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Introduction

1. Introduction

Let U be a convex subset of R¥ and n € N. If f: U — R is a convex
function, 1,...,x, € U and p1,...,p, nonnegative real numbers with
P, =", pi >0, then Jensen’s inequality

1 « 1 «
f (Pn ;m%) < Fn;pif(mi)

holds.
The convex hull of vectors 1, ..., x, € RF is the set

n n
{Z a;xi|a; € Ryay > O,Zai = 1}
i=1 i=1

and it is denoted by K = co({x1,...,2n}).
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Barycentric coordinates over K are continuous real functions Aq,..., A\,
on K with the following properties:

Ai(x) >0,i=1,...,n
> i) =1
i=1

T = Z)\z(w)wl (1)

If o — x1,...,x, — o1 are linearly independent vectors, then each

x € K can be written in the unique way as a convex combination of
Z1,...,&, in the form (1).

We also consider k-simplex S = co({v1,v2,...,vr41}) in R¥ which is a
convex hull of its vertices vy,..., V1 € R¥, where vertices

Vg — V1,...,Vp 1 — v1 € R¥ are lineary independent. In this case we'll
denote k-simplex by S = [v1,...,vk4+1]. Barycentric coordinates

A1, A2, ..., Apy1 over S are nonnegative linear polynomials on S and

have special form.
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Let F be a non-empty set and L be a linear class of real-valued functions
f: E — R having the properties:
(L1) (Vf,ge L)(Va,beR) af +bge L
(L2) 1 € L, thatisif f(t) =1forallt € E, then f € L
We consider positive linear functionals A: L — R, or in other words we
assume:
(A1) (Vf,g € L)(Ya,beR) A(af +bg) = aA(f)+ bA(g) (linearity)
(A2) (Vf € L)(f = 0 = A(f) > 0) (positivity)

If additionally the condition A(1) = 1 is satisfied, we say that A is
positive normalized linear functional.
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With L* we denote the linear class of functions g: E — R* defined by

g(t):(gl(t)v"'agk(t))v gi €L (izla""k)

F~or given linear functional A, we also consider linear operator
A= (A,...,A): L¥ — R defined by

Alg) = (Algr), - - Algr)) (2)
If A(1) =1 is satisfied, then using (A1) we also have
(A3) A(f(g)) = f(A(g)) for every linear function f on RE.
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The following result is Jessen's generalization of the Jensen's inequality
for convex functions which involves positive normalized linear functionals.

Let L satisfy L1, L2 on a nonempty set E and let A be a positive
normalized linear functional on L. If f is a continuous convex function on
an interval I C R, then for all g € L such that f (g) € L we have

A(g) € I and

f(A(g)) < A(f(9)).
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The next theorem, proved by J. Pecari¢ and P. R. Beesack in 1985,
presents generalization of Lah-Ribari¢ inequality.

Theorem 2 (Lah-Ribari¢ inequality).

Let L satisfy properties L1, L2 and A be a positive normalized linear
functional on L. Let f be a convex function on an interval
I=[m,M]CR (—o00o<m< M < o0). Then for all g € L such that
g(E)C I and f(g) € L

M — A(g)
M—m

Alg) —

A(f(9)) < f(m) + S 1 (M).
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Using previous theorem, Beesack and Pecari¢ in 1987. also proved the
next result.

Theorem 3.

Let L, A and f be as in Theorem 2. Let J be an interval in R such that
f(I)c J. If F: J x J— R is an increasing function in the first variable,
then for all g € L such that g(E) C I and f(g) € L, we have

< s (ST )+ 5= 100, 10)
= juax F (0 (m) + (1= 0)J (M), f(Om+ (1= 0)M)) .




Remark

If we choose F'(x,y) = x — y, as a simple consequence of previous
theorem it follows

A(f(9))—f (Alg)) < max [0f(m) + (1 —0)f(M) — f(0m + (1 - 0)M)].

0€10,1]
(3)
Choosing F(z,y) = 5 for f > 0 it follows
AU _ o [0 + (L= fOD] »

f(A(g)) ~ocion | f(Om+ (1—06)M)
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Additional generalization of Jessen's inequality is proved by E. J.
McShane in

E. J. McShane, Jensen's inequality, Bull. Amer. Math. Soc. 43 (1937),

Theorem 4 (McShane’s inequality).

Let L satisfy properties L1, L2, A be a positive normalized linear
functional on L and A defined as in (2). Let f be a continuous convex
function on a closed convex set U C R¥. Then for all g € L* such that
g(E) C U and f(g) € L, we have that A(g) € U and

f(A(g)) < A(f(9))-
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S. lveli¢, J. Pelarié, Generalizations of Converse Jensen'’s inequality and
related results, J. Math. Ineq. Volume 5, Number 1 (2011)

Theorem 5.

Let L satisfy properties L1, L2 on nonempty set E and A be a positive
normalized linear functional on L. Let x1,...,x, € R* and

K =co({zy,...,x,}). Let f be a convex function on K and \y,...,\,
barycentric coordinates over K. Then for all g € L* such that

g(E) C K and f(g),\i(g) € L,i =1,...,n we have

Af(@) < 3" ANi(g)) f (@)
i=1
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Main Results

Our main results are generalizations and improvements of Theorems 2
and 3 which will be obtained using the following lemma.
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Lemma 6

Let ¢ be a convex function on U where U is a convex set in R”,
(1,...,2,) € U™ and p = (p1,...,pn) is nonnegative n-tuple such that
n

;pi = 1. Then
(s —n¢< Zwﬂ
pid(;) (Zm%)

e e(()

&
||M:
I

min{py,...,pn} l
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< ma‘X{ph"'apn} [
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This is a simple consequence of Theorem 1 from
J. E. Petari¢, F. Proschan, Y. L. Tong, Convex Functions, Partial
Orderings, and Statistical Applications, Academic Press, New York, 1992.
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For n € N we denote

Anfl = {(le"?,u“n): Hi >0,i¢€ {175’”‘}72/117,:1}
i=1

We also need to equip our linear class L from Introduction with an
additional property denoted by (L3):

(L3) (Vf,g € L) (min{f,g} € L and max{f,g} € L) (lattice property).
Obviously, (R¥, <) (with standard ordering) is a lattice.
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Also, if f is a function defined on an subset U C R* and

T1,xo,..., 2, € U, we denote
S¢(T1,. .. Tn) :Zf x;) nf( Zaz)
i=1
Obviously, if f is convex, S7(x1,...,x,) >0

Next theorem presents an improvement of Theorem 5.

Theorem 7

Let L satisfy properties L1, L2, L3 on nonempty set E and A be a
positive normalized linear functional on L. Let x,...,x, € R¥ and
K =co({x1,...,x,}). Let f be a convex function on K and Ay, ..
barycentric coordinates over K. Then for all g € L* such that g(E)
and f(g),\i(g) € L,i=1,...,n we have

) < ZA(/\i(g)) f (i) — A(min{Ai(g)}) S¢ (w1, ..., zn)

S An
CK

V.




For each t € E we have g(t) € K. Using barycentric coordinates we have
Xi(g(t) >0,i=1,...,n, > ; Ni(g(t)) =1 and

g(t) = Z&(g(t))sci

Since f is convex, we can apply Lemma 6, and then

flgt) =f (Z Mg(t))mi)

< 3" Ag() f(@:) — min {Ai(g (1)) [Z J(@:) —nf (i Za:)]
i=1 3

i=1



Now, applying the functional A on the last inequality we get

y< A (Z)\ — min {)\;(g )}S?(wl,...,mn)>

= Z A(min{\i(g)}) SF(@i, ..., )



Main results

Remark

Theorem 7 is an improvement of Theorem 5 since under the required
assumptions we have

A(min{Xi(g)}) S} (x1,...,20) >0
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Remark

If all the assumptions of Theorem 7 are satisfied and in addittion f is
continuous, then

F(A(9)) < A(f(9)) <D A(Ni(9)) f (i) —A(min {Ai(9)}) SF (@1, ..., @)
i=1

The first inequality is consequence of McShane’s inequality and the
second of previous theorem.



Remark

Dividing this by f(g(t)) = f (i )\i(g(t))wi>, in the case f > 0, we
obtain =
A(f (9))
1 (A()
2ic1 AQi(g))f(mi)  A(min{li(g):i=1,...,n}) ,
S T AQu () ; (g(g) SP(x1,. .., @)
o S kif (@)  A(min{li(g):i=1,..., ”})Sn - -
= AN ) 7 (i) e "
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which is equivalent to

A(f(9))
Z?: pif () e
< B S ey (1)
—A(min{\i(g):i=1,...,n}) S¥(z1,...,xn)

This is an improvement of the inequality (2.6) from
S. lveli¢, J. Petarié, Generalizations of Converse Jensen'’s inequality and
related results, J. Math. Ineq. Volume 5, Number 1 (2011).



Main results

Using Teorem 7 we prove generalization and improvement of Theorem 3.
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Theorem 8.

Let L satisfy properties L1, L2, L3 on nonempty set I/, A be a positive
normalized linear functional on L and A defined as in (2). Let
x1,...,x, € R¥ and K = co({z1,...,x,}). Let f be a convex function
on K and \1,..., )\, barycentric coordinates over K. If J is an interval
in R such that f(K) C J and F: J x J — R is an increasing function in
the first variable, then for all g € L* such that g (E) C K and
f(g@),\i(g) € L,i=1,...,n we have

F (A(f(9)), f(A(g)) < F (ZA (Ailg) £ ()
=1
—A(min {Xi(g)}) S} (@1, . za). (Alg)))
< o F (zj; i f ()

—A (min {Xi(g)}) SF (@1, ..., @n), f (Z Mz%)) :
=
o
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For each t € E we have g(t) € K. Using barycentric coordinates we have
Xi(g(t)) >0,i=1,...,n, > Ni(g(t)) =1 and

g(t) = Zki(g(t))wi-

Since A is a positive normalized linear functional on L and A a linear
operator on LE, we have

A(g) = (A(g1), ..., Algr)) = ZA(Ai(g))xi
where

and

Therefore, A(g) € K.
o
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Since F': J x J — R is an increasing function in the first variable, we
have

F (A(f(9)). £(A(g))
<F (ZA(W)) fl@:) — A (min {\i(g(1)}) S} (@1, .,:cn»f(ﬁ(g)))

By substitutions
A(Ni(g) = pisi=1,...,n,

it follows

A (9) = Z iy
i=1



Now we have

By combining last two inequalities we get desired inequality.
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Remark

If we choose F(z,y) = x —y, as a simple consequence of previous
theorem it follows



Main results

Choosing F(z,y) = %, for f > 0 it follows

A(f(9) D iq bif (@) — A(min {Xi(g)}) S} (1, ..., xn)

= max = .
f(A(g)) — Anms f iz i)
This two inequalities present generalizations and improvements of (3)
and (4).
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Replacing F' by —F in the previous theorem we get next theorem
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Theorem 9.

Let L satisfy properties L1, L2, L3 on nonempty set I/, A be a positive
normalized linear functional on L and A defined as in (2). Let
x1,...,x, € R¥ and K = co({z1,...,x,}). Let f be a convex function
on K and \1,..., )\, barycentric coordinates over K. If J is an interval
in R such that f(K) C J and F: J x J — R is an decreasing function in
the first variable, then for all g € L* such that g (E) C K and
flg),\i(g) € L,i=1,...,n we have

F (A(f(9)), f(A(9)) = F (ZA (Ai(9)) f (@) -
=l
—A(min {Xi(g)}) S} (@1, .. za). (Alg)))

S ) .
> pin F (;Mw»

—A (min {Xi(g)}) SF (@1, ..., @n), f (Z Mﬂ?z)) :
p=il
o
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Convex functions on k-simplices in R*

Let S be a k-simplex in R¥ with vertices vy, v, ...,v541 € RF. The
barycentric coordinates A1, ... A1 over S are nonnegative linear
polynomials that satisfy Lagrange's property

1, i=y
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It is known
(M. Bessenyei, The Hermite-Hadamard inequality on Simplices, Amer.
Math. Monthly 115 (4) (2008))

that for each x € S barycentric coordinates A1 (x), ..., Ag+1(x) have the
form
Vol ([x,va, ..., Vkt1])
)\1(-73) VOlk(S) ’
Vol ([v1, 2, vs, ..., Vki1])
)\ =
2(2) Vol () ’
Vol ([v1, ..., vk, x])
)\ =
k+1(@) Vol (S) 7

where Vol denotes k-dimensional Lebesgue measure on S. Here, for
example, [v1, @, ..., v541] denotes the subsimplex obtained by replacing
vy by «, i.e. the subsimplex opposite to v2, when adding @ as a new
vertex.
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The signed volume Vol (S) is given by (k+ 1) x (k + 1) determinant

1 1 1
1 V11 V21 V411
Vol (S) = — V12 V22 Vk+12
k! . ) .
Uik Y2k -t Uk41k
where v1 = (V11, V12, .., V1K), -+ s Ukl = (Vkg11, Vkg12s - - -5 Ukt 1k)

(R. T. Rockafellar, Convex Analysis, Princeton Math. Ser. No. 28,
Princeton Univ. Press, Princeton, New Jersey, 1970.).
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Since vectors vo — v1,...,V+1 — v1 are linearly independent, then each
x € S can be written in unique way as convex combination of
V1,...,Vk41 in the form

_ Vol ([x, v2, . .., Vk11]) Vol ([v1, ..., v, x])
= Volu(S) vrtee Voly(S) Ukt

Now we present an analog of Theorem 7 for convex functions defined on
k-simplices in R¥.
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Theorem 10.

Let L satisfy properties L1, L2, L3 on nonempty set £, A be a positive
normalized linear functional on L and A defined as in (2). Let f be a
convex function on k-simplex S = [vy, v, ..., vg11] in R¥ and

A1, ..., A\ep1 barycentric coordinates over S. Then for all g € L* such
that g (E) C S and f(g) € L we have

k+1
A(f(9)) < ZA(M(Q)) f (v;) — A(min {xi(g)}) SFH (v1,. . vep1)

Vol ([A(g),v2,., Vol ([v1,v2,...,A(g)
— Yobu( \301:(25) vk+1])f(vl)+"'+ Ok([vVo;}:(S) g]>f(vk+1)

—A(min{Ai(g)}) SFH (w1, vi41).
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For each t € E we have g(t) € S. Using barycentric coordinates we have

1 1 1
1| 91(t) vx Vkt11
B :
M (g(t)) = Voli ([9(t), v2, .- -, Vk41]) gr(t) ok Ukt 1k
19 Vol (S) 1 1 1|
1| Y11 Y21 Vk+11
y .
Uik U2k Vk+1k



Aea(g(t)) =

Convex functions on k-simplices in RF

1 1 1
1| vn1 vk g1(t)
k! :
~ Vol ([v1,...,vk,9(1)]) U1k vkk  gr(t)
Vol (S) 11 I
1] Y11 V21 Vk+11
H .
Uik U2k Vk+1k
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k+1 k1
Z il =1and g(¢ Z Ai(
Smce f is convex on S, then usmg Lemma 6 we have

k+1

Flg(®) <Y Nilg(®)f (vi)

- k41 |
—min{\;(g Zf v;) )f(lm;m)]

Using the Laplace expansion of the determinant we can easily check that
Xi(g)e Lforalli=1,...,k+1.



Now, applying A on the last inequality we have

k+1
) <A (_Z Xi(g) f(vi)
- k+1 k+1
— min {\i(g [va, (k+1)f (kHZvZ)D
k+1
= ZA (Ai(g)) f (vi) — A(min{Xi(g)}) SF™ (v, vpp1).
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where
1 1 1
1 A(gl) V21 Uk—‘rll
Koo .
A0 (g)) = ) AlgD) vai verne | Vol ([Alg) vz, v ])
19)) = 1 1 1 = Voln(S) ’
1| v v21 Vkt11
E . : .
Vik U2k Vkt1k
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A(Art1(g) =

1 1 1
1| vt v A(gr)
k! :
vie o e Algr) :VOIk(['Ulw--a'UkaA(g)})
1 1 1 Vol (S) '
1| Y11 V21 Vk+11
7 .
Uik V2k Vk+41k




Convex functions on k-simplices in RF

Theorem 11

Let L satisfy properties L1, L2, L3 on nonempty set E, A be a positive
normalized linear functional on L and A defined as in (2). Let f be a
convex function on k-simplex S = [vy,vs,...,v.41] in RF and

A1, ..., Apt1 barycentric coordinates over S. If J is an interval in R such
that f(S) C J and F: J x J — R an increasing function in the first
variable, then for all g € L¥ such that g (E) C S and f(g) € L we have

k+1

F (A/(0)).1(A0) < o7 5y e P (L Vole (- 8- ora)

xzeS

—A(min{\i(g)}) S5 (w1, vis), f (a:))

k+1
_maxF <Z“1 v;) — A (min {)\i(g)})SlJf“(vl,...7vk+1) )

p=il

k+1
f (Z mm)) , where v; = x
i=1
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Since for each t € E we have g(t) € S, then it follows A(g) € S (see the
first part of proof of Theorem 8).

Since F': J x J — R is an increasing function in the first variable, by
Theorem 10 we have
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P (A(7(9)). /(A(9))

Vol ([A(g),v2,..., v Vol (|v1,..., vy, A(g)
§F< a( \?olk(QS) Hl])f(’v1)+-~-+ (oo g])f(’UkJrl)

—A(min {A(@)}) SFH (w1, i), S(Al9)))

< maxges F(Vrlgtz ol fy)) 4.4 Yllrasnel fy,, )

—A(min {\i(g)}) SE (w1 vit), f (m)).
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The equality is a simple consequence of substitutions

_ Voli, ([, va,. .., V1)) _ Voli, ([v1, ..., vk, x])
K1 Volr.(9) e HE41 Vol (S) )

and
k41

T = E iV
i=1
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Remark

If all the assumptions of Theorem 10 are satisfied and in addition f is
continuous, then

F(A(g)) < A(f(g))
<Y ANi(9) £ (0:) — A(min{Ai(@)}) SF (w1, - vkt1)

Vol (9),v2,...,vk Vol (|v1,v 7...,IZ(g)
= "([ Volk(zs) k+1])f(1]1)+"'+ k([Vol;j(S) Df(

—A (min{X\;(g)}) S’;H(vl, ey Ukg1).

'Uk:+1)



Convex functions on k-simplices in RF

Example

Let S = [vy,v2,...,v1] be a k-simplex in R¥ and f a continuous
convex function on S. Let L = (E, A, \) be a measure space with
positive measure \. We define the functional A: L — R by

Alg) = @ [E a(DdA(t)

It is obvious that A is positive normalized linear functional on L. Then
the linear operator A is defined by

~ 1

Ag) = 575 [ athare)
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We denote g = ﬁ [zg@)dA(t). If g(E) C S and f(g) € L, then
from previous remark it follows

f(@) < A(f(g))

< Vol ([g,'UQ,.. Uk+1])f( VOlk(['Ul,u-,vkag])f(

< Vol (S) vi)+ Volr(S) Vkt1)
< /mln{)\ ...,k+1}d)\(t)> Sit (v, vkg1)
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Remark

Let S = [vy,..., V1] be a k—simplex in RF. If we put E = S, g = idgs
and )\ Lebesgue measure on S in previous example we get

k+1

1 1
ds = — [ tdt—v" = —— S w,
tas \S|/ v k+1.2;”

A(ftias) = ig; [ 10

where v* is the barycenter of S.



Now we have

ﬂﬂs;me

< Vol ([v*,va, ...
5]

k+1
—<|;|/min{/\i(t):i:l,...,k—!—l}dt) lZf v;)) = (k+1)f(v )]

(i)

< /mln{/\ z:l,...,k+1}dt>l2fvz (k+1)f(v )]

Vol ([’01, ceey vkav*])

)
+ f(vl)++ |S|

f(Vk41)
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Fori=1,...,k+1, let S; be the simplex whose vertices are v* and all
vertices of S except v;. Denote by v} the barycentre of
Si,i=1,...,k+1. Since Vol (S;) = Voli (5;),4,5=1,...,k+1,it
follows from (5) that ¢ € S; implies min; X; () = A;(t). It follows

k+1

/Smiin Ai(t)dt = ;/SJ A (t)dt. (5)
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We have
/ Aj(t)dt
Vol AU A, dt
|S|/ ol [vy Vit 1]
Volk vl,...,/ tdt,. .., Vg1
—S] s,
| ]|Volk [vl RO 3 S vkﬂ} :L\/olk [vl LU 'Uk-+1:|
|S| b b ‘77 b) k—'—l ) b) ]7 )
! — Vol [v v* Vpy1] = ! |S]. (6)
(k+1) A I I sy Uk+1 (l{?+1)3

Using (5) and (6) we get

. 1
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Now, putting (7) in (5), we have

|S|/f t)dt
k

k+1

1 *
szf(vi)‘i‘mf(v)

which is Theorem 4.1 obtained in

A. Guessab, G. Schmeisser, Convexity results and sharp error estimates in
approximate multivariate integration, Math. Comp., 2003, Volume 73,
Number 247.
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It can be easily verified that the right-hand side of this inequality is
equivalent to the k-dimensional version of the Hammer-Bullen inequality,

namely
1 k+1
5 L Fa = pw) < ; v) =g [ 10

which is proved, for example in

S. Wasowicz, A. Witkowski, On some inequality of Hermite-Hadamard
type, forthcoming paper in Opuscula Math.

In one dimension this is exactly classical Hammer-Bullen inequality

f<a—2|—b>§ _f(a)+f(b)

1 2
2 _Zsf(a7b)
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