , (230)

where

δpj =

{
δrj

δϕj

}
(231)

and

Kj =

[
Jj jj

0T2 Ij

]
, (232)
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as well as the matrices of Reissner’s beam theory [36]

D =

I2
d

dx1

−êr′

0T2
d

dx1

 , L =

[
Λ 02

0T2 1

]
, S =

{
N

M

}
, (233)

where 02 is a two–dimensional null vector and I2 is a two–dimensional unity matrix.

With this notation, the strain–energy variation may be expressed as

δφ ≈ δφh =
N∑
j=1

δpTj

∫ L

0

(DKj)
TLSdx1 =

N∑
j=1

δpTj qi,j , (234)

where qi,j is the vector of the internal forces at node j.

3.2.3 Special case for I = J

All the expressions written so far imply that nodes I and J may be different nodes

(I 6= J). Let us from now on take that I = J and calculate expressions needed to

evaluate the variation of the interpolation functions of the position vector δJi. In this

case rotation in the reference state ϕr =
ϕI + ϕI=J

2
= ϕI and from (206), (225) and

(228)

Ji = Ni + δIi(I−
N∑
m=1

Nm) , (235)

Mik = Ik(−fhI + ê) + (fiI− ê)δik − δIk(fi − fh)I , (236)

Pik =
β

2

(
NiMik − δIi

N∑
m=1

NmMmk

)
, (237)

jk =
N∑
i=1

Pikri =
β

2

N∑
i=1

Ni Mik(ri − rI) . (238)

The function Ni remains the same as given in (208) but ψh and ψi in it now simplify

to ψh = β
ϕh − ϕI

2
and ψi = β

ϕi − ϕI
2

.

Note that, in linear analysis, (229) reads

δrh =
N∑
i=1

Ii

[
δri +

β

2
ê
(
Rh −Ri

)
δϕi

]
, (239)
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which for β =
2

N
coincides with the variation of (183) thus confirming that the

linked interpolation is a limiting case of the configuration–dependent interpolation

with β =
2

N
in linear analysis.

Vector of the internal forces for I = J follows from (221) and (230)

qi,j =

∫ L

0

BT
j LSdx1 , (240)

with

Bj = DKj =

[
J′j

∑N
i=1 P′ijri − êIjr

′

0T2 I ′j

]
=

[
J′j j′j − êIjr

′

0T2 I ′j

]
, (241)

J′j = N′j − δIj
N∑
m=1

N′m , (242)

N′j = Nj

[(
I ′j
Ij
− fhψh′

)
I + ψh

′
ê

]
, (243)

ψh
′
=
β

2

N∑
p=1

I ′pϕp , (244)

P′ij =
β

2

[
N′iMij + NiM

′
ij − δIi

N∑
m=1

(
N′mMmj + NmM′

mj

)]
, (245)

M′
ij = I ′j

(
−fhI + ê

)
+ (δIj − Ij)fh

′
I , (246)

fh
′
= −

(
1

(ψh)2
− 1

sin2 ψh

)
ψh

′
= −g̃h ψh′ , (247)

g̃h =
1

(ψh)2
− 1

sin2 ψh
, (248)

r′ =
N∑
j=1

J′jrj , (249)

j′j =
N∑
i=1

P′ij ri . (250)
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3.3 Graphical presentation of the proposed

configuration–dependent interpolation functions

The configuration–dependent interpolation derived will be now illustrated for a 2D

problem and compared to the Lagrangian interpolation polynomials for a two–noded

and a three–noded element.

3.3.1 Two–noded element

If a reference node I is chosen to be the left node of a two–noded element (I = 1),

interpolation matrices J1 and J2 are obtained from (206) as

J1 = I−N2 and J2 = N2 ,

where N2 is calculated from (208) for ψ1 = 0, ψh = I2ψ2, I1 = 1 − x1

L
and I2 =

x1

L

and various values of ψ2 =
β

2
(ϕ2 − ϕ1). The matrix function N2 is for a planar prob-

lem a two–dimensional tensor with its components given in Figure 3 as functions of

x1. Different line–types are used to illustrate these functions for different values of ψ2

(0,
π

3
and

π

2
). As expected, for ψ2 = 0, J1 and J2 coincide with the Lagrangian polyno-

mials I1 and I2. As the local rotation ψ2 increases the diagonal terms in N2 increasingly

deviate from I2 =
x1

L
, while the off–diagonal terms also grow from the initial zero value.
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3.3.2 Three–noded element

In this case the reference node is chosen to be the middle node of the element (I = 2).

The configuration–dependent interpolation J1, J2 and J3 follow from (206) as

J1 = N1, J2 = I−N1 −N3 and J3 = N3,

where matrices N1 and N3 are calculated from (208). To simplify the calculation, the

local rotations of the first and the last node are taken to be equal in magnitude and of

an opposite sign.

The components of J1, J2 and J3 are shown in Figures 4-6 for three different val-

ues of ψ1 = −ψ3 (0,
π

6
,
π

4
). Again, it can be observed that, for a zero local rota-

tion, the proposed interpolation functions coincide with the Lagrangian polynomials

I1 = 1− 3
x1

L
+ 2

x2
1

L2
, I2 = 4

x1

L
− 4

x2
1

L2
and I3 = −x1

L
+ 2

x2
1

L2
. Obviously, the departure

of the proposed interpolation from the Lagrangian interpolation is in this element far

smaller than in the two–node element.
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3.3.3 Linearisation of the vector of the internal forces

The nodal equilibrium

gj ≡ qi,j − qe,j = 0 (251)

is to be established iteratively via

N∑
k=1

Kjk ∆pk = −gj, (252)

where qi,j is the vector of the internal forces at node j, qe,j is the vector of the external

forces at node j and Kjk is the stiffness matrix relating the change in pk to the change

of qi,j.

In order to obtain the stiffness matrix of the finite element, it is necessary to carry

out the linearisation of the vector of the internal forces qi,j given by (240).

Linearisation of the vector of the internal forces can be performed as follows:

∆qi,j =

∫ L

0

(
∆BT

j L S + BT
j ∆L S + BT

j L ∆S
)
dx1. (253)

Denoting ∆Bj as ∆Bj = ∆B1j + ∆B2j with

∆B1j =

[
∆J′j ∆j′j

0T2 0

]
, (254)

∆B2j =

[
0 −êIj∆r′

0T2 0

]
, (255)

we may separate the geometric from the configuration–dependent influences in Bj i.e.

∆qi,j =

∫ L

0

∆BT
1jL Sdx1 +

∫ L

0

∆BT
2jL Sdx1 +

∫ L

0

BT
j ∆L Sdx1+∫ L

0

BT
j L ∆Sdx1 =

N∑
k=1

KCD
jk ∆pk +

N∑
k=1

KG
jk∆pk +

N∑
k=1

KM
jk∆pk. (256)

The first term in the above expression is the configuration–dependent part, the next

two terms make the geometric part and the last term is the material part of the stiffness

matrix. KM
jk and KG

jk are the standard material and geometric nodal stiffness matrix

blocks where, however, the strain measures are computed from the interpolated position

vector r as given in (222).

Since S depends linearly on the strain measures, the last term in ∆qi,j turns out to
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be

∫ L

0

BT
j L∆Sdx1 =

N∑
k=1

∫ L

0

BT
j LCLTBkdx1 ∆pk ,

where C = diag(EA,GAs, EI) is a constitutive matrix for a 2D problem and the

material part of the stiffness matrix block is given as

KM
jk =

∫ L

0

BT
j LCLTBkdx1. (257)

Matrix Bj in expression (257) is the same as DKj where D is a differentiation matrix

from [35] given as

D =


d

dx1

0 v′ + sinϕ0

0
d

dx1

−(u′ + cosϕ0)

0 0
d

dx1

 (258)

and Kj given in (232).

The geometric part of the stiffness matrix block also follows using the standard

procedure (see Appendix E):

KG
jk =

∫ L

0

(D2Kj)
TG(D2Kk) dx1 , (259)

where matrices D2 and G introduced in [35] are given as

D2 =


d

dx1

0 0

0
d

dx1

0

0 0 1

 , (260)

G =

 0 0 −t
0 0 n

−t n −t(v′ + sinϕ0)− n(u′ + cosϕ0)

 , (261)

with spatial stress resultants n, t defined as

n =

{
n

t

}
= Λ

[
EA 0

0 GAs

]{
ε

γ

}
. (262)

The configuration–dependent part of the stiffness matrix block given by the first

term in (256) will be derived from (254) .

From (242), ∆J′j follows as
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∆J′j = ∆N′j − δIj
N∑
m=1

∆N′m , (263)

∆Nj =
β

2
Nj

N∑
k=1

Mjk∆ϕk , (264)

∆N′j =
β

2

N∑
k=1

(
N′jMjk + NjM

′
jk

)
∆ϕk =

β

2
Nj

N∑
k=1

Tjk∆ϕk , (265)

with

Tjk =

(
I ′j
Ij

+ ψh
′
(−fhI + ê)

)
Mjk + M′

jk (266)

where M′
jk is given by (246).

Linearisation of the derivative of the interpolation function Jj is given by

∆J′j =
β

2

N∑
k=1

(NjTjk − δIj
N∑
m=1

NmTmk)∆ϕk =
N∑
k=1

Zjk∆ϕk , (267)

with

Zjk =
β

2
(NjTjk − δIj

N∑
m=1

NmTmk)

=
β

2

[
(NjMjk)

′ − δIj
N∑
m=1

(NmMmk)
′

]
. (268)

From (245) and (250), ∆j′j follows as

∆j′j =
β

2

N∑
p=1

(∆N′pMpj + N′p∆Mpj + ∆NpM
′
pj + Np∆M′

pj)(rp − rI)

+
β

2

N∑
p=1

(N′pMpj + NpM
′
pj)(∆rp −∆rI) , (269)

with

∆Mpj =
β

2

N∑
k=1

Vp
jk∆ϕk , (270)

where
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Vp
jk =

[
(Ij − δIj)gh(Ik − δIk)− gp(δpj − δIj)(δpk − δIk)

]
I (271)

and

∆M′
pj =

β

2

N∑
k=1

Vp′

jk∆ϕk , (272)

with

Vp′

jk =
[
(I ′jg

h + Ijg
h′ − δIjgh

′
)(Ik − δIk) + (Ij − δIj)I ′kgh)

]
I . (273)

In the above equation gh
′
= −2ψh

′
hh, where hh =

1

(ψh)3
− cosψh

sin3 ψh
.

Equation (269) now turns into

∆j′j =
N∑
k=1

fjk∆ϕk +
N∑
k=1

Rjk∆rk (274)

with

fjk =
β2

4

N∑
p=1

[
Np

(
TpkMpj + MpkM

′
pj + Vp′

jk

)
+ N′pV

p
jk

]
(rp − rI) (275)

and

Rjk =
β

2

[
(NkMkj)

′ − δIk
N∑
m=1

(NmMmj)
′

]
. (276)

Finally, the configuration–dependent part of the stiffness matrix block is given as

KCD
jk =

∫ L

0

[
02x2 ZT

jkn

nTRjk f

]
dx1 (277)

where n = ΛN, with vector N from S =

{
N

M

}
and f = fTjkn.
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4 Numerical examples

All numerical examples will be calculated using three different interpolations: the

standard Lagrangian interpolation, linked interpolation introduced in [20] and the new

configuration-dependent interpolation (CDI) proposed here. To summarise, between

themselves, these interpolations differ inasmuch as they assume different approxima-

tion of the position field as follows:

Lagrangian: rh =
∑N

i=1 Iiri

Linked: rh =
∑N

i=1 Ii[ri +
1

N
ê(Rh −Ri)ϕi]

CDI: rh =
∑N

i=1

[
δiI(I−

∑N
m=1 Nm) + Ni

]
ri ,

with Rh =
∑N

i=1 IiRi, ϕ
h =

∑N
i=1 Iiϕi and Ni given in (208).

In the tables with results, the number behind the name of the interpolation is the

number of nodes per element, i.e Lagrangian 2 is the 2 noded element which uses

Lagrangian interpolation polynomials, Linked 3 is the 3 noded element with linked

interpolation employed etc.. The stiffness matrix and the internal force vector will

be calculated using the full integration as well as the reduced integration. The full

integration uses N points, where N is the number of nodes per element, while reduced

integration uses N − 1 points to calculate all terms. Note that the linked interpolation

was originally conceived for application in linear analysis. Here, its application will be

tested on examples in non–linear analysis.

When configuration-dependent interpolation is employed, examples will be calculated

with both β = 1 and β =
2

N
. In the first case, the interpolation takes the form of the

one introduced in [18], but here employed for interpolation of the position vector r,

and gives results which are independent of the choice of the beam reference line. When

β =
2

N
the interpolation function takes the form which provides exact solution in the

linear analysis. In order to conduct numerical analysis, an algorithm for a non–linear

2D beam finite element calculation has been written in the program package Wolfram

Mathematica.
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4.1 Standard shear locking test

This example [3] demonstrated in Figure 4.1 was taken to study the effect of the shear

forces on displacements when beam thickness changes from small (thin beam) to large

(thick beam). This effect was introduced at the beginning of the first part as the prob-

lem that arises when standard Lagrangian interpolation is used in low-order elements,

and becomes exceedingly large as the beam thickness becomes smaller.

F

L t

h

Figure 4.1: Cantilever under a vertical tip load.

This problem was analysed in [44] with the geometric and material properties of the

beam given as: L = 1, t = 0.1, E = 107, G = 1013 and the tip load F = 1. Since locking

is directly related to the beam height h, this dimension is varied from very small 0.1 to

very large 10. Vertical displacement results are compared with the reference solution

obtained by discretising beam with 100 quadratic elements in the form of a quotient

v/vref . Results are presented graphically with respect to parameter GL2/Eh2 in the

logarithmic scale and demonstrated in the following figures for the linked interpolation

and the configuration–dependent interpolation. The cantilever is modelled by one, five

and ten elements.

The results presented in Figure 4.2 demonstrate that vertical displacements do not

depend on the thickness of the beam when linked interpolation is used. Hence, we can

say that this interpolation is insensitive to shear locking both for linear and quadratic

elements. As expected, linear elements show better results as the number of the el-

ements used to model the beam increases. On the other hand, quadratic elements

show excellent behaviour with one element only. Behaviour of a two–noded element

with configuration–dependent interpolation employed is presented in Figure 4.3 and is

identical to first graph presented in Figure 4.2. The reason for this identical behaviour

between these two interpolations is in the problem analysed, which is a problem of

small displacements (very close to linear analysis), and the linked interpolation is a

special case of the configuration dependent interpolation with β = 2
N

when displace-

ments and rotations become small.

Especially interesting property of a configuration–dependent interpolation becomes

evident when quadratic and higher–order (N ≥ 3) elements are used. Depending on

the coefficient β, the results are quite different and this is shown in Figure 4.4. The
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Figure 4.2: Normalised vertical displacement at free end versus parameter GL2/Eh2

with linked interpolation employed.

results with β = 2/N are better that the ones obtained with β = 1. This is so be-

cause the problem is in a domain of small displacements and rotations and for this

special case the configuration–dependent interpolation reduces to linked interpolation,

for β = 2/N . This distinction does not exist in linear (two–noded) elements because

N = 2 and β = 2/N = 1. This conclusion will be analysed further and confirmed in

the following examples. Again it is shown here that the elements with configuration-

dependent interpolation do not suffer from shear locking.
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Figure 4.3: Normalised vertical displacement at free end versus parameter GL2/Eh2

with configuration–dependent interpolation employed for two–noded
element.

4.2 Pinned fixed diamond frame

This example was solved analytically by Jenkins et al. [22] using elliptic integrals.

Mattiasson [24] performed the numerical evaluation of the elliptic integrals thus pro-

viding a valuable test for finite element formulations considering large deflections.

The problem is shown in Figure 4.5 and has been solved using two elements only, one

per each leg. The number of nodes per element is variable and the stiffness matrix and

the internal force vector are calculated using both full and reduced integration. The

Newton–Raphson iterative solution procedure is considered to have converged when

the displacement norm has become less than 10−12. Geometrical and material charac-

teristics are given as follows: length of each leg is L = 1, Young’s modulus E = 1, the

shear modulus G = 10E, the second moment of area I = 1 and the area of the cross

section as well as the shear area is A = 1000. The results are compared to the exact

ones given in [24] for the maximum ratio PL2/EI = 10 with n load steps employed,

as shown in Table 4.1.

Mattiasson [24] gave results for the horizontal displacement of the middle node (node

2 in Figure 4.5) and the vertical displacement and rotation of the loaded node (node

3 in Figure 4.5). Table 4.1 shows the reference solution as well as our results. The

reference node in the configuration–dependent interpolation has been set to I = 1 for

CDI2, I = 2 for CDI3 and CDI4 and I = 3 for CDI5. It has to be mentioned that the

reference solution has been obtained for Euler’s elastica (A→∞, As →∞), while the

results obtained here can only model this properties approximately. As a result, the
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Figure 4.4: Normalised vertical displacement at free end versus parameter GL2/Eh2

with configuration–dependent interpolation employed.

extension dominated displacement v does not converge towards the reference solution.

From Table 4.1 it can be seen that the results for Lagrangian and linked interpolation

are identical when reduced integration is employed. This induces us to conclude that

the value of the functions in integrals which define the stiffness matrix and the internal

force vector in these Gaussian points are identical. An interesting property occurs

with linear configuration–dependent element (CDI2) which shows no sensitivity to the

number of the integration points, meaning that the reduced and the full integration

give identical result which is a known result [7]. As expected, the accuracy increases

as the number of nodes increases. Also, all elements, except Lagrangian 2 with full

integration, show certain resistance to shear locking. CDI elements show very little

difference between full and reduced integration. The difference in cases when β = 1

and β = 2/N reduces as the number of nodes per element increases.
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Figure 4.5: Diamond frame.

Table 4.1: Horizontal displacement of the middle node and the vertical displacement
and rotation of the loaded node.

Reduced integration Full integration
Interpolation u v ϕ n u v ϕ n
Lagrangian 2 0.48270 0.55478 1.90744 4 0.00261 0.01478 0.79043 1
Lagrangian 3 0.46444 0.50682 1.45607 12 0.28537 0.37490 1.46635 4
Lagrangian 4 0.46440 0.50585 1.50705 8 0.42523 0.47790 1.49034 12
Lagrangian 5 0.46500 0.50633 1.50431 11 0.45982 0.50147 1.50424 11

Linked 2 0.48270 0.55478 1.90744 4 0.14187 0.23793 1.15110 2
Linked 3 0.46444 0.50682 1.45607 12 0.40523 0.45938 1.52972 7
Linked 4 0.46440 0.50585 1.50705 8 0.45967 0.50286 1.51093 12
Linked 5 0.46500 0.50633 1.50431 11 0.46417 0.50624 1.50280 11

CDI2 0.38676 0.42829 1.68613 4 0.38676 0.42829 1.68613 4
CDI3 (β = 1) 0.45438 0.48723 1.49583 7 0.38976 0.43174 1.67810 9

CDI3 (β = 2/3) 0.45951 0.49677 1.47566 11 0.44959 0.49087 1.46847 12
CDI4 (β = 1) 0.46427 0.50426 1.50410 11 0.45836 0.49417 1.48360 8

CDI4 (β = 2/4) 0.46444 0.50547 1.50623 12 0.45848 0.50258 1.50322 11
CDI5 (β = 1) 0.46503 0.50628 1.50444 11 0.46463 0.50534 1.50582 11

CDI5 (β = 2/5) 0.46502 0.50634 1.50434 11 0.46329 0.50524 1.50365 11
Reference solution [24] u=0.46601 v=0.48760 ϕ=1.50351

4.3 Lee’s frame

Problem of buckling of a hinged right–angle frame was considered in [34, 1]. The second

moment of area, the area and the shear area of the cross section are I = 2, A = 6,

As = A/1.2 and the length of each leg is l = 120. The value of Young’s modulus is

E = 7.2×106 and the Poisson’s ratio is 0.3. The frame is modelled using ten elements,
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five per leg, and the number of nodes per element is variable from two to five nodes.

The horizontal leg of the frame is loaded with a point force P = 15000 at l/5 applied

in one load step only. Figure 4.6 shows deformation lines for various values of loading

force P = 8000, 15000, 17000.

Figure 4.6: Lee’s frame [34].

The reference solution for this example is obtained using 100 standard Lagrangian

quadratic elements [36], 50 per leg with reduced Gaussian integration employed for

evaluation of the stiffness matrix and the internal force vector. The displacements of

the loaded node are given in the Table 4.2. The Newton–Raphson solution procedure

tolerance is set to 10−12 for the displacement norm.

As expected, reduced integration shows good behaviour in case when Lagrangian and

linked interpolation is applied on three–to–five–noded elements, while full integration

shows quite poor behaviour for both of these interpolations in case when the number

of nodes on an element is two or three. Naturally, higher–order elements give better

results.

When CDI2 is applied, full and reduced integration give identical results as shown in

the previous example. Also, for higher–order elements the difference between these two

integrations becomes smaller as the number of nodes increases.

When comparing the CDI results for a higher–order element with different β between

themselves, let us recall that β = 1 gives a solution independent of the position of the

beam reference axis, but fails to provide the exact field distribution in linear analysis,

while β =
2

N
has exactly the opposite properties. It turns out that for highly non–

linear problems like the present one, the former option is preferable. For the problems
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Table 4.2: Displacements of the loaded node.

Reduced integration Full integration
Interpolation u v ϕ u v ϕ
Lagrangian 2 6.4607277 -22.4863863 -0.3939265 0.0032633 -0.2281249 -0.0064778
Lagrangian 3 8.0163768 -25.8624736 -0.3929177 3.3400045 -14.3642921 -0.3026289
Lagrangian 4 8.0281657 -25.8924636 -0.3928227 7.8883600 -25.4463336 -0.3940329
Lagrangian 5 8.0282220 -25.8926334 -0.3928215 8.0266232 -25.8883396 -0.3923843

Linked 2 6.4607277 -22.4863387 -0.3939266 0.4216992 -4.5682100 -0.1444455
Linked 3 8.0163768 -25.8624736 -0.3929177 5.4241565 -19.4069233 -0.3308647
Linked 4 8.0281657 -25.8924636 -0.3928227 7.985295 -25.7133556 -0.3927950
Linked 5 8.0282220 -25.8926334 -0.3928215 8.0274237 -25.8903288 -0.3928343

CDI2 7.2445778 -23.6173958 -0.3968412 7.2445778 -23.6173958 -0.3968412
CDI3(β = 1) 8.0265498 -25.8883573 -0.3928296 7.4676069 -24.2866212 -0.3956893

CDI3 (β = 2/3) 8.0210611 -25.8745419 -0.3928771 7.2254171 -24.2366473 -0.3811429
CDI4 (β = 1) 8.0282182 -25.8926222 -0.3928216 8.0237235 -25.8819096 -0.3928529

CDI4 (β = 2/4) 8.0281837 -25.8925191 -0.3928223 8.0086297 -25.8293214 -0.3929931
CDI5 (β = 1) 8.0282222 -25.8926338 -0.3928215 8.0281793 -25.8925181 -0.3928221

CDI5 (β = 2/5) 8.0282220 -25.8926335 -0.3928215 8.0279227 -25.8917751 -0.3928267
Reference solution u=8.0282209 v=-25.8926306 ϕ=-0.3928215

approaching the linear case, say with P = 1000 instead of P = 15000, it is expected

that the latter option (β =
2

N
) is more accurate. Table 4.3 confirms that it really is so

and that the results for β =
2

N
approach these of the linked interpolation and are less

affected by an application of the full integration. Only three–noded element has been

reviewed since the higher order elements show less sensitivity to coefficient β.

It can be stated that the effect of coefficient β is also configuration–dependent, meaning

that as the calculation is getting closer to linear analysis, the use of β = 2/N is

becoming increasingly justified. In contrast to the Lagrangian and linked interpolation,

however, configuration–dependent interpolation shows very good behaviour when full

integration is used, regardless of the choice of β and the order of element.

Table 4.3: Displacements of the loaded node for smaller force P=1000.

Reduced integration Full integration
Interpolation u v ϕ u v ϕ

Linked 3 0.0097857 -0.6357238 -0.0213572 0.0097250 -0.6327330 -0.0212910
CDI3(β = 1) 0.0097889 -0.6357313 -0.0213573 0.0094235 -0.5881441 -0.0214414

CDI3 (β = 2/3) 0.0097871 -0.6357271 -0.0213573 0.0097868 -0.6356997 -0.0213561
Reference solution u=0.0097877 v=-0.6357291 ϕ=-0.0213573

On the basis of these results, it appears that an improvement in the definition of

the configuration–dependent interpolation may be possible through redefinition of the

coefficient β such that it would be equal to 2/N in the linear case and tend towards
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the unity as the deformation overally progresses.

4.4 Clamped–hinged deep circular arch subject to point load

The problem of a deep circular hinged–clamped arch shown in Figure 4.7 has been

considered by many authors [36, 11, 26] and the exact solution for the critical force,

based on the Kirchhoff-Love theory is given by DaDeppo and Schmidt [11].

Figure 4.7: Deep circular arch subjected to a point load and the deformation lines
caused by different values of the loading force P

The problem will be approximated using 40 straight beam elements of different

order with the following characteristics: the value of Young’s modulus E = 1 × 108,

Poisson’s ratio ν = 0.5, the second moment of area and the area of the cross section are

respectively I = 0.01 and A = 1, the radius of the arch is R = 100 and the subtending

angle of the arch is α = 215 deg. According to the Kirchoff-Love theory, the critical

force that causes this arch to buckle matches the value of 897 [11]. Approximately 80

percent of the value of this critical force (P = 700) will be used as a loading force at

the apex of the arch and the displacements and rotation of the loaded point will be

compared using different interpolation functions with the reference solution obtained

using 100 standard Lagrangian linear elements, with reduced Gaussian integration

employed for evaluation of the stiffness matrix and the internal force vector. Results

are obtained in two load steps and are given in Table 4.4. The Newton–Raphson

tolerance has been set to 10−12 for the displacement norm.

The conclusions drawn from the previous two examples are confirmed by this ex-

ample. The three–noded elements with different β are now again tested for a smaller

value of the force P = 150. The results are shown in Table 4.5. The full integration
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Table 4.4: Displacements of the apex.

Reduced integration Full integration
Interpolation u v ϕ u v ϕ
Lagrangian 2 -50.9961799 -76.3623390 -0.1111182 -0.0757799 -0.1111479 -0.0002016
Lagrangian 3 -51.1053595 -77.0236301 -0.1093941 -37.4519073 -46.1934397 -0.1033123
Lagrangian 4 -51.1054127 -77.0240709 -0.1093922 -51.0850215 -76.9347624 -0.1097022
Lagrangian 5 -51.1054128 -77.0240712 -0.1093922 -51.1053798 -77.0239663 -0.1093926

Linked 2 -50.9961799 -76.3623390 -0.1111182 -2.8294271 -7.1527677 -0.0352417
Linked 3 -51.1053595 -77.0236301 -0.1093941 -46.9985542 -67.7505680 -0.1029238
Linked 4 -51.1054127 -77.0240709 -0.1093922 -51.0982901 -76.9967339 -0.1095222
Linked 5 -51.1054128 -77.0240712 -0.1093922 -51.1054013 -77.0240279 -0.1093923

CDI2 -50.9980130 -76.5599391 -0.1107745 -50.9980130 -76.5599391 -0.1107745
CDI3 (β = 1) -51.1053317 -77.0239332 -0.1093925 -51.0076532 -76.6014917 -0.1106511

CDI3 (β = 2/3) -51.1053531 -77.0237909 -0.1093933 -49.6844691 -72.9052221 -0.1121872
CDI4 (β = 1) -51.1054128 -77.0240711 -0.1093922 -51.1053564 -77.0238795 -0.1093929

CDI4 (β = 2/4) -51.1054128 -77.0240710 -0.1093922 -51.1023111 -77.0106158 -0.1094389
CDI5 (β = 1) -51.1054129 -77.0240712 -0.1093922 -51.1054125 -77.0240698 -0.1093922

CDI5 (β = 2/5) -51.1054129 -77.0240712 -0.1093922 -51.1054069 -77.0240511 -0.1093923
Reference solution u=-51.1918327 v=-77.1363559 ϕ=-0.1092019

with β = 2/N gives better results than when β = 1, while the reduced integration

gives almost identical solutions for both coefficients.

Table 4.5: Displacements of the appex for smaller force P=150.

Reduced integration Full integration
Interpolation u v ϕ u v ϕ
CDI3 (β = 1) -4.504584 -5.934035 -0.0114678 -4.498577 -5.895356 -0.0115175

CDI3 (β = 2/3) -4.504584 -5.934030 -0.0114678 -4.501265 -5.929965 -0.0114612
Reference solution u=-4.52286 v=-5.94521 ϕ=-0.0114624

4.5 Cantilever beam loaded by two transversal forces

This example consists of a 2D cantilever beam loaded with two vertical forces, one

applied at the free end and the other close to the mid–span, as shown in the Figure

4.8. This is a problem of large deflection behaviour, which demonstrates unlimited

hardening behaviour, and has been considered by several authors [23, 10]. An analytic

solution to this problem was given by Frisch–Fay [15].

The cross-sectional area of the beam is A = 0.2, the Young’s modulus of elasticity

is E = 30 × 106, the shear modulus G = 11538460 and the second moment of area

I = 6×10−3. The problem will be modelled using two elements of different length with

number of nodes per element varying from two to five and the full load will be applied
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Figure 4.8: Cantilever beam loaded with two vertical forces.

in n load steps. Both reduced an full integration will be used and the Newton–Raphson

iterative procedure is considered to have converged when the displacement norm has

become less than 10−12. Results for the end point C are given in the Table 4.6 and

are compared to the reference solution. Analytic solution according to Frisch–Fay [15]

says that the horizontal and vertical deflection of the end node C are uC = −31.01

and vC = −67.32 respectively and the results according to Manuel and Lee [23] using

iterative procedure are uC = −30.75 and vC = −66.96. Since the results obtained

here, using different interpolations need more decimal places to compare to one an-

other, a reference solution in this case has been obtained using 100 quadratic standard

Lagrangian elements with reduced integration employed and this solution is given in

Table 4.6.

Table 4.6: Horizontal and vertical displacement of the end loaded node.

Reduced integration Full integration
Interpolation u v n u v n
Lagrangian 2 -28.98611 -65.86169 1 -9.49 e-09 -0.00136 1
Lagrangian 3 -30.63686 -66.84291 2 -0.14422 -4.81456 2
Lagrangian 4 -30.74469 -66.95668 8 -28.80497 -63.48840 6
Lagrangian 5 -30.74577 -66.96151 8 -30.74660 -66.83158 8

Linked 2 -28.98611 -65.86169 1 -0.01638 -1.67411 1
Linked 3 -30.63686 -66.84291 2 -5.02053 -29.39257 2
Linked 4 -30.74469 -66.95668 8 -28.80497 -63.48840 6
Linked 5 -30.74577 -66.96151 8 -30.10605 -66.96148 8

CDI2 -28.83925 -63.46549 2 -28.83925 -63.46549 2
CDI3 (β = 1) -30.77802 -66.91606 2 -28.83969 -63.46638 2

CDI3 (β = 2/3) -30.70631 -66.88388 2 -1.15642 -13.97569 4
CDI4 (β = 1) -30.74564 -66.96187 2 -29.91533 -65.24602 2

CDI4 (β = 2/4) -30.74509 -66.95851 8 -21.26181 -56.05610 6
CDI5 (β = 1) -30.74572 -66.96148 8 -30.52932 -66.42014 8

CDI5 (β = 2/5) -30.74576 -66.96151 8 -29.05346 -64.58562 3
Reference solution uC = -30.74573 vC = -66.96151

From Table 4.6 it can be seen that the conclusions drawn from the previous exam-
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ples are confirmed. Results for Lagrangian and linked interpolation are identical when

reduced integration is used. Linear configuration–dependent element (CDI2) shows no

sensitivity to the number of the integration points. Configuration-dependent interpo-

lation with coefficient β = 1 shows better behaviour than when β =
2

N
is used.
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5 Conclusions

The theory given in the second and the third chapter of the thesis presents a very ele-

gant form of a family of interpolation functions that interconnect linear and non–linear

analysis of the beam problem.

In the second chapter a family of linked interpolation functions of arbitrary order

for thick beam elements capable of providing exact solution has been derived and thor-

oughly analysed. Distinction is made between (i) the interpolation obtained solving the

differential equations of the problem and introducing a full set of boundary conditions

and (ii) the interpolation in which a number of internal kinematic conditions is used

in addition to the kinematic boundary conditions.

In the first case, the kinematic boundary conditions alone are not sufficient for the

solution of the thick beam problem (even though they are sufficient for the solution of

the thin beam problem resulting in the standard Hermitean cubics) and they have to

be supplemented by appropriate static boundary conditions. As a result, the interpola-

tion for the position and the rotation field becomes heavily intertwined and dependent

on the problem material and geometric properties. For both the thick and the thin

beam, the part of the solution which is dependent on the boundary displacements and

rotations involves standard quadratic and cubic polynomials well–known from the en-

gineering beam theory. In the presence of arbitrary distributed loading it has been

shown that this result is enhanced by the appropriate higher–order terms. Owing to

its dependence on the material, geometric and loading characteristics of the problem

analysed, this type of interpolation has been termed the problem–dependent interpola-

tion.

In the second case we have eliminated all the material, geometric and loading param-

eters from the interpolation in order to arrive at a problem–independent result. Here,

we have limited our attention to polynomial loading of arbitrary order and shown that

with a sufficient finite number of internal nodes it is always possible to obtain the

exact result. For a distributed force loading of arbitrary order three situations have

been analysed in more detail:

(i) the problem–independent linked interpolation with a minimum number of pa-

rameters in which the number of nodes with translational degrees of freedom is smaller

than the number of nodes with rotational degrees of freedom by one,
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(ii) the problem–independent linked interpolation with the same nodal points for the

translational and the rotational degrees of freedom and

(iii) the problem–independent interpolation in which the number of nodes with trans-

lational degrees of freedom is larger than the number of nodes with rotational degrees

of freedom by one resulting in standard independent interpolation for the two field

using Lagrangian polynomials of different order.

The second of these situations appears to be particularly elegant both mathemat-

ically and computationally and in this part of the thesis it has been presented in its

general form of which some of the known linked interpolations reported in the literature

have been shown to be special cases.

In the third chapter a new configuration–dependent interpolation has been intro-

duced and applied to geometrically exact beam theory of Reissner [32]. The configuration–

dependent interpolation uses the deformed state of a beam to describe the distribution

of the field variables thus making interpolation non–linear in the unknown nodal param-

eters. The configuration–dependent interpolation derived originates from the helicoidal

interpolation [4] and generalises it to higher–order elements using the relevant earlier

results related to strain–invariant interpolation [18], and exact interpolation in linear

analysis [20].

Two variations of the higher–order configuration–dependent interpolation have been

derived in order to preserve an important underlying property of the mechanical prob-

lem. The first of these variations tend to be invariant to the beam reference axis,

while the second variation provides exact field distribution in the limit of the analysis

becoming linear. In the present work, these two properties cannot be preserved at the

same time unless the element is of the lowest order, i.e. the original helicoidal element

of [4]. A potential to do so, however, exists and will be investigated in our future work.

The configuration–dependent interpolation has been derived for a 3D beam problem,

but only implemented in 2D beam elements.

The forth chapter binds the first two theoretical chapters on a numerical level to

demonstrate the behaviour of the interpolations proposed. The linked interpolation

[20] designed for linear analysis has also been implemented and tested in non–linear

analysis. The additional numerical overhead in the configuration–dependent interpo-

lation is fully contained within the element formulation, does not introduce additional

degrees of freedom, and only requires computation of an additional part of the element
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tangent stiffness matrix.

Observing the numerical results, a few general conclusions may be drawn. It has

been shown that the configuration–dependent interpolation does not suffer from shear

locking regardless of the order of element and the order of numerical quadrature. In

spite of that, the results obtained using a reduced integration are better than those

using the full integration. The behaviour of the linked interpolation designed for lin-

ear analysis shows poor results when applied to non–linear analysis which is expected.

Also, linked interpolation is more vulnerable to shear locking when using full inte-

gration than the configuration–dependent interpolation but less vulnerable than the

Lagrangian interpolation. Very interesting property is that the linked interpolation

with reduced integration gives the same nodal results as the Lagrangian interpolation

with reduced integration. Generally, the configuration–dependent interpolation pro-

posed gives only marginally better results for the nodal unknowns than the standard

procedure. The variant of the configuration–dependent interpolation which gives the

result independent of the position of the beam reference axis is generally more accu-

rate than the variant which provides the exact field–distribution in linear analysis; the

situation is reversed as the results become closer to the linear results, in particular

with full integration. As the configuration–dependent interpolation is virtually free

of shear locking, it has a great potential to be used in various problems in material

non–linearity where higher–order quadrature may be needed.
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Appendices

Appendix A. Inverse of a Vandermonde matrix

Over a domain −1 ≤ ξ ≤ 1 a function f(ξ) may be approximated by a simple polyno-

mial expansion

f(ξ) =
n−1∑
i=0

aiξ
i, (278)

where the coefficients ai are obtained by solving the so–called Vandermonde problem

Va = f⇐⇒



1 ξ2 ξ2
2 ... ξj−1

2 ... ξn−1
2

1 ξ3 ξ2
3 ... ξj−1

3 ... ξn−1
3

...
...

...
. . .

...
...

1 ξi ξ2
i ... ξj−1

i ... ξn−1
i

...
...

...
...

. . .
...

1 ξn ξ2
n ... ξj−1

n ... ξn−1
n





a0

a1

a2

...

aj−1

...

an−1


=



f1

f2

f3

...

fi
...

fn


(279)

with fi = f(ξi) and ξi are the chose nodal co–ordinates. Alternatively, the same

function may also be approximated using the Lagrangian interpolation polynomials

Ij(ξ) =
n∏

k=1,k 6=j

ξ − ξk
ξj − ξk

(280)

as

f(ξ) =
n∑
j=1

Ij(ξ)fj. (281)

This result may be expanded into a power series of the type

Ij(ξ) =
n−1∑
i=0

dj,iξ
i (282)

with known coefficients dj,i e.g.

dj,n−1 =
1∏n

k=1,k 6=j(ξj − ξk)
, dj,n−2 = −dj,n−1

n∑
k=1,k 6=j

ξk, and dj,0 =
n∏

k=1,k 6=j

−ξk
ξj − ξk

.

Substituting (282) into (281) gives
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f(ξ) =
n∑
j=1

n−1∑
i=0

dj,iξ
ifj =

n−1∑
i=0

(
n∑
j=1

dj,ifj

)
ξi, (283)

which may be compared to (278) to provide the solution of the Vandermonde problem

(279) as

ai =
n∑
j=1

dj,ifj. (284)

Since the Vandermonde problem implies a = Wf, where W = V−1, from (284) it is

obvious that the element wij of the inverse of the Vandermonde matrix is

wij = dj,i−1, (285)

where dj,i is the coefficient of the jth Lagrangian polynomial of the order n − 1 mul-

tiplying ξi as shown in (282). In other words, the columns of the inverse of the nth

order Vandermonde matrix are the Lagrangian polynomials of order n − 1 written in

the basis {ξ0, ..., ξn−1}. For example, for a quadratic Lagrangian interpolation with

equidistant nodes I1(ξ) = −1

2
ξ(1 − ξ), I2(ξ) = (1 − ξ)(1 + ξ) and I3(ξ) =

1

2
ξ(1 + ξ),

the inverse of the Vandermonde matrix reads

W = V−1 =

 0 1 0

−1
2

0 1
2

1
2
−1 1

2

 . (286)

Since the elements of the Vandermonde matrix and its inverse are vij = ξj−1
i and

wij = dj,i−1, the following results are obtained from VW = WV = I:

n−1∑
k=0

ξki dj,k = δi,j and
n∑
k=1

dk,i−1ξ
j−1
k = δi,j, (287)

of which the first reproduces the well–known property Ij(ξi) = δi,j of the Lagrangian

polynomials (282).

The second result in (287) is more interesting and perhaps not so well–known:

multiplying a chosen power (between 0 and n − 1) of a nodal coordinate ξk with the

coefficient in the kth Lagrangian polynomial associated with a certain power of ξ, and

summing over all the nodes k = 1, ..., n, gives a unity if the two powers are equal and

zero otherwise.

A weaker but perhaps more illustrative conclusion follows by multiplying the second

term in (287) with ξi−1, summing the result over i = 1, ..., n, and substituting (282):
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n∑
k=1

ξjkIk(ξ) = ξj, j = 0, ..., n− 1. (288)

For j = 0 this of course turns into the standard completeness property of the La-

grangian polynomials
∑n

k=1 Ik(ξ) = 1.

Appendix B. Borri and Bottasso helicoidal interpolation Ñi

Here we will show that the generalised interpolation from (153) reduces to Borri and

Bottasso helicoidal interpolation for a two–noded element and the assumptions for that

particular case introduced in [4]. To that purpose, let us write the interpolation from

(153) for each of two nodes as:

Ĩ
1

= Λr

{
2

[
I−H(ψlh)

2∑
m=1

ImH−1(ψlm)

]
VI=J + H(ψlh)I1H

−1(ψl1)

}
ΛT
r (289)

where for I = J , VI=J = 1/2I. For a helicoidal interpolation, orientation of the local

triad is expressed trough a rotation of the local triad at the beginning (for ξ = 0, where

0 ≤ ξ ≤ 1), meaning that our Λ = I and a local rotation of the first node ψl1 = 0.

With this, expression (289) can be written as

Ĩ
1

= I−H(ψlh)I2H
−1(ψl2). (290)

The interpolation for the second node can be written with the same assumptions:

Ĩ
2

= H(ψlh)I2H
−1(ψl2). (291)

This can be simplified as

Ĩ
1

= I−N(ξ) (292)

Ĩ
2

= N(ξ), (293)

where ξ = x
L

and N(ξ) is the helicoidal interpolation from [4].

Appendix C. Strain–invariant interpolation

Strain–invariant interpolation has the general form given by expression (153).With the

rotation matrix Λ = Λr exp ψ̂
lh

, expression (215) can be written in a wider form as
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ΛI exp ψ̂
lh

=
N∑

i,j,k=1

∆ij
k ΛI{(δkI + δkJ)

[
I−H(ψlh)

N∑
m=1

ImH−1(ψlm)

]
Vj+

H(ψlh)IkH
−1(ψlj)}ΛT

I Λi

After the whole expression is multiplied by ΛT
I from the left, we can write

exp ψ̂
lh

=
N∑

i,j,k=1

∆ij
k {(δ

k
I + δkJ)

[
I−H(ψlh)

N∑
m=1

ImH−1(ψlm)

]
Vj+

H(ψlh)IkH
−1(ψlj)}ΛT

I Λi. (294)

For the sake of simplicity, let us denote the expression in the brackets as

[
I −

H(ψlh)
∑N

m=1 ImH−1(ψlm)

]
= [ ]. For (I=J), the first member in the above expression

can be simplified in the following way:

N∑
i,j,k

∆ij
k 2δkI [ ] VjΛ

T
I Λi =

N∑
i,k

2δkI [ ] (∆i1
k V1 + ∆i2

k V2 + ...+ ∆iN
k VN)ΛT

I Λi

=
N∑
i=1

2[ ] (δ1
I ∆i1

1 V1 + δ2
I ∆i1

2 V1 + ...+ δNI ∆i1
NV1)ΛT

I Λi+

N∑
i=1

2[ ] (δ1
I ∆i2

1 V2 + δ2
I ∆i2

2 V2 + ...+ δNI ∆i2
NV2)ΛT

I Λi + ...+

N∑
i=1

2[ ] (δ1
I ∆iN

1 VN + δ2
I ∆iN

2 VN + ...+ δNI ∆iN
N VN)ΛT

I Λi

=
N∑
i=1

2[ ] (∆i1
I V1 + ∆i2

I V2 + ...+ ∆iN
I VN)ΛT

I Λi

=
N∑
i=1

2[ ] ∆iI
I VIΛ

T
I Λi =

N∑
i=1

[ ] δiIΛ
T
I Λi =

N∑
i=1

δiI [ ] ΛT
I Λi (295)

With (295) expression (294) becomes

exp ψ̂
lh

=
N∑
i=1

δiI

[
I−H(ψlh)

N∑
m=1

ImH−1(ψlm)

]
ΛT
I Λi

+
N∑
i,j,k

∆ij
k H(ψlh)IkH

−1(ψlj)Λ
T
I Λi.
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Finally, the next equality has to be proven:

exp ψ̂
lh
− I = H(ψlh)

[ N∑
i,j,k

∆ij
k IkH

−1(ψlj) ΛT
I Λi︸ ︷︷ ︸

exp ψ̂
l
i

−
N∑
m=1

ImH−1(ψlm)

]

This can be simplified even more

H−1(ψlh)

(
exp ψ̂

lh
− I

)
︸ ︷︷ ︸

(∗1)

=
N∑
m=1

Im H−1(ψlm)

(
exp ψ̂

l

m − I

)
︸ ︷︷ ︸

(∗2)

Terms (*1) and (*2) in the above expression are similar, the first deals with the local

interpolated rotations ψlh and the other with the local nodal rotations ψlh.

(∗1) =

[
I− 1

2
ψ̂
lh
− 1

2

ψlh sinψlh + 2 cosψlh − 2

(ψlh)2(1− cosψlh)
(ψ̂

lh
)2

]
[
sinψlh

ψlh
ψ̂
lh

+
1− cosψlh

(ψlh)2
(ψ̂

lh
)2

]
Multiplying these two brackets and simplifying the terms in it, we can write

(∗1) =
sinψlh

ψlh
ψ̂
lh

+
1− cosψlh

(ψlh)2
(ψ̂

lh
)2 − 1

2

sinψlh

ψlh
(ψ̂

lh
)2 +

1

2

1− cosψlh

(ψlh)2
(ψ̂

lh
)3

−1

2

ψlh sinψlh + 2(cosψlh − 1)

(ψlh)2(1− cosψlh)

sinψlh

ψlh
(ψ̂

lh
)3 − 1

2

ψlh sinψlh + 2(cosψlh − 1)

(ψlh)4
(ψ̂

lh
)4

sinψlh

ψlh
ψ̂
lh

+
1− cosψlh

(ψlh)2
(ψ̂

lh
)2 − sinψlh

2ψlh
(ψ̂

lh
)2 − 1− cosψlh

2(ψlh)2
(ψ̂

lh
)3−

sinψlh

2ψlh
ψlh sinψlh + 2 cosψlh − 2

(ψlh)2(1− cosψlh)
(ψ̂

lh
)3 − 1− cosψlh

2(ψlh)2

ψlh sinψlh + 2 cosψlh − 2

(ψlh)2(1− cosψlh)
(ψ̂

lh
)4

=

[
sinψlh

ψlh
+

1− cosψlh

2
+

sinψlh

2ψlh
ψlh sinψlh + 2 cosψlh − 2

1− cosψlh

]
ψ̂
lh

+[
1− cosψlh

(ψlh)2
− sinψlh

2ψlh
+

1− cosψlh

2(ψlh)2

ψlh sinψlh + 2 cosψlh − 2

1− cosψlh

]
(ψ̂

lh
)2

=

[
sinψlh

ψlh
+

1− cosψlh

2
+

1 + cosψlh

2
− sinψlh

ψlh

]
ψ̂
lh

+[
1− cosψlh

(ψlh)2
− sinψlh

2ψlh
+

sinψlh

2ψlh
− 1− cosψlh

(ψlh)2

]
(ψ̂

lh
)2 = ψ̂

lh

In an identical way it can be shown that (∗2) = ψ̂
l

m, so the following relation can be

written
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ψ̂
lh

=
N∑
m=1

Imψ̂
l

m

With the above expression we have proven that the interpolation Ĩ
i

from [18] enables

us to interpolate the nodal rotation matrices in an additive manner.

Appendix D. Derivation of the variation of the function Ni

Function Ni is given by the expression

Ni = Ii
ψi sinψ

h

ψh sinψi

[
cos(ψh − ψi)I + sin(ψh − ψi)ê

]
= Iik X ,

where

k =
ψi sinψ

h

ψh sinψi

and

X = cos(ψh − ψi)I + sin(ψh − ψi)ê .

Now, the variation of function Ni is:

δNi = Iiδk X + Iik δX .

• Variation of coefficient k

δk = k

(
δψi
ψi
− δψh

ψh
+

cosψh

sinψh
δψh − cosψi

sinψi
δψi

)
• Variation of matrix X

δX = (δψh − δψi)
[
cos(ψh − ψi)ê− sin(ψh − ψi)I

]
The identity matrix in this expression may be written as I = ê−1ê = êT ê = −ê2 and

now the variation of matrix X can be written as

δX = (δψh − δψi) X ê

Returning these variations into the expression for δNi gives

δNi = Ii k X

(
δψi
ψi
− δψh

ψh
+

cosψh

sinψh
δψh − cosψi

sinψi
δψi

)
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+Ii k (δψh − δψi) X ê

In this expression the basic function Ni = Ii k X can be recognised and the variation

further written as

δNi = Ni

[(
δψi
ψi
− δψh

ψh
+

cosψh

sinψh
δψh − cosψi

sinψi
δψi

)
I +

(
δψh − δψi

)
ê

]
.

With δψi =
β

2
(δϕi − δϕr), and δψh =

β

2
(δϕh − δϕr) the variation of δNi follows as

δNi =
β

2
Ni

{[
(δϕi − δϕr) fi −

(
δϕh − δϕr

)
fh
]
I +

(
δϕh − δϕi

)
ê

}
,

with fi =
1

ψi
− cosψi

sinψi
and fh =

1

ψh
− cosψh

sinψh
. Finally,

δNi =
β

2
Ni

N∑
k=1

Mik δϕk ,

with

Mik = Ik
(
−fhI + ê

)
+ (fiI− ê) δik −

δIk + δJk
2

(
fi − fh

)
I

or, for I = J ,

Mik = Ik(−fhI + ê) + (fiI− ê)δik − δIk(fi − fh)I .

Appendix E. Geometric part of the stiffness matrix

• Derivation of the geometric stiffness matrix in a standard way [35]

KG
jk =

∫ L

0

(D2Kj)
TG(D2Kk) dx1

D2Kj =

 d

dx
I2 02

0T2 1

[Jj jj

0T2 Ij

]
=

[
J′j j′j

0T2 Ij

]

After multiplying these matrices, see also (261), expression for the geometric stiffness

matrix can be written in a nice form as follows

KG
jk =

∫ L

0

[
02x2 IkJ

′T
j êΛN

−IjNTΛT êJ′k (Ijj
′
k + Ikj

′
j)
T êΛN− IjIkr

′TΛN

]
dx1
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where N is taken from the vector S =

{
N

M

}
.

• Derivation of the geometric stiffness matrix in our way

As stated in (256), the geometric stiffness matrix consists of two parts, i.e.

KG
jk

{
∆rk

∆ϕk

}
=

∫ L

0

∆BT
2jL Sdx1 +

∫ L

0

BT
j ∆L Sdx1

=

∫ L

0

[
02x2 02

Ij∆r
′T ê 0

]{
ΛN

M

}
dx1 +

∫ L

0

[
J

′T
j 02

j′Tj + Ijr
′T ê I ′j

]{
∆ΛN

0

}
dx1

=

∫ L

0

{
02

−IjNTΛT ê
∑N

k=1(Jk∆rk + jk∆ϕk)
′

}
dx1

+

∫ L

0

{
J

′T
j êΛN

∑N
k=1 Ik∆ϕk

(j′Tj + Ijr
′T ê)êΛN

∑N
k=1 Ik∆ϕk

}

=
N∑
k=1

∫ L

0

[
02x2 IkJ

′T
j êΛN

−IjNTΛT ê J′k (Ijj
′
k + Ikj

′
j)
T êΛN− IjIkr

′TΛN

]
dx1

{
∆rk

∆ϕk

}
,

i.e.

KG
jk =

∫ L

0

[
02x2 IkJ

′T
j êΛN

−IjNTΛT ê J′k (Ijj
′
k + Ikj

′
j)
T êΛN− IjIkr

′TΛN

]
dx1 .
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