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1. Introduction

Let U be a convex subset of Rk and n ∈ N. If f : U → R is a convex
function, x1, . . . ,xn ∈ U and p1, . . . , pn nonnegative real numbers with
Pn =

∑n
i=1 pi > 0, then Jensen’s inequality

f

(
1

Pn

n∑
i=1

pixi

)
≤ 1

Pn

n∑
i=1

pif(xi)

holds.
The convex hull of vectors x1, . . . ,xn ∈ Rk is the set{

n∑
i=1

αixi|αi ∈ R, αi ≥ 0,

n∑
i=1

αi = 1

}

and it is denoted by K = co({x1, . . . ,xn}).
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Barycentric coordinates over K are continuous real functions λ1, . . . , λn
on K with the following properties:

λi(x) ≥ 0, i = 1, ..., n
n∑
i=1

λi(x) = 1

x =

n∑
i=1

λi(x)xi (1)

If x2 − x1, . . . ,xn − x1 are linearly independent vectors, then each
x ∈ K can be written in the unique way as a convex combination of
x1, . . . ,xn in the form (1).
We also consider k-simplex S = co({v1,v2, . . . ,vk+1}) in Rk which is a
convex hull of its vertices v1, . . . ,vk+1 ∈ Rk, where vertices
v2 − v1, . . . ,vk+1 − v1 ∈ Rk are lineary independent. In this case we’ll
denote k-simplex by S = [v1, . . . ,vk+1]. Barycentric coordinates
λ1, λ2, . . . , λk+1 over S are nonnegative linear polynomials on S and
have special form.
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Let E be a non-empty set and L be a linear class of real-valued functions
f : E → R having the properties:

(L1) (∀f, g ∈ L) (∀a, b ∈ R) af + bg ∈ L
(L2) 1 ∈ L, that is if f(t) = 1 for all t ∈ E, then f ∈ L
We consider positive linear functionals A : L→ R, or in other words we
assume:

(A1) (∀f, g ∈ L)(∀a, b ∈ R) A(af + bg) = aA(f) + bA(g) (linearity)

(A2) (∀f ∈ L)(f ≥ 0 =⇒ A(f) ≥ 0) (positivity)

If additionally the condition A(1) = 1 is satisfied, we say that A is
positive normalized linear functional.
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With Lk we denote the linear class of functions g : E → Rk defined by

g(t) = (g1(t), . . . , gk(t)), gi ∈ L (i = 1, . . . , k)

For given linear functional A, we also consider linear operator
Ã = (A, . . . , A) : Lk → Rk defined by

Ã(g) = (A(g1), . . . , A(gk)) (2)

If A(1) = 1 is satisfied, then using (A1) we also have

(A3) A(f(g)) = f(Ã(g)) for every linear function f on Rk.
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The following result is Jessen’s generalization of the Jensen’s inequality
for convex functions which involves positive normalized linear functionals.

Theorem 1.

Let L satisfy L1, L2 on a nonempty set E and let A be a positive
normalized linear functional on L. If f is a continuous convex function on
an interval I ⊂ R, then for all g ∈ L such that f (g) ∈ L we have
A(g) ∈ I and

f(A(g)) ≤ A(f(g)).
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The next theorem, proved by J. Pečarić and P. R. Beesack in 1985,
presents generalization of Lah-Ribarič inequality.

Theorem 2 (Lah-Ribarič inequality).

Let L satisfy properties L1, L2 and A be a positive normalized linear
functional on L. Let f be a convex function on an interval
I = [m,M ] ⊂ R (−∞ < m < M <∞). Then for all g ∈ L such that
g(E) ⊂ I and f(g) ∈ L

A(f(g)) ≤ M −A(g)

M −m
f(m) +

A(g)−m
M −m

f(M).
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Using previous theorem, Beesack and Pečarić in 1987. also proved the
next result.

Theorem 3.

Let L, A and f be as in Theorem 2. Let J be an interval in R such that
f(I) ⊂ J. If F : J × J → R is an increasing function in the first variable,
then for all g ∈ L such that g(E) ⊂ I and f(g) ∈ L, we have

F (A(f(g)), f(A(g)))

≤ max
x∈[m,M ]

F

(
M − x
M −m

f(m) +
x−m
M −m

f(M), f(x)

)
= max
θ∈[0,1]

F (θf(m) + (1− θ)f(M), f(θm+ (1− θ)M)) .
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Remark

If we choose F (x, y) = x− y, as a simple consequence of previous
theorem it follows

A(f(g))−f (A(g)) ≤ max
θ∈[0,1]

[θf(m) + (1− θ)f(M)− f(θm+ (1− θ)M)] .

(3)
Choosing F (x, y) = x

y , for f > 0 it follows

A(f(g))

f (A(g))
≤ max
θ∈[0,1]

[
θf(m) + (1− θ)f(M)

f(θm+ (1− θ)M)

]
. (4)
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Additional generalization of Jessen’s inequality is proved by E. J.
McShane in
E. J. McShane, Jensen’s inequality, Bull. Amer. Math. Soc. 43 (1937),

Theorem 4 (McShane’s inequality).

Let L satisfy properties L1, L2, A be a positive normalized linear
functional on L and Ã defined as in (2). Let f be a continuous convex
function on a closed convex set U ⊂ Rk. Then for all g ∈ Lk such that
g(E) ⊂ U and f(g) ∈ L, we have that Ã(g) ∈ U and

f(Ã(g)) ≤ A(f(g)).
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S. Ivelić, J. Pečarić, Generalizations of Converse Jensen’s inequality and
related results, J. Math. Ineq. Volume 5, Number 1 (2011)

Theorem 5.

Let L satisfy properties L1, L2 on nonempty set E and A be a positive
normalized linear functional on L. Let x1, . . . ,xn ∈ Rk and
K = co({x1, . . . ,xn}). Let f be a convex function on K and λ1, . . . , λn
barycentric coordinates over K. Then for all g ∈ Lk such that
g (E) ⊂ K and f(g), λi(g) ∈ L, i = 1, . . . , n we have

A(f(g)) ≤
n∑
i=1

A (λi(g)) f (xi)
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Main Results

Our main results are generalizations and improvements of Theorems 2
and 3 which will be obtained using the following lemma.
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Lemma 6.

Let φ be a convex function on U where U is a convex set in Rk,
(x1, . . . ,xn) ∈ Un and p = (p1, . . . , pn) is nonnegative n-tuple such that
n∑
i=1

pi = 1. Then

min{p1, . . . , pn}

[
n∑
i=1

φ(xi)− nφ

(
1

n

n∑
i=1

xi

)]

≤
n∑
i=1

piφ(xi)− φ

(
n∑
i=1

pixi

)

≤ max{p1, . . . , pn}

[
n∑
i=1

φ(xi)− nφ

(
1

n

n∑
i=1

xi

)]
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Proof.

This is a simple consequence of Theorem 1 from
J. E. Pečarić, F. Proschan, Y. L. Tong, Convex Functions, Partial
Orderings, and Statistical Applications, Academic Press, New York, 1992.
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For n ∈ N we denote

∆n−1 =

{
(µ1, . . . , µn) : µi ≥ 0, i ∈ {1, . . . , n},

n∑
i=1

µi = 1

}

We also need to equip our linear class L from Introduction with an
additional property denoted by (L3):

(L3) (∀f, g ∈ L) (min {f, g} ∈ L and max {f, g} ∈ L) (lattice property).

Obviously,
(
RE ,≤

)
(with standard ordering) is a lattice.
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Also, if f is a function defined on an subset U ⊆ Rk and
x1,x2, . . . ,xn ∈ U , we denote

Snf (x1, . . . ,xn) =

n∑
i=1

f(xi)− nf

(
1

n

n∑
i=1

xi

)

Obviously, if f is convex, Snf (x1, . . . ,xn) ≥ 0
Next theorem presents an improvement of Theorem 5.

Theorem 7.

Let L satisfy properties L1, L2, L3 on nonempty set E and A be a
positive normalized linear functional on L. Let x1, . . . ,xn ∈ Rk and
K = co ({x1, . . . ,xn}). Let f be a convex function on K and λ1, . . . , λn
barycentric coordinates over K. Then for all g ∈ Lk such that g(E) ⊂ K
and f(g), λi(g) ∈ L, i = 1, . . . , n we have

A(f(g)) ≤
n∑
i=1

A (λi(g)) f (xi)−A (min {λi(g)})Snf (x1, . . . ,xn)
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Proof.

For each t ∈ E we have g(t) ∈ K. Using barycentric coordinates we have
λi(g(t)) ≥ 0, i = 1, . . . , n,

∑n
i=1 λi(g(t)) = 1 and

g(t) =

n∑
i=1

λi(g(t))xi

Since f is convex, we can apply Lemma 6, and then

f(g(t)) = f

(
n∑
i=1

λi(g(t))xi

)

≤
n∑
i=1

λi(g(t))f(xi)−min {λi(g(t))}

[
n∑
i=1

f(xi)− nf

(
1

n

n∑
i=1

xi

)]
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Now, applying the functional A on the last inequality we get

A (f(g)) ≤ A

(
n∑
i=1

λi(g)f (xi)−min {λi(g)}Snf (x1, . . . ,xn)

)

=

n∑
i=1

A (λi(g)) f (xi)−A (min {λi(g)})Snf (x1, . . . ,xn)
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Remark

Theorem 7 is an improvement of Theorem 5 since under the required
assumptions we have

A (min {λi(g)})Snf (x1, . . . ,xn) ≥ 0
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Remark

If all the assumptions of Theorem 7 are satisfied and in addittion f is
continuous, then

f(Ã(g)) ≤ A(f(g)) ≤
n∑
i=1

A (λi(g)) f (xi)−A (min {λi(g)})Snf (x1, . . . ,xn)

The first inequality is consequence of McShane’s inequality and the
second of previous theorem.
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Remark

We know that under assumptions of Theorem 7 we have

A(f(g)) ≤
n∑
i=1

A (λi(g)) f (xi)−A (min {λi(g)})Snf (x1, . . . ,xn)

Dividing this by f(g(t)) = f

(
n∑
i=1

λi(g(t))xi

)
, in the case f > 0, we

obtain

A (f (g))

f
(
Ã (g)

)
≤
∑n
i=1A(λi(g))f(xi)

f (
∑n
i=1A(λi(g))xi)

− A (min {λi(g) : i = 1, . . . , n})

f
(
Ã(g)

) Snf (x1, . . . ,xn)

≤ max
∆n−1

∑n
i=1 µif(xi)

f (
∑n
i=1 µixi)

− A (min {λi(g) : i = 1, . . . , n})

f
(
Ã(g)

) Snf (x1, . . . ,xn)
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which is equivalent to

A (f (g))

≤ max
∆n−1

∑n
i=1 µif(xi)

f (
∑n
i=1 µixi)

f
(
Ã (g)

)
−A (min {λi(g) : i = 1, . . . , n})Snf (x1, . . . ,xn)

This is an improvement of the inequality (2.6) from
S. Ivelić, J. Pečarić, Generalizations of Converse Jensen’s inequality and
related results, J. Math. Ineq. Volume 5, Number 1 (2011).
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Using Teorem 7 we prove generalization and improvement of Theorem 3.
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Theorem 8.

Let L satisfy properties L1, L2, L3 on nonempty set E, A be a positive
normalized linear functional on L and Ã defined as in (2). Let
x1, . . . ,xn ∈ Rk and K = co({x1, . . . ,xn}). Let f be a convex function
on K and λ1, . . . , λn barycentric coordinates over K. If J is an interval
in R such that f(K) ⊂ J and F : J × J → R is an increasing function in
the first variable, then for all g ∈ Lk such that g (E) ⊂ K and
f(g), λi(g) ∈ L, i = 1, . . . , n we have

F
(
A(f(g)), f(Ã(g))

)
≤ F

(
n∑
i=1

A (λi(g)) f (xi)

−A (min {λi(g)})Snf (x1, . . . ,xn), f(Ã(g))
)

≤ max
∆n−1

F

(
n∑
i=1

µif(xi)

−A (min {λi(g)})Snf (x1, . . . ,xn), f

(
n∑
i=1

µixi

))
.
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Proof.

For each t ∈ E we have g(t) ∈ K. Using barycentric coordinates we have
λi(g(t)) ≥ 0, i = 1, . . . , n,

∑n
i=1 λi(g(t)) = 1 and

g(t) =

n∑
i=1

λi(g(t))xi.

Since A is a positive normalized linear functional on L and Ã a linear
operator on Lk, we have

Ã (g) = (A(g1), . . . , A(gk)) =

n∑
i=1

A (λi(g))xi

where
A (λi(g)) ≥ 0, i = 1, . . . , n

and
n∑
i=1

A (λi(g)) = A

(
n∑
i=1

λi(g)

)
= A(1) = 1.

Therefore, Ã (g) ∈ K.
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Since F : J × J → R is an increasing function in the first variable, we
have

F
(
A(f(g)), f(Ã(g))

)
≤ F

(
n∑
i=1

A (λi(g)) f(xi)−A (min {λi(g(t))})Snf (x1, . . . ,xn), f(Ã(g))

)

By substitutions
A (λi(g)) = µi, i = 1, . . . , n,

it follows

Ã (g) =

n∑
i=1

µixi.
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Now we have

F

(
n∑
i=1

A (λi(g)) f(xi)−A (min {λi(g(t))})Snf (x1, . . . ,xn), f(Ã(g))

)

= F

(
n∑
i=1

µif(xi)−A (min {λi(g(t))})Snf (x1, . . . ,xn), f

(
n∑
i=1

µixi

))

≤ max
∆n−1

F

(
n∑
i=1

µif(xi)

−A (min {λi(g(t))})Snf (x1, . . . ,xn), f

(
n∑
i=1

µixi

))

By combining last two inequalities we get desired inequality.
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Remark

If we choose F (x, y) = x− y, as a simple consequence of previous
theorem it follows

A(f(g))− f(Ã(g))

≤ max
∆n−1

(
n∑
i=1

µif(xi)− f

(
n∑
i=1

µixi

)
−A (min {λi(g)})Snf (x1, . . . ,xn)

)
.
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Choosing F (x, y) = x
y , for f > 0 it follows

A(f(g))

f(Ã(g))
≤ max

∆n−1

(∑n
i=1 µif(xi)−A (min {λi(g)})Snf (x1, . . . ,xn)

f (
∑n
i=1 µixi)

)
.

This two inequalities present generalizations and improvements of (3)
and (4).
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Replacing F by −F in the previous theorem we get next theorem
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Theorem 9.

Let L satisfy properties L1, L2, L3 on nonempty set E, A be a positive
normalized linear functional on L and Ã defined as in (2). Let
x1, . . . ,xn ∈ Rk and K = co({x1, . . . ,xn}). Let f be a convex function
on K and λ1, . . . , λn barycentric coordinates over K. If J is an interval
in R such that f(K) ⊂ J and F : J × J → R is an decreasing function in
the first variable, then for all g ∈ Lk such that g (E) ⊂ K and
f(g), λi(g) ∈ L, i = 1, . . . , n we have

F
(
A(f(g)), f(Ã(g))

)
≥ F

(
n∑
i=1

A (λi(g)) f (xi)−

−A (min {λi(g)})Snf (x1, . . . ,xn), f(Ã(g))
)

≥ min
∆n−1

F

(
n∑
i=1

µif(xi)

−A (min {λi(g)})Snf (x1, . . . ,xn), f

(
n∑
i=1

µixi

))
.
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Convex functions on k-simplices in Rk

Let S be a k-simplex in Rk with vertices v1,v2, . . . ,vk+1 ∈ Rk. The
barycentric coordinates λ1, . . . λk+1 over S are nonnegative linear
polynomials that satisfy Lagrange’s property

λi(vj) = δij =

{
1, i = j
0, i 6= j

.
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It is known
(M. Bessenyei, The Hermite-Hadamard inequality on Simplices, Amer.
Math. Monthly 115 (4) (2008))
that for each x ∈ S barycentric coordinates λ1(x), . . . , λk+1(x) have the
form

λ1(x) =
Volk ([x,v2, . . . ,vk+1])

Volk(S)
,

λ2(x) =
Volk ([v1,x,v3, . . . ,vk+1])

Volk(S)
,

...

λk+1(x) =
Volk ([v1, . . . ,vk,x])

Volk(S)
,

where Volk denotes k-dimensional Lebesgue measure on S. Here, for
example, [v1,x, . . . ,vk+1] denotes the subsimplex obtained by replacing
v2 by x, i.e. the subsimplex opposite to v2, when adding x as a new
vertex.
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The signed volume Volk(S) is given by (k + 1)× (k + 1) determinant

Volk (S) =
1

k!

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
v11 v21 vk+11

v12 v22 vk+12

...
...

...
v1k v2k · · · vk+1k

∣∣∣∣∣∣∣∣∣∣∣
,

where v1 = (v11, v12, . . . , v1k), . . . ,vk+1 = (vk+11, vk+12, . . . , vk+1k)
(R. T. Rockafellar, Convex Analysis, Princeton Math. Ser. No. 28,
Princeton Univ. Press, Princeton, New Jersey, 1970.).
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Since vectors v2 − v1, . . . ,vk+1 − v1 are linearly independent, then each
x ∈ S can be written in unique way as convex combination of
v1, . . . ,vk+1 in the form

x =
Volk ([x,v2, . . . ,vk+1])

Volk(S)
v1 + · · ·+ Volk ([v1, . . . ,vk,x])

Volk(S)
vk+1.

Now we present an analog of Theorem 7 for convex functions defined on
k-simplices in Rk.
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Theorem 10.

Let L satisfy properties L1, L2, L3 on nonempty set E, A be a positive
normalized linear functional on L and Ã defined as in (2). Let f be a
convex function on k-simplex S = [v1,v2, . . . ,vk+1] in Rk and
λ1, . . . , λk+1 barycentric coordinates over S. Then for all g ∈ Lk such
that g (E) ⊂ S and f(g) ∈ L we have

A(f(g)) ≤
k+1∑
i=1

A (λi(g)) f (vi)−A (min {λi(g)})Sk+1
f (v1, . . . ,vk+1)

=
Volk([Ã(g),v2,...,vk+1])

Volk(S) f(v1) + · · ·+ Volk([v1,v2,...,Ã(g)])
Volk(S) f(vk+1)

−A (min {λi(g)})Sk+1
f (v1, . . . ,vk+1).
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Proof.

For each t ∈ E we have g(t) ∈ S. Using barycentric coordinates we have

λ1 (g(t)) =
Volk ([g(t),v2, . . . ,vk+1])

Volk(S)
=

1

k!

∣∣∣∣∣∣∣∣∣
1 1 · · · 1

g1(t) v21 vk+11

...
...

...
gk(t) v2k · · · vk+1k

∣∣∣∣∣∣∣∣∣
1

k!

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
v11 v21 vk+11

...
...

...
v1k v2k · · · vk+1k

∣∣∣∣∣∣∣∣∣

,

...
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λk+1(g(t)) =
Volk ([v1, . . . ,vk, g(t)])

Volk(S)
=

1

k!

∣∣∣∣∣∣∣∣∣
1 · · · 1 1
v11 vk1 g1(t)

...
...

...
v1k · · · vkk gk(t)

∣∣∣∣∣∣∣∣∣
1

k!

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
v11 v21 vk+11

...
...

...
v1k v2k · · · vk+1k

∣∣∣∣∣∣∣∣∣

,
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k+1∑
i=1

λi(g(t)) = 1 and g(t) =

k+1∑
i=1

λi(g(t))vi.

Since f is convex on S, then using Lemma 6 we have

f(g(t)) ≤
k+1∑
i=1

λi(g(t))f (vi)

−min {λi(g(t))}

[
k+1∑
i=1

f(vi)− (k + 1)f

(
1

k + 1

k+1∑
i=1

vi

)]
.

Using the Laplace expansion of the determinant we can easily check that
λi(g) ∈ L for all i = 1, . . . , k + 1.
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Now, applying A on the last inequality we have

A(f(g)) ≤ A

(
k+1∑
i=1

λi(g)f(vi)

−min {λi(g(t))}

[
k+1∑
i=1

f(vi)− (k + 1)f

(
1

k + 1

k+1∑
i=1

vi

)])

=

k+1∑
i=1

A (λi(g)) f (vi)−A (min {λi(g)})Sk+1
f (v1, . . . ,vk+1).
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where

A (λ1 (g)) =

1

k!

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
A(g1) v21 vk+11

...
...

...
A(gk) v2k · · · vk+1k

∣∣∣∣∣∣∣∣∣∣∣∣
1

k!

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
v11 v21 vk+11

...
...

...
v1k v2k · · · vk+1k

∣∣∣∣∣∣∣∣∣∣∣∣

=
Volk

([
Ã(g),v2, . . . ,vk+1

])
Volk(S)

,

...
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A (λk+1 (g)) =

1

k!

∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1 1
v11 vk1 A(g1)

...
...

...
v1k · · · vkk A(gk)

∣∣∣∣∣∣∣∣∣∣∣∣
1

k!

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
v11 v21 vk+11

...
...

...
v1k v2k · · · vk+1k

∣∣∣∣∣∣∣∣∣∣∣∣

=
Volk

([
v1, . . . ,vk, Ã(g)

])
Volk(S)

.
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Theorem 11.

Let L satisfy properties L1, L2, L3 on nonempty set E, A be a positive
normalized linear functional on L and Ã defined as in (2). Let f be a
convex function on k-simplex S = [v1,v2, . . . ,vk+1] in Rk and
λ1, . . . , λk+1 barycentric coordinates over S. If J is an interval in R such
that f(S) ⊂ J and F : J × J → R an increasing function in the first
variable, then for all g ∈ Lk such that g (E) ⊂ S and f(g) ∈ L we have

F
(
A(f(g)), f(Ã(g))

)
≤ 1

Volk(S)
max
x∈S

F
( k+1∑

i=1

Volk ([v1, . . . , v̂i, . . . ,vk+1])

−A (min {λi(g)})Sk+1
f (v1, . . . ,vk+1), f (x)

)
= max

∆k

F

(
k+1∑
i=1

µif(vi)−A (min {λi(g)})Sk+1
f (v1, . . . ,vk+1) ,

f

(
k+1∑
i=1

µivi

))
, where v̂i = x
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Proof.

Since for each t ∈ E we have g(t) ∈ S, then it follows Ã(g) ∈ S (see the
first part of proof of Theorem 8).
Since F : J × J → R is an increasing function in the first variable, by
Theorem 10 we have
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F
(
A(f(g)), f(Ã(g))

)
≤ F

(
Volk([Ã(g),v2,...,vk+1])

Volk(S) f(v1) + · · ·+ Volk([v1,...,vk,Ã(g)])
Volk(S) f(vk+1)

−A (min {λi(g)})Sk+1
f (v1, . . . ,vk+1), f(Ã(g))

)
≤ maxx∈S F

(
Volk([x,v2,...,vk+1])

Volk(S) f(v1) + · · ·+ Volk([v1,...,vk,x])
Volk(S) f(vk+1)

−A (min {λi(g)})Sk+1
f (v1, . . . ,vk+1), f (x)

)
.
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The equality is a simple consequence of substitutions

µ1 =
Volk ([x,v2, . . . ,vk+1])

Volk(S)
, . . . , µk+1 =

Volk ([v1, . . . ,vk,x])

Volk(S)
,

and

x =

k+1∑
i=1

µivi.
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Remark

If all the assumptions of Theorem 10 are satisfied and in addition f is
continuous, then

f(Ã(g)) ≤ A(f(g))

≤
∑k+1
i=1 A (λi(g)) f (vi)−A (min {λi(g)})Sk+1

f (v1, . . . ,vk+1)

=
Volk([Ã(g),v2,...,vk+1])

Volk(S) f(v1) + · · ·+ Volk([v1,v2,...,Ã(g)])
Volk(S) f(vk+1)

−A (min {λi(g)})Sk+1
f (v1, . . . ,vk+1).
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Example

Let S = [v1,v2, . . . ,vk+1] be a k-simplex in Rk and f a continuous
convex function on S. Let L = (E,A, λ) be a measure space with
positive measure λ. We define the functional A : L→ R by

A(g) =
1

λ(E)

∫
E

g(t)dλ(t)

It is obvious that A is positive normalized linear functional on L. Then
the linear operator Ã is defined by

Ã(g) =
1

λ(E)

∫
E

g(t)dλ(t).
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We denote g = 1
λ(E)

∫
E
g(t)dλ(t). If g (E) ⊂ S and f(g) ∈ L, then

from previous remark it follows

f (g) ≤ A(f(g))

≤ Volk ([g,v2, . . . ,vk+1])

Volk(S)
f(v1) + · · ·+ Volk ([v1, . . . ,vk, g])

Volk(S)
f(vk+1)

−
(

1

λ(E)

∫
E

min {λi(g(t)) : i = 1, . . . , k + 1} dλ(t)

)
Sk+1
f (v1, . . . ,vk+1)
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Remark

Let S = [v1, . . . ,vk+1] be a k−simplex in Rk. If we put E = S, g = idS

and λ Lebesgue measure on S in previous example we get

idS =
1

|S|

∫
S

tdt = v∗ =
1

k + 1

k+1∑
i=1

vi

A(f(idS)) =
1

|S|

∫
S

f(t)dt

where v∗ is the barycenter of S.
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Now we have

f(v∗) ≤ 1

|S|

∫
S

f(t)dt

≤ Volk ([v∗,v2, . . . ,vk+1])

|S|
f(v1) + · · ·+ Volk ([v1, . . . ,vk,v

∗])

|S|
f(vk+1)

−
(

1

|S|

∫
S

min {λi(t) : i = 1, . . . , k + 1} dt
)[k+1∑

i=1

f(vi)− (k + 1)f(v∗)

]

=
1

k + 1

(
k+1∑
i=1

f (vi)

)

−
(

1

|S|

∫
S

min {λi(t) : i = 1, . . . , k + 1} dt
)[k+1∑

i=1

f(vi)− (k + 1)f(v∗)

]
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For i = 1, . . . , k + 1, let Si be the simplex whose vertices are v∗ and all
vertices of S except vi. Denote by v∗i the barycentre of
Si, i = 1, . . . , k + 1. Since Volk (Si) = Volk (Sj) , i, j = 1, . . . , k + 1, it
follows from (5) that t ∈ Sj implies mini λi(t) = λj(t). It follows∫

S

min
i
λi(t)dt =

k+1∑
j=1

∫
Sj

λj(t)dt. (5)
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We have∫
Sj

λj(t)dt

=
1

|S|

∫
Sj

Volk [v1, . . . , t, . . . ,vk+1] dt

=
1

|S|
Volk

[
v1, . . . ,

∫
Sj

tdt, . . . ,vk+1

]

=
|Sj |
|S|

Volk
[
v1, . . . ,v

∗
j , . . . ,vk+1

]
=

1

k + 1
Volk

[
v1, . . . ,v

∗
j , . . . ,vk+1

]
=

1

(k + 1)2
Volk [v1, . . . ,v

∗, . . . ,vk+1] =
1

(k + 1)3
|S|. (6)

Using (5) and (6) we get∫
S

min
i
λi(t)dt =

1

(k + 1)2
|S|.
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Now, putting (7) in (5), we have

f(v∗) ≤ 1

|S|

∫
S

f(t)dt

≤ k

(k + 1)2

k+1∑
i=1

f(vi) +
1

k + 1
f(v∗)

which is Theorem 4.1 obtained in
A. Guessab, G. Schmeisser, Convexity results and sharp error estimates in
approximate multivariate integration, Math. Comp., 2003, Volume 73,
Number 247.
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It can be easily verified that the right-hand side of this inequality is
equivalent to the k-dimensional version of the Hammer-Bullen inequality,
namely

1

|S|

∫
S

f(t)dt− f(v∗) ≤ k

k + 1

k+1∑
i=1

f(vi)−
k

|S|

∫
S

f(t)dt

which is proved, for example in
S. Wa̧sowicz, A. Witkowski, On some inequality of Hermite-Hadamard
type, forthcoming paper in Opuscula Math.
In one dimension this is exactly classical Hammer-Bullen inequality

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(t)dt ≤ f(a) + f(b)

2
− 1

4
S2
f (a, b)
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