THE INTERNATIONAL CONFERENCE ON MATHEMATICAL INEQUALITIES AND NONLINEAR FUNCTIONAL ANALYSIS WITH APLICATIONS, July 25 – 29, 2012, Gyeongsang National University, Jinju, Korea

GENERALIZATIONS AND IMPROVEMENTS OF CONVERSE JENSEN'S INEQUALITY FOR CONVEX HULLS IN \mathbb{R}^k

by

Jurica Perić, University of Split, Split, Croatia

joint with

Josip Pečarić, University of Zagreb, Zagreb, Croatia and Abdus Salam School of Mathematical Sciences, Lahore, Pakistan

イロト 不得下 不良下 不良下 一度

1. Introduction

Let U be a convex subset of \mathbb{R}^k and $n \in \mathbb{N}$. If $f: U \to \mathbb{R}$ is a convex function, $x_1, \ldots, x_n \in U$ and p_1, \ldots, p_n nonnegative real numbers with $P_n = \sum_{i=1}^n p_i > 0$, then Jensen's inequality

$$f\left(\frac{1}{P_n}\sum_{i=1}^n p_i \boldsymbol{x}_i\right) \le \frac{1}{P_n}\sum_{i=1}^n p_i f(\boldsymbol{x}_i)$$

holds.

The convex hull of vectors $oldsymbol{x}_1,\ldots,oldsymbol{x}_n\in\mathbb{R}^k$ is the set

$$\left\{\sum_{i=1}^{n} \alpha_{i} \boldsymbol{x}_{i} | \alpha_{i} \in \mathbb{R}, \alpha_{i} \geq 0, \sum_{i=1}^{n} \alpha_{i} = 1\right\}$$

and it is denoted by $K = co(\{x_1, \dots, x_n\}).$

Barycentric coordinates over K are continuous real functions $\lambda_1, \ldots, \lambda_n$ on K with the following properties:

$$\lambda_i(\boldsymbol{x}) \ge 0, i = 1, ..., n$$
$$\sum_{i=1}^n \lambda_i(\boldsymbol{x}) = 1$$
$$\boldsymbol{x} = \sum_{i=1}^n \lambda_i(\boldsymbol{x}) \boldsymbol{x}_i$$
(1)

If $x_2 - x_1, \ldots, x_n - x_1$ are linearly independent vectors, then each $x \in K$ can be written in the unique way as a convex combination of x_1, \ldots, x_n in the form (1). We also consider k-simplex $S = co(\{v_1, v_2, \ldots, v_{k+1}\})$ in \mathbb{R}^k which is a convex hull of its vertices $v_1, \ldots, v_{k+1} \in \mathbb{R}^k$, where vertices $v_2 - v_1, \ldots, v_{k+1} - v_1 \in \mathbb{R}^k$ are lineary independent. In this case we'll denote k-simplex by $S = [v_1, \ldots, v_{k+1}]$. Barycentric coordinates $\lambda_1, \lambda_2, \ldots, \lambda_{k+1}$ over S are nonnegative linear polynomials on S and have special form. Let E be a non-empty set and L be a linear class of real-valued functions $f\colon E\to\mathbb{R}$ having the properties:

(L1)
$$(\forall f, g \in L) (\forall a, b \in \mathbb{R}) af + bg \in L$$

(L2) $1 \in L$, that is if f(t) = 1 for all $t \in E$, then $f \in L$

We consider positive linear functionals $A\colon L\to \mathbb{R},$ or in other words we assume:

 $\begin{array}{ll} (A1) & (\forall f,g \in L)(\forall a,b \in \mathbb{R}) & A(af+bg) = aA(f) + bA(g) \text{ (linearity)} \\ (A2) & (\forall f \in L)(f \geq 0 \Longrightarrow A(f) \geq 0) \text{ (positivity)} \end{array}$

If additionally the condition A(1) = 1 is satisfied, we say that A is positive normalized linear functional.

(신문) 문

With L^k we denote the linear class of functions ${\boldsymbol{g}} \colon E \to \mathbb{R}^k$ defined by

$$g(t) = (g_1(t), \dots, g_k(t)), \quad g_i \in L \quad (i = 1, \dots, k)$$

For given linear functional A, we also consider linear operator $\widetilde{A}=(A,\ldots,A)\colon L^k\to\mathbb{R}^k$ defined by

$$\widetilde{A}(\boldsymbol{g}) = (A(g_1), \dots, A(g_k))$$
(2)

< ∃ >

If A(1) = 1 is satisfied, then using (A1) we also have (A3) $A(f(g)) = f(\widetilde{A}(g))$ for every linear function f on \mathbb{R}^k . The following result is Jessen's generalization of the Jensen's inequality for convex functions which involves positive normalized linear functionals.

Theorem 1.

Let L satisfy L1, L2 on a nonempty set E and let A be a positive normalized linear functional on L. If f is a continuous convex function on an interval $I \subset \mathbb{R}$, then for all $g \in L$ such that $f(g) \in L$ we have $A(g) \in I$ and

 $f(A(g)) \le A(f(g)).$

The next theorem, proved by J. Pečarić and P. R. Beesack in 1985, presents generalization of Lah-Ribarič inequality.

Theorem 2 (Lah-Ribarič inequality).

Let L satisfy properties L1, L2 and A be a positive normalized linear functional on L. Let f be a convex function on an interval $I = [m, M] \subset \mathbb{R} \ (-\infty < m < M < \infty)$. Then for all $g \in L$ such that $g(E) \subset I$ and $f(g) \in L$

$$A(f(g)) \le \frac{M - A(g)}{M - m} f(m) + \frac{A(g) - m}{M - m} f(M).$$

Using previous theorem, Beesack and Pečarić in 1987. also proved the next result.

Theorem 3.

Let L, A and f be as in Theorem 2. Let J be an interval in \mathbb{R} such that $f(I) \subset J$. If $F: J \times J \to \mathbb{R}$ is an increasing function in the first variable, then for all $g \in L$ such that $g(E) \subset I$ and $f(g) \in L$, we have

$$F(A(f(g)), f(A(g)))$$

$$\leq \max_{x \in [m,M]} F\left(\frac{M-x}{M-m}f(m) + \frac{x-m}{M-m}f(M), f(x)\right)$$

$$= \max_{\theta \in [0,1]} F\left(\theta f(m) + (1-\theta)f(M), f(\theta m + (1-\theta)M)\right).$$

Remark

If we choose $F(\boldsymbol{x},\boldsymbol{y})=\boldsymbol{x}-\boldsymbol{y},$ as a simple consequence of previous theorem it follows

$$A(f(g)) - f(A(g)) \le \max_{\theta \in [0,1]} \left[\theta f(m) + (1-\theta)f(M) - f(\theta m + (1-\theta)M) \right].$$
(3)

Choosing $F(x,y) = \frac{x}{y}$, for f > 0 it follows

$$\frac{A(f(g))}{f(A(g))} \le \max_{\theta \in [0,1]} \left[\frac{\theta f(m) + (1-\theta)f(M)}{f(\theta m + (1-\theta)M)} \right].$$
(4)

Additional generalization of Jessen's inequality is proved by E. J. McShane in

E. J. McShane, Jensen's inequality, Bull. Amer. Math. Soc. 43 (1937),

Theorem 4 (McShane's inequality).

Let L satisfy properties L1, L2, A be a positive normalized linear functional on L and \widetilde{A} defined as in (2). Let f be a continuous convex function on a closed convex set $U \subset \mathbb{R}^k$. Then for all $g \in L^k$ such that $g(E) \subset U$ and $f(g) \in L$, we have that $\widetilde{A}(g) \in U$ and

 $f(\widetilde{A}(g)) \le A(f(g)).$

S. Ivelić, J. Pečarić, *Generalizations of Converse Jensen's inequality and related results*, J. Math. Ineq. Volume 5, Number 1 (2011)

Theorem 5.

Let L satisfy properties L1, L2 on nonempty set E and A be a positive normalized linear functional on L. Let $x_1, \ldots, x_n \in \mathbb{R}^k$ and $K = co(\{x_1, \ldots, x_n\})$. Let f be a convex function on K and $\lambda_1, \ldots, \lambda_n$ barycentric coordinates over K. Then for all $g \in L^k$ such that $g(E) \subset K$ and $f(g), \lambda_i(g) \in L, i = 1, \ldots, n$ we have

$$A(f(\boldsymbol{g})) \leq \sum_{i=1}^{n} A(\lambda_i(\boldsymbol{g})) f(\boldsymbol{x}_i)$$

Main Results

Our main results are generalizations and improvements of Theorems 2 and 3 which will be obtained using the following lemma.

Lemma 6.

Let ϕ be a convex function on U where U is a convex set in \mathbb{R}^k , $(x_1, \ldots, x_n) \in U^n$ and $p = (p_1, \ldots, p_n)$ is nonnegative n-tuple such that $\sum_{i=1}^n p_i = 1$. Then

$$\min\{p_1, \dots, p_n\} \left[\sum_{i=1}^n \phi(\boldsymbol{x}_i) - n\phi\left(\frac{1}{n}\sum_{i=1}^n \boldsymbol{x}_i\right) \right]$$
$$\leq \sum_{i=1}^n p_i\phi(\boldsymbol{x}_i) - \phi\left(\sum_{i=1}^n p_i\boldsymbol{x}_i\right)$$
$$\leq \max\{p_1, \dots, p_n\} \left[\sum_{i=1}^n \phi(\boldsymbol{x}_i) - n\phi\left(\frac{1}{n}\sum_{i=1}^n \boldsymbol{x}_i\right) \right]$$

This is a simple consequence of Theorem 1 from J. E. Pečarić, F. Proschan, Y. L. Tong, *Convex Functions, Partial Orderings, and Statistical Applications*, Academic Press, New York, 1992. For $n \in \mathbb{N}$ we denote

$$\Delta_{n-1} = \left\{ (\mu_1, \dots, \mu_n) \colon \mu_i \ge 0, i \in \{1, \dots, n\}, \sum_{i=1}^n \mu_i = 1 \right\}$$

We also need to equip our linear class L from Introduction with an additional property denoted by (L3):

(L3) $(\forall f, g \in L) (\min \{f, g\} \in L \text{ and } \max \{f, g\} \in L)$ (lattice property). Obviously, (\mathbb{R}^E, \leq) (with standard ordering) is a lattice.

Also, if f is a function defined on an subset $U\subseteq \mathbb{R}^k$ and $\pmb{x}_1, \pmb{x}_2, \dots, \pmb{x}_n \in U$, we denote

$$S_f^n(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n) = \sum_{i=1}^n f(\boldsymbol{x}_i) - nf\left(\frac{1}{n}\sum_{i=1}^n \boldsymbol{x}_i\right)$$

Obviously, if f is convex, $S_f^n(x_1, ..., x_n) \ge 0$ Next theorem presents an improvement of Theorem 5.

Theorem 7.

Let L satisfy properties L1, L2, L3 on nonempty set E and A be a positive normalized linear functional on L. Let $x_1, \ldots, x_n \in \mathbb{R}^k$ and $K = co(\{x_1, \ldots, x_n\})$. Let f be a convex function on K and $\lambda_1, \ldots, \lambda_n$ barycentric coordinates over K. Then for all $g \in L^k$ such that $g(E) \subset K$ and $f(g), \lambda_i(g) \in L, i = 1, \ldots, n$ we have

$$A(f(\boldsymbol{g})) \leq \sum_{i=1}^{n} A(\lambda_i(\boldsymbol{g})) f(\boldsymbol{x}_i) - A(\min\{\lambda_i(\boldsymbol{g})\}) S_f^n(\boldsymbol{x}_1, \dots, \boldsymbol{x}_n)$$

For each $t \in E$ we have $\boldsymbol{g}(t) \in K$. Using barycentric coordinates we have $\lambda_i(\boldsymbol{g}(t)) \geq 0, i = 1, \dots, n, \ \sum_{i=1}^n \lambda_i(\boldsymbol{g}(t)) = 1$ and

$$\boldsymbol{g}(t) = \sum_{i=1}^{n} \lambda_i(\boldsymbol{g}(t)) \boldsymbol{x}_i$$

Since f is convex, we can apply Lemma 6, and then

$$f(\boldsymbol{g}(t)) = f\left(\sum_{i=1}^{n} \lambda_i(\boldsymbol{g}(t))\boldsymbol{x}_i\right)$$

$$\leq \sum_{i=1}^{n} \lambda_i(\boldsymbol{g}(t))f(\boldsymbol{x}_i) - \min\left\{\lambda_i(\boldsymbol{g}(t))\right\}\left[\sum_{i=1}^{n} f(\boldsymbol{x}_i) - nf\left(\frac{1}{n}\sum_{i=1}^{n} \boldsymbol{x}_i\right)\right]$$

Now, applying the functional \boldsymbol{A} on the last inequality we get

$$A(f(\boldsymbol{g})) \leq A\left(\sum_{i=1}^{n} \lambda_i(\boldsymbol{g}) f(\boldsymbol{x}_i) - \min\left\{\lambda_i(\boldsymbol{g})\right\} S_f^n(\boldsymbol{x}_1, \dots, \boldsymbol{x}_n)\right)$$
$$= \sum_{i=1}^{n} A(\lambda_i(\boldsymbol{g})) f(\boldsymbol{x}_i) - A(\min\left\{\lambda_i(\boldsymbol{g})\right\}) S_f^n(\boldsymbol{x}_1, \dots, \boldsymbol{x}_n)$$

イロン イ団と イヨン イヨン

æ

Remark

Theorem 7 is an improvement of Theorem 5 since under the required assumptions we have

$$A(\min\{\lambda_i(\boldsymbol{g})\})S_f^n(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n)\geq 0$$

э

< ∃ →

If all the assumptions of Theorem 7 are satisfied and in addittion f is continuous, then

$$f(\widetilde{A}(\boldsymbol{g})) \leq A(f(\boldsymbol{g})) \leq \sum_{i=1}^{n} A(\lambda_{i}(\boldsymbol{g})) f(\boldsymbol{x}_{i}) - A(\min\{\lambda_{i}(\boldsymbol{g})\}) S_{f}^{n}(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{n})$$

The first inequality is consequence of McShane's inequality and the second of previous theorem.

Remark

We know that under assumptions of Theorem 7 we have

$$A(f(\boldsymbol{g})) \leq \sum_{i=1}^{n} A(\lambda_i(\boldsymbol{g})) f(\boldsymbol{x}_i) - A(\min\{\lambda_i(\boldsymbol{g})\}) S_f^n(\boldsymbol{x}_1, \dots, \boldsymbol{x}_n)$$

Dividing this by
$$f(\boldsymbol{g}(t)) = f\left(\sum_{i=1}^n \lambda_i(\boldsymbol{g}(t))\boldsymbol{x}_i\right)$$
, in the case $f > 0$, we obtain

obtain

$$\frac{A(f(\mathbf{g}))}{f\left(\widetilde{A}(\mathbf{g})\right)} \leq \frac{\sum_{i=1}^{n} A(\lambda_i(\mathbf{g})) f(\mathbf{x}_i)}{f\left(\sum_{i=1}^{n} A(\lambda_i(\mathbf{g})) \mathbf{x}_i\right)} - \frac{A\left(\min\left\{\lambda_i(\mathbf{g}): i=1,\ldots,n\right\}\right)}{f\left(\widetilde{A}(\mathbf{g})\right)} S_f^n(\mathbf{x}_1,\ldots,\mathbf{x}_n) \\ \leq \max_{\Delta_{n-1}} \frac{\sum_{i=1}^{n} \mu_i f(\mathbf{x}_i)}{f\left(\sum_{i=1}^{n} \mu_i \mathbf{x}_i\right)} - \frac{A\left(\min\left\{\lambda_i(\mathbf{g}): i=1,\ldots,n\right\}\right)}{f\left(\widetilde{A}(\mathbf{g})\right)} S_f^n(\mathbf{x}_1,\ldots,\mathbf{x}_n)$$

which is equivalent to

$$A(f(\boldsymbol{g})) \leq \max_{\Delta_{n-1}} \frac{\sum_{i=1}^{n} \mu_i f(\boldsymbol{x}_i)}{f(\sum_{i=1}^{n} \mu_i \boldsymbol{x}_i)} f\left(\widetilde{A}(\boldsymbol{g})\right) \\ -A\left(\min\left\{\lambda_i(\boldsymbol{g}): i=1,\ldots,n\right\}\right) S_f^n(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n)$$

This is an improvement of the inequality (2.6) from S. Ivelić, J. Pečarić, *Generalizations of Converse Jensen's inequality and related results*, J. Math. Ineq. Volume 5, Number 1 (2011).

< ∃ →

Using Teorem 7 we prove generalization and improvement of Theorem 3.

< □ > < 同

글 🖌 🖌 글 🕨

э

Theorem 8.

Let L satisfy properties L1, L2, L3 on nonempty set E, A be a positive normalized linear functional on L and \widetilde{A} defined as in (2). Let $x_1, \ldots, x_n \in \mathbb{R}^k$ and $K = co(\{x_1, \ldots, x_n\})$. Let f be a convex function on K and $\lambda_1, \ldots, \lambda_n$ barycentric coordinates over K. If J is an interval in \mathbb{R} such that $f(K) \subset J$ and $F: J \times J \to \mathbb{R}$ is an increasing function in the first variable, then for all $g \in L^k$ such that $g(E) \subset K$ and $f(g), \lambda_i(g) \in L, i = 1, \ldots, n$ we have

$$\begin{split} \Gamma\left(A(f(\boldsymbol{g})), f(\widetilde{A}(\boldsymbol{g}))\right) &\leq F\left(\sum_{i=1}^{n} A\left(\lambda_{i}(\boldsymbol{g})\right) f\left(\boldsymbol{x}_{i}\right)\right.\\ &\left.-A\left(\min\left\{\lambda_{i}(\boldsymbol{g})\right\}\right) S_{f}^{n}(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{n}), f(\widetilde{A}(\boldsymbol{g}))\right) \\ &\leq \max_{\Delta_{n-1}} F\left(\sum_{i=1}^{n} \mu_{i} f(\boldsymbol{x}_{i})\right.\\ &\left.-A\left(\min\left\{\lambda_{i}(\boldsymbol{g})\right\}\right) S_{f}^{n}(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{n}), f\left(\sum_{i=1}^{n} \mu_{i} \boldsymbol{x}_{i}\right)\right) \end{split}$$

Proof.

For each $t \in E$ we have $\boldsymbol{g}(t) \in K$. Using barycentric coordinates we have $\lambda_i(\boldsymbol{g}(t)) \geq 0, i = 1, \dots, n, \sum_{i=1}^n \lambda_i(\boldsymbol{g}(t)) = 1$ and

$$\boldsymbol{g}(t) = \sum_{i=1}^{n} \lambda_i(\boldsymbol{g}(t)) \boldsymbol{x}_i.$$

Since A is a positive normalized linear functional on L and \widetilde{A} a linear operator on $L^k,$ we have

$$\widetilde{A}(\boldsymbol{g}) = (A(g_1), \dots, A(g_k)) = \sum_{i=1}^n A(\lambda_i(\boldsymbol{g})) x_i$$

where

$$A(\lambda_i(\boldsymbol{g})) \ge 0, i = 1, \dots, n$$

and

$$\sum_{i=1}^{n} A\left(\lambda_{i}(\boldsymbol{g})\right) = A\left(\sum_{i=1}^{n} \lambda_{i}(\boldsymbol{g})\right) = A(1) = 1.$$

Therefore, $\widetilde{A}(\boldsymbol{g}) \in K$.

(日) 《聞》 《問》 《問》 《日)

Since $F\colon J\times J\to \mathbb{R}$ is an increasing function in the first variable, we have

$$F\left(A(f(\boldsymbol{g})), f(\widetilde{A}(\boldsymbol{g}))\right)$$

$$\leq F\left(\sum_{i=1}^{n} A\left(\lambda_{i}(\boldsymbol{g})\right) f(\boldsymbol{x}_{i}) - A\left(\min\left\{\lambda_{i}(\boldsymbol{g}(t))\right\}\right) S_{f}^{n}(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{n}), f(\widetilde{A}(\boldsymbol{g}))\right)$$

By substitutions

$$A(\lambda_i(\boldsymbol{g})) = \mu_i, i = 1, \dots, n,$$

it follows

$$\widetilde{A}(\boldsymbol{g}) = \sum_{i=1}^{n} \mu_i \boldsymbol{x}_i.$$

- ∢ ≣ ▶

3

Introduction Main results Convex functions on k-simplices in $\mathbb{R}^{\mathcal{K}}$

Now we have

$$F\left(\sum_{i=1}^{n} A\left(\lambda_{i}(\boldsymbol{g})\right) f(\boldsymbol{x}_{i}) - A\left(\min\left\{\lambda_{i}(\boldsymbol{g}(t))\right\}\right) S_{f}^{n}(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{n}), f(\widetilde{A}(\boldsymbol{g}))\right)$$

$$= F\left(\sum_{i=1}^{n} \mu_{i} f(\boldsymbol{x}_{i}) - A\left(\min\left\{\lambda_{i}(\boldsymbol{g}(t))\right\}\right) S_{f}^{n}(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{n}), f\left(\sum_{i=1}^{n} \mu_{i} \boldsymbol{x}_{i}\right)\right)$$

$$\leq \max_{\Delta_{n-1}} F\left(\sum_{i=1}^{n} \mu_{i} f(\boldsymbol{x}_{i}) - A\left(\min\left\{\lambda_{i}(\boldsymbol{g}(t))\right\}\right) S_{f}^{n}(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{n}), f\left(\sum_{i=1}^{n} \mu_{i} \boldsymbol{x}_{i}\right)\right)$$

< ∃ >

э

By combining last two inequalities we get desired inequality.

If we choose $F(\boldsymbol{x},\boldsymbol{y})=\boldsymbol{x}-\boldsymbol{y},$ as a simple consequence of previous theorem it follows

$$A(f(\boldsymbol{g})) - f(\widetilde{A}(\boldsymbol{g})) \\ \leq \max_{\Delta_{n-1}} \left(\sum_{i=1}^{n} \mu_i f(\boldsymbol{x}_i) - f\left(\sum_{i=1}^{n} \mu_i \boldsymbol{x}_i \right) - A\left(\min\left\{ \lambda_i(\boldsymbol{g}) \right\} \right) S_f^n(\boldsymbol{x}_1, \dots, \boldsymbol{x}_n) \right)$$

프 > 프

Choosing $F(x,y) = \frac{x}{y}$, for f > 0 it follows

$$\frac{A(f(\boldsymbol{g}))}{f(\widetilde{A}(\boldsymbol{g}))} \leq \max_{\Delta_{n-1}} \left(\frac{\sum_{i=1}^{n} \mu_i f(\boldsymbol{x}_i) - A\left(\min\left\{\lambda_i(\boldsymbol{g})\right\}\right) S_f^n(\boldsymbol{x}_1, \dots, \boldsymbol{x}_n)}{f\left(\sum_{i=1}^{n} \mu_i \boldsymbol{x}_i\right)} \right).$$

э

- ∢ ⊒ ▶

This two inequalities present generalizations and improvements of $\left(3\right)$ and $\left(4\right).$

Replacing F by -F in the previous theorem we get next theorem

< 注入 < 注入

3

Theorem 9.

Let L satisfy properties L1, L2, L3 on nonempty set E, A be a positive normalized linear functional on L and \widetilde{A} defined as in (2). Let $x_1, \ldots, x_n \in \mathbb{R}^k$ and $K = co(\{x_1, \ldots, x_n\})$. Let f be a convex function on K and $\lambda_1, \ldots, \lambda_n$ barycentric coordinates over K. If J is an interval in \mathbb{R} such that $f(K) \subset J$ and $F: J \times J \to \mathbb{R}$ is an decreasing function in the first variable, then for all $g \in L^k$ such that $g(E) \subset K$ and $f(g), \lambda_i(g) \in L, i = 1, \ldots, n$ we have

$$F\left(A(f(\boldsymbol{g})), f(\widetilde{A}(\boldsymbol{g}))\right) \ge F\left(\sum_{i=1}^{n} A\left(\lambda_{i}(\boldsymbol{g})\right) f\left(\boldsymbol{x}_{i}\right) - -A\left(\min\left\{\lambda_{i}(\boldsymbol{g})\right\}\right) S_{f}^{n}(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{n}), f(\widetilde{A}(\boldsymbol{g}))\right)$$
$$\ge \min_{\Delta_{n-1}} F\left(\sum_{i=1}^{n} \mu_{i} f(\boldsymbol{x}_{i}) - A\left(\min\left\{\lambda_{i}(\boldsymbol{g})\right\}\right) S_{f}^{n}(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{n}), f\left(\sum_{i=1}^{n} \mu_{i} \boldsymbol{x}_{i}\right)\right)$$

200

.

Convex functions on k-simplices in \mathbb{R}^k

Let S be a k-simplex in \mathbb{R}^k with vertices $v_1, v_2, \ldots, v_{k+1} \in \mathbb{R}^k$. The barycentric coordinates $\lambda_1, \ldots, \lambda_{k+1}$ over S are nonnegative linear polynomials that satisfy Lagrange's property

$$\lambda_i(\boldsymbol{v}_j) = \delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

It is known

(M. Bessenyei, *The Hermite-Hadamard inequality on Simplices*, Amer. Math. Monthly **115** (4) (2008)) that for each $x \in S$ barycentric coordinates $\lambda_1(x), \ldots, \lambda_{k+1}(x)$ have the form

$$\begin{split} \lambda_1(\boldsymbol{x}) &= \frac{\operatorname{Vol}_k\left([\boldsymbol{x}, \boldsymbol{v}_2, \dots, \boldsymbol{v}_{k+1}]\right)}{\operatorname{Vol}_k(S)}, \\ \lambda_2(\boldsymbol{x}) &= \frac{\operatorname{Vol}_k\left([\boldsymbol{v}_1, \boldsymbol{x}, \boldsymbol{v}_3, \dots, \boldsymbol{v}_{k+1}]\right)}{\operatorname{Vol}_k(S)}, \\ &\vdots \\ \lambda_{k+1}(\boldsymbol{x}) &= \frac{\operatorname{Vol}_k\left([\boldsymbol{v}_1, \dots, \boldsymbol{v}_k, \boldsymbol{x}]\right)}{\operatorname{Vol}_k(S)}, \end{split}$$

where Vol_k denotes k-dimensional Lebesgue measure on S. Here, for example, $[v_1, x, \ldots, v_{k+1}]$ denotes the subsimplex obtained by replacing v_2 by x, i.e. the subsimplex opposite to v_2 , when adding x as a new vertex.

The signed volume $\operatorname{Vol}_k(S)$ is given by $(k+1) \times (k+1)$ determinant

$$\operatorname{Vol}_{k}(S) = \frac{1}{k!} \begin{vmatrix} 1 & 1 & \cdots & 1 \\ v_{11} & v_{21} & & v_{k+11} \\ v_{12} & v_{22} & & v_{k+12} \\ \vdots & \vdots & & \vdots \\ v_{1k} & v_{2k} & \cdots & v_{k+1k} \end{vmatrix},$$

where $v_1 = (v_{11}, v_{12}, \ldots, v_{1k}), \ldots, v_{k+1} = (v_{k+11}, v_{k+12}, \ldots, v_{k+1k})$ (R. T. Rockafellar, *Convex Analysis*, Princeton Math. Ser. No. 28, Princeton Univ. Press, Princeton, New Jersey, 1970.).

運入 不運入 …

Since vectors $v_2 - v_1, \ldots, v_{k+1} - v_1$ are linearly independent, then each $x \in S$ can be written in unique way as convex combination of v_1, \ldots, v_{k+1} in the form

$$\boldsymbol{x} = \frac{\operatorname{Vol}_k\left([\boldsymbol{x}, \boldsymbol{v}_2, \dots, \boldsymbol{v}_{k+1}]\right)}{\operatorname{Vol}_k(S)} \boldsymbol{v}_1 + \dots + \frac{\operatorname{Vol}_k\left([\boldsymbol{v}_1, \dots, \boldsymbol{v}_k, \boldsymbol{x}]\right)}{\operatorname{Vol}_k(S)} \boldsymbol{v}_{k+1}.$$

Now we present an analog of Theorem 7 for convex functions defined on k-simplices in \mathbb{R}^k .

< ∃ →

3

Theorem 10.

Let L satisfy properties L1, L2, L3 on nonempty set E, A be a positive normalized linear functional on L and \widetilde{A} defined as in (2). Let f be a convex function on k-simplex $S = [v_1, v_2, \ldots, v_{k+1}]$ in \mathbb{R}^k and $\lambda_1, \ldots, \lambda_{k+1}$ barycentric coordinates over S. Then for all $g \in L^k$ such that $g(E) \subset S$ and $f(g) \in L$ we have

$$A(f(\boldsymbol{g})) \leq \sum_{i=1}^{k+1} A(\lambda_i(\boldsymbol{g})) f(\boldsymbol{v}_i) - A(\min\{\lambda_i(\boldsymbol{g})\}) S_f^{k+1}(\boldsymbol{v}_1, \dots, \boldsymbol{v}_{k+1})$$

=
$$\frac{\operatorname{Vol}_k([\tilde{A}(\boldsymbol{g}), \boldsymbol{v}_2, \dots, \boldsymbol{v}_{k+1}])}{\operatorname{Vol}_k(S)} f(\boldsymbol{v}_1) + \dots + \frac{\operatorname{Vol}_k([\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \tilde{A}(\boldsymbol{g})])}{\operatorname{Vol}_k(S)} f(\boldsymbol{v}_{k+1})$$

$$-A(\min\{\lambda_i(\boldsymbol{g})\}) S_f^{k+1}(\boldsymbol{v}_1, \dots, \boldsymbol{v}_{k+1}).$$

÷

For each $t \in E$ we have $\boldsymbol{g}(t) \in S$. Using barycentric coordinates we have

$$\lambda_{1}(\boldsymbol{g}(t)) = \frac{\operatorname{Vol}_{k}\left([\boldsymbol{g}(t), \boldsymbol{v}_{2}, \dots, \boldsymbol{v}_{k+1}]\right)}{\operatorname{Vol}_{k}(S)} = \frac{\frac{1}{k!} \begin{vmatrix} 1 & 1 & \cdots & 1 \\ g_{1}(t) & v_{21} & v_{k+11} \\ \vdots & \vdots & \vdots \\ g_{k}(t) & v_{2k} & \cdots & v_{k+1k} \end{vmatrix}}{\frac{1}{k!} \begin{vmatrix} 1 & 1 & \cdots & 1 \\ v_{11} & v_{21} & v_{k+11} \\ \vdots & \vdots & \vdots \\ v_{1k} & v_{2k} & \cdots & v_{k+1k} \end{vmatrix}},$$

문에 비문어

$$\lambda_{k+1}(\boldsymbol{g}(t)) = \frac{\operatorname{Vol}_k\left([\boldsymbol{v}_1, \dots, \boldsymbol{v}_k, \boldsymbol{g}(t)]\right)}{\operatorname{Vol}_k(S)} = \frac{\frac{1}{k!} \begin{vmatrix} 1 & \cdots & 1 & 1 \\ v_{11} & v_{k1} & g_1(t) \\ \vdots & \vdots & \vdots \\ v_{1k} & \cdots & v_{kk} & g_k(t) \end{vmatrix}}{\frac{1}{k!} \begin{vmatrix} 1 & 1 & \cdots & 1 \\ v_{11} & v_{21} & v_{k+11} \\ \vdots & \vdots & \vdots \\ v_{1k} & v_{2k} & \cdots & v_{k+1k} \end{vmatrix}},$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

$$\sum_{i=1}^{k+1} \lambda_i(\boldsymbol{g}(t)) = 1 \text{ and } \boldsymbol{g}(t) = \sum_{i=1}^{k+1} \lambda_i(\boldsymbol{g}(t)) \boldsymbol{v}_i.$$
Since f is convex on S , then using Lemma 6 we have

$$f(\boldsymbol{g}(t)) \leq \sum_{i=1}^{k+1} \lambda_i(\boldsymbol{g}(t)) f(\boldsymbol{v}_i) -\min\left\{\lambda_i(\boldsymbol{g}(t))\right\} \left[\sum_{i=1}^{k+1} f(\boldsymbol{v}_i) - (k+1) f\left(\frac{1}{k+1} \sum_{i=1}^{k+1} \boldsymbol{v}_i\right)\right].$$

Using the Laplace expansion of the determinant we can easily check that $\lambda_i(\boldsymbol{g}) \in L$ for all $i = 1, \dots, k+1$.

3

Now, applying \boldsymbol{A} on the last inequality we have

$$A(f(\boldsymbol{g})) \leq A\left(\sum_{i=1}^{k+1} \lambda_i(\boldsymbol{g}) f(\boldsymbol{v}_i) - \min\left\{\lambda_i(\boldsymbol{g}(t))\right\} \left[\sum_{i=1}^{k+1} f(\boldsymbol{v}_i) - (k+1)f\left(\frac{1}{k+1}\sum_{i=1}^{k+1} \boldsymbol{v}_i\right)\right]\right)$$
$$= \sum_{i=1}^{k+1} A\left(\lambda_i(\boldsymbol{g})\right) f\left(v_i\right) - A\left(\min\left\{\lambda_i(\boldsymbol{g})\right\}\right) S_f^{k+1}(\boldsymbol{v}_1, \dots, \boldsymbol{v}_{k+1}).$$

< E > < E >

where

$$A(\lambda_{1}(\boldsymbol{g})) = \frac{\frac{1}{k!} \begin{vmatrix} 1 & 1 & \cdots & 1 \\ A(g_{1}) & v_{21} & v_{k+11} \\ \vdots & \vdots & \vdots \\ A(g_{k}) & v_{2k} & \cdots & v_{k+1k} \\ \end{vmatrix}}{\frac{1}{k!} \begin{vmatrix} 1 & 1 & \cdots & 1 \\ v_{11} & v_{21} & v_{k+11} \\ \vdots & \vdots & \vdots \\ v_{1k} & v_{2k} & \cdots & v_{k+1k} \end{vmatrix}} = \frac{\operatorname{Vol}_{k}\left(\left[\widetilde{A}(\boldsymbol{g}), \boldsymbol{v}_{2}, \dots, \boldsymbol{v}_{k+1}\right]\right)}{\operatorname{Vol}_{k}(S)},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$A\left(\lambda_{k+1}\left(\boldsymbol{g}\right)\right) = \frac{\frac{1}{k!} \begin{vmatrix} 1 & \cdots & 1 & 1 \\ v_{11} & v_{k1} & A(g_1) \\ \vdots & \vdots & \vdots \\ v_{1k} & \cdots & v_{kk} & A(g_k) \end{vmatrix}}{\frac{1}{k!} \begin{vmatrix} 1 & 1 & \cdots & 1 \\ v_{11} & v_{21} & v_{k+11} \\ \vdots & \vdots & \vdots \\ v_{1k} & v_{2k} & \cdots & v_{k+1k} \end{vmatrix}} = \frac{\operatorname{Vol}_k\left(\left[\boldsymbol{v}_1, \dots, \boldsymbol{v}_k, \widetilde{A}(\boldsymbol{g})\right]\right)}{\operatorname{Vol}_k(S)}.$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

Theorem 11.

Let L satisfy properties L1, L2, L3 on nonempty set E, A be a positive normalized linear functional on L and \widetilde{A} defined as in (2). Let f be a convex function on k-simplex $S = [v_1, v_2, \ldots, v_{k+1}]$ in \mathbb{R}^k and $\lambda_1, \ldots, \lambda_{k+1}$ barycentric coordinates over S. If J is an interval in \mathbb{R} such that $f(S) \subset J$ and $F: J \times J \to \mathbb{R}$ an increasing function in the first variable, then for all $g \in L^k$ such that $g(E) \subset S$ and $f(g) \in L$ we have

$$\begin{split} F\left(A(f(\boldsymbol{g})), f(\widetilde{A}(\boldsymbol{g}))\right) &\leq \frac{1}{\operatorname{Vol}_{k}(S)} \max_{\boldsymbol{x} \in S} F\left(\sum_{i=1}^{k+1} \operatorname{Vol}_{k}\left([\boldsymbol{v}_{1}, \dots, \hat{\boldsymbol{v}_{i}}, \dots, \boldsymbol{v}_{k+1}]\right)\right. \\ &-A\left(\min\left\{\lambda_{i}(\boldsymbol{g})\right\}\right) S_{f}^{k+1}(\boldsymbol{v}_{1}, \dots, \boldsymbol{v}_{k+1}), f\left(\boldsymbol{x}\right)\right) \\ &= \max_{\Delta_{k}} F\left(\sum_{i=1}^{k+1} \mu_{i}f(\boldsymbol{v}_{i}) - A\left(\min\left\{\lambda_{i}(\boldsymbol{g})\right\}\right) S_{f}^{k+1}(\boldsymbol{v}_{1}, \dots, \boldsymbol{v}_{k+1}), \\ &f\left(\sum_{i=1}^{k+1} \mu_{i}\boldsymbol{v}_{i}\right)\right), \text{ where } \hat{\boldsymbol{v}}_{i} = \boldsymbol{x} \end{split}$$

Since for each $t \in E$ we have $g(t) \in S$, then it follows $\widetilde{A}(g) \in S$ (see the first part of proof of Theorem 8). Since $F: J \times J \to \mathbb{R}$ is an increasing function in the first variable, by Theorem 10 we have

$$F\left(A(f(\boldsymbol{g})), f(\widetilde{A}(\boldsymbol{g}))\right)$$

$$\leq F\left(\frac{\operatorname{Vol}_{k}\left(\left[\widetilde{A}(\boldsymbol{g}), \boldsymbol{v}_{2}, \dots, \boldsymbol{v}_{k+1}\right]\right)}{\operatorname{Vol}_{k}(S)}f(\boldsymbol{v}_{1}) + \dots + \frac{\operatorname{Vol}_{k}\left(\left[\boldsymbol{v}_{1}, \dots, \boldsymbol{v}_{k}, \widetilde{A}(\boldsymbol{g})\right]\right)}{\operatorname{Vol}_{k}(S)}f(\boldsymbol{v}_{k+1})\right)$$

$$-A\left(\min\left\{\lambda_{i}(\boldsymbol{g})\right\}\right)S_{f}^{k+1}(\boldsymbol{v}_{1}, \dots, \boldsymbol{v}_{k+1}), f(\widetilde{A}(\boldsymbol{g}))\right)$$

$$\leq \max_{\boldsymbol{x}\in S}F\left(\frac{\operatorname{Vol}_{k}\left(\left[\boldsymbol{x}, \boldsymbol{v}_{2}, \dots, \boldsymbol{v}_{k+1}\right]\right)}{\operatorname{Vol}_{k}(S)}f(\boldsymbol{v}_{1}) + \dots + \frac{\operatorname{Vol}_{k}\left(\left[\boldsymbol{v}_{1}, \dots, \boldsymbol{v}_{k}, \boldsymbol{x}\right]\right)}{\operatorname{Vol}_{k}(S)}f(\boldsymbol{v}_{k+1})\right)$$

$$-A\left(\min\left\{\lambda_{i}(\boldsymbol{g})\right\}\right)S_{f}^{k+1}(\boldsymbol{v}_{1}, \dots, \boldsymbol{v}_{k+1}), f(\boldsymbol{x})\right).$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

The equality is a simple consequence of substitutions

$$\mu_1 = \frac{\operatorname{Vol}_k\left([\boldsymbol{x}, \boldsymbol{v}_2, \dots, \boldsymbol{v}_{k+1}]\right)}{\operatorname{Vol}_k(S)}, \dots, \mu_{k+1} = \frac{\operatorname{Vol}_k\left([\boldsymbol{v}_1, \dots, \boldsymbol{v}_k, \boldsymbol{x}]\right)}{\operatorname{Vol}_k(S)},$$

and

$$oldsymbol{x} = \sum_{i=1}^{k+1} \mu_i oldsymbol{v}_i.$$

э

< ∃⇒

Remark

If all the assumptions of Theorem 10 are satisfied and in addition f is continuous, then

$$\begin{split} f(\widetilde{A}(\boldsymbol{g})) &\leq A(f(\boldsymbol{g})) \\ &\leq \sum_{i=1}^{k+1} A\left(\lambda_i(\boldsymbol{g})\right) f\left(\boldsymbol{v}_i\right) - A\left(\min\left\{\lambda_i(\boldsymbol{g})\right\}\right) S_f^{k+1}(\boldsymbol{v}_1, \dots, \boldsymbol{v}_{k+1}) \\ &= \frac{\operatorname{Vol}_k\left(\left[\widetilde{A}(\boldsymbol{g}), \boldsymbol{v}_2, \dots, \boldsymbol{v}_{k+1}\right]\right)}{\operatorname{Vol}_k(S)} f(\boldsymbol{v}_1) + \dots + \frac{\operatorname{Vol}_k\left(\left[\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \widetilde{A}(\boldsymbol{g})\right]\right)}{\operatorname{Vol}_k(S)} f(\boldsymbol{v}_{k+1}) \\ &- A\left(\min\left\{\lambda_i(\boldsymbol{g})\right\}\right) S_f^{k+1}(\boldsymbol{v}_1, \dots, \boldsymbol{v}_{k+1}). \end{split}$$

∃ ► < ∃ ►</p>

Let $S = [v_1, v_2, \dots, v_{k+1}]$ be a k-simplex in \mathbb{R}^k and f a continuous convex function on S. Let $L = (E, \mathcal{A}, \lambda)$ be a measure space with positive measure λ . We define the functional $A : L \to \mathbb{R}$ by

$$A(g) = \frac{1}{\lambda(E)} \int_E g(t) d\lambda(t)$$

It is obvious that A is positive normalized linear functional on L. Then the linear operator \widetilde{A} is defined by

$$\widetilde{A}(\boldsymbol{g}) = \frac{1}{\lambda(E)} \int_{E} \boldsymbol{g}(t) d\lambda(t).$$

We denote $\overline{g} = \frac{1}{\lambda(E)} \int_E g(t) d\lambda(t)$. If $g(E) \subset S$ and $f(g) \in L$, then from previous remark it follows

$$f(\overline{\boldsymbol{g}}) \leq A(f(\boldsymbol{g}))$$

$$\leq \frac{\operatorname{Vol}_k\left([\overline{\boldsymbol{g}}, \boldsymbol{v}_2, \dots, \boldsymbol{v}_{k+1}]\right)}{\operatorname{Vol}_k(S)} f(\boldsymbol{v}_1) + \dots + \frac{\operatorname{Vol}_k\left([\boldsymbol{v}_1, \dots, \boldsymbol{v}_k, \overline{\boldsymbol{g}}]\right)}{\operatorname{Vol}_k(S)} f(\boldsymbol{v}_{k+1})$$

$$- \left(\frac{1}{\lambda(E)} \int_E \min\left\{\lambda_i(\boldsymbol{g}(t)) \colon i = 1, \dots, k+1\right\} d\lambda(t)\right) S_f^{k+1}(\boldsymbol{v}_1, \dots, \boldsymbol{v}_{k+1})$$

< ∃⇒

э

Let $S = [v_1, \ldots, v_{k+1}]$ be a k-simplex in \mathbb{R}^k . If we put $E = S, g = id_S$ and λ Lebesgue measure on S in previous example we get

$$\overline{\boldsymbol{id}_{\boldsymbol{S}}} = \frac{1}{|S|} \int_{S} t dt = \boldsymbol{v}^{*} = \frac{1}{k+1} \sum_{i=1}^{k+1} \boldsymbol{v}_{i}$$
$$A(f(\boldsymbol{id}_{\boldsymbol{S}})) = \frac{1}{|S|} \int_{S} f(t) dt$$

- ∢ ≣ ▶

3

where v^* is the barycenter of S.

Now we have

$$\begin{split} f(\boldsymbol{v}^*) &\leq \frac{1}{|S|} \int_S f(t) dt \\ &\leq \frac{\operatorname{Vol}_k \left([\boldsymbol{v}^*, \boldsymbol{v}_2, \dots, \boldsymbol{v}_{k+1}] \right)}{|S|} f(\boldsymbol{v}_1) + \dots + \frac{\operatorname{Vol}_k \left([\boldsymbol{v}_1, \dots, \boldsymbol{v}_k, \boldsymbol{v}^*] \right)}{|S|} f(\boldsymbol{v}_{k+1}) \\ &- \left(\frac{1}{|S|} \int_S \min \left\{ \lambda_i(t) \colon i = 1, \dots, k+1 \right\} dt \right) \left[\sum_{i=1}^{k+1} f(\boldsymbol{v}_i) - (k+1) f(\boldsymbol{v}^*) \right] \\ &= \frac{1}{k+1} \left(\sum_{i=1}^{k+1} f\left(\boldsymbol{v}_i \right) \right) \\ &- \left(\frac{1}{|S|} \int_S \min \left\{ \lambda_i(t) \colon i = 1, \dots, k+1 \right\} dt \right) \left[\sum_{i=1}^{k+1} f(\boldsymbol{v}_i) - (k+1) f(\boldsymbol{v}^*) \right] \end{split}$$

For i = 1, ..., k + 1, let S_i be the simplex whose vertices are v^* and all vertices of S except v_i . Denote by v_i^* the barycentre of $S_i, i = 1, ..., k + 1$. Since $\operatorname{Vol}_k(S_i) = \operatorname{Vol}_k(S_j), i, j = 1, ..., k + 1$, it follows from (5) that $t \in S_i$ implies $\min_i \lambda_i(t) = \lambda_i(t)$. It follows

$$\int_{S} \min_{i} \lambda_{i}(t) dt = \sum_{j=1}^{k+1} \int_{S_{j}} \lambda_{j}(t) dt.$$
 (5)

We have

$$\int_{S_j} \lambda_j(t) dt$$

$$= \frac{1}{|S|} \int_{S_j} \operatorname{Vol}_k [\boldsymbol{v}_1, \dots, t, \dots, \boldsymbol{v}_{k+1}] dt$$

$$= \frac{1}{|S|} \operatorname{Vol}_k \left[\boldsymbol{v}_1, \dots, \int_{S_j} t dt, \dots, \boldsymbol{v}_{k+1} \right]$$

$$= \frac{|S_j|}{|S|} \operatorname{Vol}_k \left[\boldsymbol{v}_1, \dots, \boldsymbol{v}_j^*, \dots, \boldsymbol{v}_{k+1} \right] = \frac{1}{k+1} \operatorname{Vol}_k \left[\boldsymbol{v}_1, \dots, \boldsymbol{v}_j^*, \dots, \boldsymbol{v}_{k+1} \right]$$

$$= \frac{1}{(k+1)^2} \operatorname{Vol}_k \left[\boldsymbol{v}_1, \dots, \boldsymbol{v}^*, \dots, \boldsymbol{v}_{k+1} \right] = \frac{1}{(k+1)^3} |S|.$$
(6)

Using (5) and (6) we get

$$\int_S \min_i \lambda_i(t) dt = \frac{1}{(k+1)^2} |S|.$$

∢ ≣ ≯

Now, putting (7) in (5), we have

$$egin{aligned} f(m{v}^*) &\leq rac{1}{|S|} \int_S f(t) dt \ &\leq rac{k}{(k+1)^2} \sum_{i=1}^{k+1} f(m{v}_i) + rac{1}{k+1} f(m{v}^*) \end{aligned}$$

which is Theorem 4.1 obtained in

A. Guessab, G. Schmeisser, *Convexity results and sharp error estimates in approximate multivariate integration*, Math. Comp., 2003, Volume 73, Number 247.

It can be easily verified that the right-hand side of this inequality is equivalent to the k-dimensional version of the Hammer-Bullen inequality, namely

$$\frac{1}{|S|} \int_{S} f(t) dt - f(\boldsymbol{v}^{*}) \leq \frac{k}{k+1} \sum_{i=1}^{k+1} f(\boldsymbol{v}_{i}) - \frac{k}{|S|} \int_{S} f(t) dt$$

which is proved, for example in

S. Wąsowicz, A. Witkowski, *On some inequality of Hermite-Hadamard type*, forthcoming paper in Opuscula Math.

In one dimension this is exactly classical Hammer-Bullen inequality

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} f(t)dt \le \frac{f(a)+f(b)}{2} - \frac{1}{4}S_{f}^{2}(a,b)$$

(ロ > 《 圖 > 《 画 > 《 画 > 三 三 ののの