
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Marin Šilić

RELIABILITY PREDICTION OF
CONSUMER COMPUTING

APPLICATIONS

DOCTORAL THESIS

Zagreb, 2013



FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Marin Šilić

RELIABILITY PREDICTION OF
CONSUMER COMPUTING

APPLICATIONS

DOCTORAL THESIS

Supervisor: Professor Siniša Srbljić, Ph.D.

Zagreb, 2013



FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Marin Šilić

PREDVIÐANJE POUZDANOSTI
PRIMJENSKIH PROGRAMA

POTROŠAČKOG RAČUNARSTVA

DOKTORSKI RAD

Mentor: Prof. dr. sc. Siniša Srbljić

Zagreb, 2013.



Doctoral thesis was made at the University of Zagreb,

Faculty of Electrical Engineering and Computing ,

Department of Electronics, Microelectronics, Computer and Intelligent

Systems

Supervisor:

Professor Siniša Srbljić, Ph.D.

Doctoral thesis contains: 179 pages.

Doctoral thesis number: _________



About the Supervisor:

Siniša Srbljić was born in Velika Gorica in 1958. He received B.Sc. degree in EE and M.Sc.

and Ph.D. degrees in CS from the University of Zagreb, Faculty of Electrical Engineering and

Computing (FER), in 1981, 1985, and 1990, respectively.

From February 1982, he is working at the Department ZEMRIS at FER. He was working

with Prvomajska, R&D Dep., Croatia (1984-86) and he was visiting scientist at the University

of Toronto, Canada (1993-1995), at the AT&T Labs, USA (1995-99), at the UC, Irvine, USA

(2000,08-09), at the GlobalLogic Inc, USA (2011), and at the US Huawei, USA (2011). In

March 2007, he was promoted to tenured professor. He coordinated 1 scientific program, led

1 scientific project, 1 technological project, and participated in 9 scientific projects. He led 3

research projects financed by companies from Croatia and USA, led 2 projects in USA, and

participated in 3 projects in USA and Canada. He coordinates scientific program "Distributed

Systems, Methods, and Applications" and leads scientific project "Computing Environments for

Ubiquitous Distributed Systems" financed by the MZOS RH. He is author of 2 textbooks, more

than 60 papers in journals and conference proceedings, and two 2 patents in USA in the area of

distributed computing systems and consumer computing.

Prof. Srbljić is a member of IEEE, ACM, and HATZ. He received Silver medal "Josip

Lončar" from FER for Ph.D. thesis in 1990 and Vratislav Bedjanič Award, Iskra, Ljubljana, for

M.Sc. thesis in 1985.

O mentoru:

Siniša Srbljić rod̄en je u Velikoj Gorici 1958. godine. Diplomirao je u polju elektrotehnike,

a magistrirao i doktorirao u polju računarstva na Sveučilištu u Zagrebu Fakultetu elektrotehnike

i računarstva (FER), 1981., 1985. odnosno 1990. godine.

Od veljače 1982. godine radi u Zavodu ZEMRIS FER-a. Bio je zaposlen u tvornici Pr-

vomajska, odjel Istraživanje i razvoj (1984.-86.), a gostujući znanstvenik bio je na University

of Toronto, Kanada (1993.-95.), u AT&T Labs, SAD (1995.-99.), na UC, Irvine, SAD (2000.,

2008.-09.), u GlobalLogic Inc (2011.) i u US Huawei, SAD (2011.). U ožujku 2007. godine iz-

abran je u trajno znanstveno-nastavno zvanje redovitog profesora. Koordinirao je 1 znanstveni

program, vodio 1 znanstveni projekt, 1 tehnologijski projekt i sudjelovao na 9 znanstvenih pro-



jekta MZOS RH. Vodio je 3 istraživačka projekta financirana od kompanija iz Hrvatske i SAD,

vodio 2 projekta u SAD i sudjelovao na 3 projekta u SAD i Kanadi. Koordinira znanstveni pro-

gram "Raspodijeljeni sustavi, metode i primjene" i vodi znanstveni projekt "Računalne okoline

za sveprisutne raspodijeljene sustave" koje financira MZOS RH. Autor je 2 udžbenika, više od

60 radova u časopisima i zbornicima konferencija i 2 patenta u SAD u području raspodijeljenih

računalnih sustava i potrošačkog računarstva.

Prof. Srbljić član je IEEE, ACM i HATZ. Primio je srebrnu plaketu "Josip Lončar" FER-a

za doktorsku disertaciju (1990.) i nagradu Vratislav Bedjanič, Iskra Ljubljana, za magistarski

rad (1985.).



Patience is the art of hoping.

(Marquis De Vauvenargues, 1715− 1747)

To my parents, Divna and Miroslav.

Thank you for your endless love and

support that you gave me...



Acknowledgments

I would like to take this opportunity to express my personal gratitude to some important

people who made this dissertation possible. All PhD candidates should be aware that it takes a

relatively long period of time to graduate. From this perspective, I see my graduation as a long

race with time, in which patience is your crucial ally for final success. All along this road, you

will go through good and bad times, and you will meet a lot of outstanding people who will

give you support and strength to advance towards the finish line.

First of all, I would like to thank my supervisor, Professor Siniša Srbljić, PhD, head of

the Consumer Computing Laboratory (CCL) and full time professor at the University of Zagreb

(UniZg), Faculty of Electrical Engineering and Computing (FER). During my PhD studies, Pro-

fessor Srbljić gave me support and encouragement through numerous discussions, suggestions

and personal advices that helped me in my research process and accomplished scientific results.

In particular, I would like to emphasize his strong will to accept me as a PhD student back in

2007. This provided me a chance to fulfill my personal goals and finish my PhD. Professor

Srbljić, my personal gratitude!

I think it is important to note that this thesis is not just my personal success, but also a

success of my whole family. Special thanks go to my parents, Divna and Miroslav, who gave

me endless support in every sense and not just during my studies, but through my entire life. I

want to express my gratitude to my aunt, Seka, who I personally see as my second mother, and

my cousin Goran who often, and especially during some hard times, endeavored to convince

me that is worth to hold on and graduate in the end.

I would also like to thank my friend and college Goran Delac, who is a PhD candidate and

research assistant at the UniZg, FER. Most of my graduation time, I was working with Goran

who provided significant contributions through important discussions and brainstormings to all

of my achieved results. Next, I would like to thank my friend Ivo Krka, who graduated his PhD

at the University of Southern California, LA. Ivo’s help was essential for me, especially in the

beginning while I was trying to focus and converge my research ideas.

Furthermore, I would like to thank my friends and colleges at the UniZg who are members

of the CCL lab including Miro Popović, Ivan Budiselić, Ivan Žužak, Dejan Škvorc, Klemo

Vladimir, Ivan Gavran and Zvonimir Pavlić. Thank you all for your help and advices during my

research and teaching activities, and various industry projects. In addition, I want to mention



colleges at the UniZg who are not members of CCL lab, but who were also helpful during

discussions and relaxing times. Hence, special thanks to Artur Šilić, research assistant at UniZg,

FER, and Željko Ilić, associate professor at UniZg, FER. I will certainly remember everyone of

you along with all the good times during my PhD at the UniZg, FER.

Special thanks go to an associate member of CCL lab Boris Debic who is currently work-

ing in Google Inc., Mountain View, California. Boris helped me to apply for the internship

in Google Inc., wherein some of my key concepts and research ideas were born back in 2008.

During my internship in Google Inc. in NYC, I had a privilege to collaborate with many ex-

traordinary individuals. Thus, I would like to name some of them here: Johnathan Rochelle,

Micah Lemonik and Fuzzy Khosrowshahi.

At last, but certainly not the least, I would like to thank my personal friends who are not

primarily associated with computer science, but who were very supportive during this six years,

particularly through some refreshing breaks in between hard working periods. Special thanks

go to members of Folklore Ensemble "Zagreb Markovac", Slavo Jakša, Ivan Lukić, Josip Soče,

Veljko Srzić and all others!



Abstract

Consumer Computing is a novel consumer oriented methodology for development of com-

ponent based applications. Consumers use existing applications as building blocks and compose

them into more complex applications with the aim to support the additional desired function-

alities. Besides the appropriate functionality, application’s nonfunctional properties such as

reliability and availability might significantly impact the perceived quality of the application.

The reliability of the application depends on various number of parameters that describe the

context of the application usage. The additional challenge while determining the reliability of

applications is a substantially large number of applications in Consumer Computing and a very

limited subset of applications with known reliability values. To address this challenge, new

statistical methods for prediction of applications reliability need to be proposed. Besides the

accurate reliability predictions, the proposed methods should also support real-time prediction

performance in order to be used during the selection of components while creating composite

applications in Consumer Computing.

Keywords: Consumer computing, Service-oriented computing, Dynamic software, Reliability,

Prediction, Statistical models, LUCS, CLUS



Prošireni sažetak

Predvid̄anje pouzdanosti primjenskih programa potrošačkoga računarstva

Potrošačko računarstvo je nova metodologija razvoja primjenskih programa zasnovanih na

komponentama. Potrošači koriste postojeće primjenske programe kao osnovne gradivne el-

emente i povezuju ih u složenije primjenske programe s ciljem ostvarenja dodatnih željenih

funkcionalnosti. Osim ispravne funkcionalnosti, znatan utjecaj na doživljaj primjenskog pro-

grama imaju i nefunkcijska svojstva, kao što su pouzdanost i dostupnost. Pouzdanost kompo-

nenti ovisi o velikom broju parametara koji odred̄uju kontekst korištenja primjenskog programa.

Budući da u ekosustavu potrošačkog računarstva postoji veliki broj potrošača i primjenskih pro-

grama, vrijednosti pouzdanosti poznate su tek za mali podskup komponenata. Cilj disertacije je

oblikovati metodu za predvid̄anje pouzdanosti komponenti kojima vrijednosti pouzdanosti nisu

poznate. Osim preciznog predvid̄anja pouzdanosti, oblikovana metoda treba zadovoljiti svo-

jstvo razmjernog rasta i rada u stvarnom vremenu da bi se koristila tijekom izbora komponenti

u procesu izgradnje složenih potrošačkih programa.

U prvom poglavlju (1 “Introduction”) doktorske disertacije iznosi se kratak pregled razma-

tranog područja kao i motivacija za provedeno istraživanje. Nadalje, opisani su glavni ciljevi

istraživanja i izložen je kratak sažetak sadržaja doktorske disertacije. Drugo poglavlje (2 “Con-

sumer Computing”) opisuje potrošačko računarstvo. Detaljno se opisuje motivacija, ostvarivost,

metodologija izgradnje potrošačkih primjenskih programa te okolina potrošačkog računarstva.

U nastavku poglavlja razlaže se arhitektura primjenskih programa u potrošačkom računarstvu s

ciljem razumijevanja posebnih zahtjeva za oblikovanje njihove pouzdanosti.

Poglavlje (3 “Reliability in Consumer Computing”) prikazuje oblikovanje pouzdanosti prim-

jenskih programa potrošačkog računarstva. Na početku poglavlja opisuju se osnovni teorijski

koncepti i standardni pojmovi područja oblikovanja pouzdanosti programske potpore. U nas-

tavku poglavlja, potrošački primjenski programi prikazuju se kao dinamički programski ele-

menti kao što su usluge na Internetu. Na taj se način posebni izazovi koji su prisutni u postupku

oblikovanja pouzdanosti u sustavima zasnovanim na uslugama prenose u područje potrošačkog

računarstva. Da bi se prevladali spomenuti izazovi i odredila pouzdanost potrošačkih prim-

jenskih programa potrebno je skupiti podatke o uspješnosti pojedinih primjenskih programa i

koristiti metode predvid̄anja. Konačno, potrebno je oblikovati intuitivne mehanizme koji će



potrošačima pružati informacije o pouzdanosti potencijalnih kandidata u procesu odabira kom-

ponenti s ciljem optimiranja pouzdanosti složenih primjenskih programa.

Poglavlje 4 (4 “State-of-the-art Models for Prediction of Application’s Reliability”) donosi

pregled do sada najuspješnijih postojećih pristupa predvid̄anja pouzdanosti usluga koji se zasni-

vaju na tehnici suradničkog filtriranja. Postoje tri osnovna tipa suradničkog filtriranja: zasnovan

na memoriji, zasnovan na modelu i hibridni tip. Uz pregled svih tipova suradničkog filtriranja

izlažu se i reprezentativni pristupi kao i glavni nedostatci i prednosti za svaki tip. S aspekta

primjene u potrošačkom računarstvu, razmatraju se samo pristupi suradničkog filtriranja zas-

novani na memoriji jer su hibridni i tip suradničkog filtriranja zasnovan na modelu računalno

složeniji za ostvarenje te često zahtijevaju dodatne unutarnje informacije o sustavu. Iako pos-

tojeći pristupi zasnovani na tehnici suradničkog filtriranja postižu dobre rezultate predvid̄anja

vrijednosti pouzdanosti, spomenuti pristupi pokazuju ozbiljne nedostatke kao što su nepodrža-

vanje svojstva razmjernog rasta i slaba preciznost predvid̄anja u dinamičkim okolinama.

U poglavlju 5 (5 “LUCS - Model for Prediction of Application’s Reliability”) uvodi se LUCS,

model za predvid̄anje pouzdanosti web usluga predložen u sklopu disertacije. LUCS procjenjuje

vrijednost pouzdanosti usluge primjenom skupljenih podataka o prethodnim pozivima usluge.

Model zasniva svoje predvid̄anje na osnovi vrijednosti sljedećih parametara: lokacija korisnika,

lokacija usluge, opterećenje i klasa usluge (odred̄uje računalnu složenost usluge). Model LUCS

poboljšava postojeće pristupe zasnovane na tehnici suradničkog filtriranja na način da: (1) uvodi

nove parametre opterećenje i klasa usluge u model i grupira zapise o prethodnim pozivima us-

luga prema parametrima modela te (2) provodi algoritam suradničkog filtriranja otkrivanjem

sličnih entiteta s obzirom na svaki parametar modela. Konačna procijenjena vrijednost pouz-

danosti računa se kao linearna kombinacija pojedinih utjecaja svakog parametra modela.

Budući da preciznost predvid̄anja LUCS modela znatno ovisi o izravnoj dostupnosti vrijed-

nosti parametara modela, u sklopu disertacije predložen je fleksibilniji model predvid̄anja pouz-

danosti web usluga CLUS, detaljno opisan u poglavlju 6 (6 “CLUS - Model for Prediction of

Application’s Reliability”). CLUS model procjenjuje vrijednost pouzdanosti usluge prema dos-

tupnim podacima o pouzdanosti prethodnih poziva usluga. Postojeći pristupi koji su zasnovani

na tehnici suradničkog filtriranja u procesu predvid̄anja posredno razmatraju samo parametre

poziva usluge svojstvene korisniku i usluzi. S ciljem poboljšanja preciznosti predvid̄anja, model

CLUS uvodi parametre poziva usluge svojstvene okolini koji opisuju stanje opterećenja u sus-

tavu. U skladu s tim, postojeći podaci o pouzdanosti prethodnih poziva usluga raspršeni su kroz



dodatnu dimenziju koja odgovara stanju opterećenja okoline s obzirom na stanje opterećenja u

okolini u trenutku kad su podaci prikupljeni. S ciljem poboljšanja svojstva razmjernog rasta,

model CLUS smanjuje količinu suvišnih podataka grupiranjem korisnika i usluga u odgovara-

juće uzorke korisnika i usluga s obzirom na njihovu vrijednost pouzdanosti korištenjem K-

means clustering algoritma.

Poglavlje 7 (7 “Evaluation”) donosi detaljne i iscrpne rezultate vrednovanja koji analiziraju

različite kvalitativne aspekte predloženih modela u usporedbi s postojećim pristupima koji su

zasnovani na tehnici suradničkog filtriranja. Na početku poglavlja opisuju se postavke prove-

denih eksperimenata. U nastavku se opisuje utjecaj različitih parametara na svojstva preciznosti

i razmjernog rasta predvid̄anja za sve razmatrane pristupe predvid̄anja. Postupkom analize

složenosti svih razmatranih modela predvid̄anja potvrd̄uju se rezultati vrednovanja s obzirom

na svojstvo razmjernog rasta koji svjedoče o boljem svojstvu razmjernog rasta modela pred-

loženih u sklopu disertacije. Poglavlje se završava s kratkim sažetkom svih rezultata vredno-

vanja na jednom mjestu. Poglavlje 8 (8 “Conclusion”) razmatra ostvarene izvorne znanstvene

doprinose.

Ključne riječi: Potrošačko računarstvo, Računarstvo zasnovano na uslugama, Dinamička pro-

gramska potpora, Pouzdnost, Predvid̄anje, Statistički modeli, LUCS, CLUS



Contents

1 Introduction 1

2 Consumer Computing 6

2.1 Feasibility of Consumer Computing . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Motivation for Consumer Computing . . . . . . . . . . . . . . . . . . 7

2.1.2 State-of-the-art Technology for Consumer Computing . . . . . . . . . 9

2.1.3 Additional Benefits of Consumer Computing . . . . . . . . . . . . . . 10

2.1.4 Challenges in Consumer Computing . . . . . . . . . . . . . . . . . . . 11

2.2 Programming Methodology in Consumer Computing . . . . . . . . . . . . . . 13

2.2.1 Programming Elements in Consumer Computing . . . . . . . . . . . . 14

2.2.2 Programming Language in Consumer Computing . . . . . . . . . . . . 15

2.2.3 Programming Technique in Consumer Computing . . . . . . . . . . . 16

2.3 Consumer Computing Environment . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Domain Specific Applications . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Generic Programmable Applications . . . . . . . . . . . . . . . . . . . 20

2.3.3 Consumer Assistants Applications . . . . . . . . . . . . . . . . . . . . 21

2.4 Architecture of Applications in Consumer Computing . . . . . . . . . . . . . . 22

2.4.1 Architecture of Atomic Consumer Applications . . . . . . . . . . . . . 23

2.4.2 Architecture of Composite Consumer Applications . . . . . . . . . . . 24

3 Reliability in Consumer Computing 26

3.1 Software Reliability Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Adoption of SOA Model in Consumer Computing . . . . . . . . . . . . . . . . 29

3.3 Reliability Challenges In SOA . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Information to Support Reliability Analysis in SOA . . . . . . . . . . . 34

i



CONTENTS

3.3.2 Obtaining Reliability Information . . . . . . . . . . . . . . . . . . . . 35

3.3.3 Parameters of the Service Invocation Context . . . . . . . . . . . . . . 37

3.3.4 Failure Model for Service-oriented Systems . . . . . . . . . . . . . . . 38

3.4 Reliability Prediction System in Consumer Computing . . . . . . . . . . . . . 38

3.4.1 Prediction System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.2 Feedback Management System . . . . . . . . . . . . . . . . . . . . . . 42

3.4.3 Rating System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.4 Consumer Assistant Geppeto ReliabilityOptimizeMe . . . . . . . . . . 46

4 State-of-the-art Models for Prediction of Application’s Reliability 49

4.1 The UMEAN Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 The IMEAN Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Memory-Based Collaborative Filtering Approaches . . . . . . . . . . . . . . . 52

4.3.1 Similarity Computation . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.2 Prediction and Recommendation Computation . . . . . . . . . . . . . 56

4.3.3 Top-N Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.4 Extensions to Memory-Based Collaborative Filtering Algorithms . . . 59

4.4 Model-Based Collaborative Filtering Approaches . . . . . . . . . . . . . . . . 61

4.4.1 Bayesian Belief Net Collaborative Filtering Algorithms . . . . . . . . . 62

4.4.2 Clustering-Based Collaborative Filtering Algorithms . . . . . . . . . . 63

4.4.3 Regression-Based Collaborative Filtering Algorithms . . . . . . . . . . 65

4.4.4 MDP-Based Collaborative Filtering Algorithms . . . . . . . . . . . . . 66

4.4.5 Latent Semantic Collaborative Filtering Algorithms . . . . . . . . . . . 68

4.4.6 Other Model-Based Collaborative Filtering Algorithms . . . . . . . . . 68

4.5 Hybrid Collaborative Filtering Approaches . . . . . . . . . . . . . . . . . . . 70

4.5.1 Hybrid Recommenders Combining Collaborative Filtering and Content-

Based Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5.2 Hybrid Recommenders Incorporating Collaborative Filtering and Other

Recommendation Systems . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.3 Hybrid Recommenders Based on Combination of Other Collaborative

Filtering Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6 Characteristics and Challenges in Different Collaborative Filtering Approaches 73

4.6.1 Data Sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

ii



CONTENTS

4.6.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.6.3 Dynamic Environments . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6.4 Synonymy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6.5 Gray Sheep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6.6 Shilling Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6.7 Other Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 LUCS - Model for Prediction of Application’s Reliability 82

5.1 LUCS Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1.1 Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1.2 Reliability Prediction Process . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Formal Definition of LUCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.1 Data Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.2 Request Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.3 Calculating Similarity Relations . . . . . . . . . . . . . . . . . . . . . 86

5.2.4 Determining Similar Sets of Entities . . . . . . . . . . . . . . . . . . . 89

5.2.5 Calculating the Expected Reliability . . . . . . . . . . . . . . . . . . . 91

6 CLUS - Model for Prediction of Application’s Reliability Based on K-means Clus-

tering 94

6.1 CLUS Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1.1 Invocation Context Parameters in CLUS . . . . . . . . . . . . . . . . . 95

6.1.2 Reliability Prediction Process . . . . . . . . . . . . . . . . . . . . . . 96

6.2 Formal Definition of CLUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2.1 Environment-specific Data Clustering . . . . . . . . . . . . . . . . . . 97

6.2.2 User-specific Data Clustering . . . . . . . . . . . . . . . . . . . . . . 98

6.2.3 Service-specific Data Clustering . . . . . . . . . . . . . . . . . . . . . 98

6.2.4 Creation of Space D and Prediction . . . . . . . . . . . . . . . . . . . 99

7 Evaluation 100

7.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2 Overall Prediction Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.3 Impact of Data Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.3.1 Prediction Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

iii



CONTENTS

7.3.2 Computational Performance . . . . . . . . . . . . . . . . . . . . . . . 114

7.4 The Significance of Service Load and Class Parameters . . . . . . . . . . . . . 116

7.4.1 Significance of Load Parameter . . . . . . . . . . . . . . . . . . . . . 116

7.4.2 Significance of Class Parameter . . . . . . . . . . . . . . . . . . . . . 119

7.5 The Importance of Each Individual LUCS’s Input Parameter . . . . . . . . . . 122

7.5.1 The Impact of Individual Input Parameter Available . . . . . . . . . . . 123

7.5.2 The Impact of Individual Input Parameter Missing . . . . . . . . . . . 126

7.6 The Sensitivity of LUCS Groupings . . . . . . . . . . . . . . . . . . . . . . . 129

7.7 The Heuristics for LUCS Model’s Parameters α, β and γ . . . . . . . . . . . . 133

7.8 The Impact of CLUS’s Number of Clusters . . . . . . . . . . . . . . . . . . . . 134

7.8.1 Prediction Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.8.2 Computational Performance . . . . . . . . . . . . . . . . . . . . . . . 141

7.9 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.10 Evaluation Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8 Conclusion 151

Bibliography 175

Biography 176

Životopis 178

iv



List of Figures

2.1 Software widgets presenting applications in Geppeto . . . . . . . . . . . . . . 14

2.2 Programming language consisted out of GUI actions used in Geppeto . . . . . 16

2.3 Floating context menu programming technique used in Geppeto . . . . . . . . 17

2.4 Consumer Computing environment . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Domain specific widgets for NOAA data analysis . . . . . . . . . . . . . . . . 19

2.6 Generic programmable Geppeto TouchMe widget . . . . . . . . . . . . . . . . 20

2.7 Geppeto MentorMe assistant widget . . . . . . . . . . . . . . . . . . . . . . . 21

2.8 Architecture of Atomic Consumer Applications . . . . . . . . . . . . . . . . . 23

2.9 Architecture of Composite Consumer Applications . . . . . . . . . . . . . . . 24

3.1 The process of execution of atomic consumer applications . . . . . . . . . . . 30

3.2 The process of execution of composite consumer applications . . . . . . . . . . 31

3.3 Consumer Computing as an extension of service oriented computing . . . . . . 32

3.4 Architecture of the reliability prediction system in Consumer Computing . . . . 40

3.5 Geppeto ReliabilityOptimizeMe assistant and a use case scenario . . . . . . . . 47

4.1 Two basic phases in memory-based collaborative filtering. . . . . . . . . . . . 52

4.2 The user-item matrix used for collaborative filtering. . . . . . . . . . . . . . . 58

5.1 The process of reliability prediction using LUCS. . . . . . . . . . . . . . . . . 83

6.1 CLUS reliability prediction overview . . . . . . . . . . . . . . . . . . . . . . . 96

7.1 LUCS, predicted and measured reliability, users location: Ireland, services lo-

cation: Brazil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2 CLUS, predicted and measured reliability, users location: Ireland, services lo-

cation: Brazil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

v



LIST OF FIGURES

7.3 Hybrid, predicted and measured reliability, users location: Ireland, services lo-

cation: Brazil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.4 IPCC, predicted and measured reliability, users location: Ireland, services loca-

tion: Brazil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.5 UPCC, predicted and measured reliability, users location: Ireland, services lo-

cation: Brazil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.6 The impact of data density in the environment with load intensity having users

with similar network capabilities . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.7 The impact of data density in the environment with load intensity having users

with different network capabilities . . . . . . . . . . . . . . . . . . . . . . . . 112

7.8 The impact of data density in the environment without load intensity having

users with similar network capabilities . . . . . . . . . . . . . . . . . . . . . . 113

7.9 The impact of data density on prediction performance . . . . . . . . . . . . . . 115

7.10 The impact of different service loads on prediction accuracy in the environment

with users having similar network capabilities . . . . . . . . . . . . . . . . . . 117

7.11 The impact of different service loads on prediction accuracy in the environment

with users having different network capabilities . . . . . . . . . . . . . . . . . 118

7.12 The impact of different service classes on prediction accuracy in the environ-

ment with users having similar network capabilities . . . . . . . . . . . . . . . 120

7.13 The impact of different service classes on prediction accuracy in the environ-

ment with users having different network capabilities . . . . . . . . . . . . . . 121

7.14 The impact of individual input parameters on the LUCS prediction accuracy in

the environment in which users have different network capabilities . . . . . . . 124

7.15 The impact of individual input parameters on the LUCS prediction accuracy in

the environment in which users have similar network capabilities . . . . . . . . 125

7.16 The impact of lack of individual input parameters on the LUCS prediction per-

formance in the environment in which users have different network capabilities 127

7.17 The impact of lack of individual input parameters on the LUCS prediction per-

formance in the environment in which users have similar network capabilities . 128

7.18 The sensitivity of LUCS groupings in the environment where users have differ-

ent network capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

vi



LIST OF FIGURES

7.19 The sensitivity of LUCS groupings in the environment where users have differ-

ent network capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.20 Comparison of the basic and heuristics tuned LUCS . . . . . . . . . . . . . . . 135

7.21 The impact of number of clusters on prediction accuracy with users having dif-

ferent network capabilities for the data density of 20% . . . . . . . . . . . . . 136

7.22 The impact of number of clusters on prediction accuracy with users having dif-

ferent network capabilities for the data density of 50% . . . . . . . . . . . . . 137

7.23 The impact of number of clusters on prediction accuracy with users having sim-

ilar network capabilities for the data density of 20% . . . . . . . . . . . . . . . 139

7.24 The impact of number of clusters on prediction accuracy with users having sim-

ilar network capabilities for the data density of 50% . . . . . . . . . . . . . . . 140

7.25 The impact of number of clusters on prediction performance . . . . . . . . . . 142

vii



List of Tables

2.1 The number of mobile applications in two most popular application stores . . . 8

4.1 A brief overview of different Collaborative Filtering Types . . . . . . . . . . . 74

7.1 Matrix ranks in different service classes . . . . . . . . . . . . . . . . . . . . . 102

7.2 Time intervals in different load levels . . . . . . . . . . . . . . . . . . . . . . 102

7.3 MAE and RMSE values for each approach for the density of 25% in the envi-

ronment where users have similar network capabilities. . . . . . . . . . . . . . 103

7.4 MAE and RMSE values for each approach for the density of 25% in the envi-

ronment where users have different network capabilities. . . . . . . . . . . . . 104

viii



Chapter 1

Introduction

Consumer Computing is a new research area in a contemporary Computer Science, intro-

duced by the members of the Consumer Computing Lab (CCL) [1] at the Faculty of Electrical

Engineering and Computing, University of Zagreb. The main goal of Consumer Computing is to

provide consumers the ability to express their knowledge while creating applications for their

consumption devices. Consumers are modern people without formal education in Computer

Science and without any skills or previous experience in programming. Although they do not

possess any theoretical or practical knowledge about programming, they are very experienced in

using state-of-the-art technology including both physical devices such as tablets, smartphones

and smart TVs, etc., and popular software products such as web tools, social networks, software

widgets, mobile applications, etc.

Contemporary consumers use a variety of different applications on various consumption

devices. For instance, consumers use web applications such as social network sites, search

engines, multimedia sites, blogs, e-banking, etc. which makes them very skillful in consuming

content on the Web. In fact, consumers use the same kinds of applications in a very similar

manner on their physical devices such as tablets or smartphones. Even though they are the

majority in nowadays digital world, the applications they use are designed and created by the

digital world’s minority group – software developers.

The current approach for application development gives consumers only a secondary role

and it clearly reflects the inequality that is present in a digital world between consumers and de-

velopers [2]. More specifically, this approach is very often initiated by developers who prepare

a number of potentially successful applications. In the next step, they conduct a case study, in

which they challenge consumers to provide feedback and impressions regarding the proposed

1



1. INTRODUCTION

applications. Finally, according to the collected feedback, developers create potentially the most

profitable applications.

By contrast, Consumer Computing aims to propose a different approach for application cre-

ation. The idea is to empower consumers to create their own applications according to their

knowledge, needs and preferences. In Consumer Computing, consumers create component-

based applications using basic building blocks. The basic building blocks are the existing

applications which are combined in order to support the desired functionalities. The process

of components selection is very important during applications creation in component-based

systems. The selection of the appropriate functional component is mandatory for the correct

functioning of the application. However, besides functional requirements while selecting com-

ponents, nonfunctional properties such as reliability, availability, maintainability, etc. also need

to be consider due to their significant impact on the perceived quality of the application.

This dissertation is studying the reliability property of applications in Consumer Comput-

ing. According to their architecture, consumer applications are component-based systems. In

order to develop reliable component based system, it is necessary to know the reliability of

each basic component. Consumer applications provide their functionality through a simple and

intuitive user interface and hide the implementation details underneath. However, they often

require some data retrieval or information processing on the Internet. Hence, consumer appli-

cations can be viewed as a dynamic software artifact such as services. The modeling of services

reliability on the Web is very challenging task since the variety of parameters determine the

service invocation context.

The researchers have proposed plenty of different models for reliability modeling of tradi-

tional software systems [3–11], but these approaches are not applicable for services reliability

modeling. The variations in perceived reliability occur due to different perspectives of service

users and service providers. The reliability of the service can be computed from the available

data about previous invocations as the ratio of number of successful invocations against the to-

tal number of invocations [12]. The accuracy of the computed reliability value depends on the

quality of the previous invocation sample. The process of acquiring comprehensive invocation

sample proves to be a difficult task. This is particularly the case in situations in which a user

has not previously used the service or the usage frequency has been low. Further obstacles such

as service cost and performance issues can hamper the efforts to accurately estimate the service

reliability [13].

2



1. INTRODUCTION

A possible solution is to gain partial but relevant invocation sample by collecting feedback

both from service users and providers, and to utilize prediction methods to estimate the reliabil-

ity for the missing records. The most successful approaches for services reliability prediction

on the Web [14–17] are based on the collaborative filtering [18] technique. There exist three

types of collaborative filtering: memory-based, model-based and hybrid. Since the model-based

and hybrid collaborative filtering are more complex and costly for implementation, the discus-

sion is focused on memory-based collaborative filtering underlying the state-of-the-art recom-

mendation systems [19–23]. The memory-based collaborative filtering extracts information or

patterns using statistical collaboration among multiple entities such as agents, viewpoints, and

data sources. The similarity relations among different entities are calculated using specialized

statistical methods. The benefit of collaborative filtering is that it can be applied in situations

in which specific data that is lacking can be predicted using the available data from the most

statistically similar entities.

Although the existing collaborative filtering based approaches provide promising results in

services reliability prediction, they demonstrate some serious disadvantages such as scalabil-

ity issues and poor prediction accuracy in dynamic environments. The aim of this doctoral

thesis is to propose a new method for prediction of services reliability that can be applied in

Consumer Computing to assess consumer applications reliability. Besides the accurate predic-

tion of applications reliability, the proposed method should also support scalable and real-time

performance.

The rest of the dissertation is organized as follows. Chapter 2 presents the Consumer Com-

puting. The underlying motivation, feasibility, programming methodology and environment of

fully supported Consumer Computing are described. Additionally, the architecture of applica-

tions in Consumer Computing is examined in order to understand the specific requirements for

their reliability modeling.

Chapter 3 presents the reliability modeling of applications in Consumer Computing. First,

some basic theoretical concepts and taxonomy of software reliability are described. Next, con-

sumer applications are considered as dynamic software artifacts such as services on the Internet.

In such manner, specific obstacles present in reliability assessment in service-oriented systems

are introduced into Consumer Computing. In order to overcome these obstacles and asses the

reliability of applications in Consumer Computing, the feedback regarding the selected com-

ponents needs to be collected, and prediction methods need to be used. In addition, to enable

3



1. INTRODUCTION

consumers to optimize the reliability while creating their applications, the appropriate consumer

intuitive mechanisms need to be proposed to represent the reliability of potential selection can-

didates.

Chapter 4 overviews so far most successful approaches for prediction of services reliabil-

ity which are based on the collaborative filtering technique. As already stated, there are three

different types of collaborative filtering: memory-based, model-based and hybrid. As part of

the overview, each type of collaborative filtering is presented along with its representative ap-

proaches, main advantages and drawbacks. Regarding the appliance in Consumer Computing,

only memory-based collaborative filtering approaches are considered since model-based and

hybrid approaches are computationally heavier, more difficult to implement and often require

some additional internal information from the system. Although the memory-based collabo-

rative filtering approaches demonstrate promising results, they suffer from potential scalability

issues and poor accuracy in dynamic environments.

Chapter 5 introduces LUCS [24], a model for reliability prediction of web services that is

proposed as part of this dissertation. LUCS estimates the reliability for an ongoing request

using the collected data about previous invocations. The model bases its prediction considering

following parameters at the invocation time: user’s location, service’s location, service load and

service class (describing service internals regarding its computational complexity). The LUCS

approach improves the existing collaborative filtering approaches by: (1) extending the model

with parameters service load and class and grouping the service invocations records according to

the model parameters, and (2) performing collaborative filtering by discovering similar entities

regarding each model parameter. The final prediction is computed as a linear combination of

different parameters impacts.

Since the LUCS approach appears to be very dependent on the explicit availability of model

parameters, a more flexible CLUS [25] approach is proposed in Chapter 6. The CLUS approach

predicts the reliability for an ongoing request based on the available records about past invoca-

tions reliability. The existing collaborative filtering approaches implicitly consider only user–

and service–specific parameters of the service invocation context. To improve the prediction

accuracy, the CLUS approach introduces environment–specific parameters that describe current

load conditions in the system. In such manner, the collected past invocation data is dispersed

across the additional dimension that corresponds with the respected environment conditions.

To improve the scalability, the model reduces the redundant data by grouping users and ser-

4



1. INTRODUCTION

vices into respected user and service clusters according to their reliability performance using

K-means clustering algorithm [26, 27].

Chapter 7 brings the exhaustive and detailed evaluation results which analyze different qual-

ity aspects of proposed models in comparison with the existing collaborative filtering based

approaches. In the beginning, the experiment setup is described. In addition, different impacts

on prediction accuracy and computational performance are considered for each competing ap-

proach. Furthermore, the analysis of complexity is given to support evaluation results regarding

computational performance and to bear out claims in favor of better scalability of the models

proposed in this dissertation. The end of the chapter brings a brief summary of all evaluation re-

sults in one place. Chapter 8 discusses the original scientific contributions and finally concludes

the dissertation.

5



Chapter 2

Consumer Computing

Consumer Computing is a novel consumer-oriented methodology for application develop-

ment which enables the average consumers, ordinary people without formal education in com-

puter science and prerequisite coding skills, to create their own applications. The term Con-

sumer Computing was introduced as part of the research in the Consumer Computing Lab (CCL)

at the University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb [1]. As

defined in various publications of the members of CCL laboratory [1, 28–32], a consumer is

an average individual who has no formal education in computer science and no necessary pro-

gramming knowledge, but who is highly experienced in consuming contemporary technology

including popular web tools such as web browsers and software widgets. Consumers are also

very familiar with modern physical devices such as tablets, smart-phones and other similar

gadgets.

The underlying motivation for Consumer Computing is primarily the increased demand for

various applications development on the market. The most recent projections on number of

experts formally educated in computer science indicate that exclusively software engineers will

not be able to satisfy the rising demand for applications on the market. The supporters of Con-

sumer Computing aim to empower the average people to create and share their own personalized

applications. In such manner, the increased demand for new applications on the market would

be more easily overcome thanks to the collective power of the crowd of numerous consumers.

The additional benefit of Consumer Computing is hidden in domain specific applications de-

veloped by certain experts in their field. By creating consumer composite application, each

individual transforms personal tacit knowledge into a process that can be executed on a ma-

chine and saved as a new consumer applications which can be further used and modified by

6



2. CONSUMER COMPUTING

others. In this way, both various domain specific experts and ordinary people as well, help dis-

seminate their personal knowledge into a collective knowledge archived within the developed

consumer applications.

The members of the Consumer Computing Lab (CCL), at the University of Zagreb, Fac-

ulty of Electrical Engineering and Computing, Zagreb have implemented a consumer oriented

programming tool Geppeto [33], which enables consumers to create applications. Although

Geppeto still needs additional modifications and extensions to fully support Consumer Com-

puting, it is a closest implementation of Consumer Computing environment so far.

The rest of the chapter is organized as follows. Section 2.1 explains the goals of Consumer

Computing and introduces motivation for consumer application development. Section 2.2 de-

scribes the programming methodology for consumer applications development in Consumer

Computing and presents the programming methodology that is used in Geppeto. Section 2.3

provides detailed architecture of Consumer Computing Environment and describes different

entities that are present in Consumer Computing. Finally, Section 2.4 analyses the underlying

architecture of applications in Consumer Computing and studies different properties of appli-

cations in Consumer Computing.

2.1 Feasibility of Consumer Computing

Different parts of this section try to explain motivation, feasibility, goals and challenges

of Consumer Computing. Section 2.1.1 introduces motivation and explain why is Consumer

Computing needed in a contemporary digital world. In addition, Section 2.1.2 brings out the

arguments that support thesis that the current state-of-the-art technology has reached a level

when it is quite possible to provide the average consumers tools to create their own applica-

tions. Section 2.1.3 describes the additional benefits of Consumer Computing such as knowl-

edge automation, elimination of digital world divide and achievement of digital world equality,

scalability and sustainability. Finally, Section 2.1.4 presents some most important challenges

which need to be addressed in order to achieve Consumer Computing.

2.1.1 Motivation for Consumer Computing

The main motivation for introduction of Consumer Computing is the rising demand for dif-

ferent applications creation. Nowadays, consumers use different kinds of applications on their

7



2. CONSUMER COMPUTING

personal physical devices such as desktop machines, tablets or smart-phones. Most recent tech-

nological innovations such as invention of tablets and smartphones have even more increased

the demand for a new kind of applications called situational applications. Situational applica-

tions are novelty due to a fact that tablets and smartphones are a personal computers which can

stand in a pocket and be carried everywhere to be used in different situations. The rising need

for new application development is clearly demonstrated in a rapid growth of number of appli-

cations in different application stores. Table 2.1 captures the number of applications available in

two most popular application stores, Google Play [34] and App Store (iOS) [35], for the period

from 2009. till 2013.

Year
Number of applications

App Store (iOS) Google Play Total
2009. 25,000 2,300 27,300
2010. 150,000 30,000 180,000
2011. 400,000 250,000 650,000
2012. 650,000 600,000 1,250,000
2013. 1,000,000 1,000,000 2,000,000

Table 2.1: The number of mobile applications in two most popular application stores

It is obvious from the data presented in the table that the number of applications in stores is

constantly growing which is closely related to the two facts: (i), technology is still improving

and new physical features in modern devices are offering more and more possibilities for new

applications, and (ii), consumers demand new kinds of applications on the market. The most

recent research shows that the average number of applications per smart-phone in U.S. has

grown from 32 in 2011 to 41 in 2012 (an increase of 28%), which indicates that demand for new

applications is rapidly rising [36]. Another important indicator of even greater demand for new

applications in future are the most recent projections of U.S. Bureau of Labor Statistics [37] on

job openings in software engineering field. According to the projections, software developers

occupation will have a growing rate of 32.4%, which places it among the occupations with

the fastest growing rates for the period from 2010 to 2020. All above mentioned arguments

and facts support thesis that average consumers should be given a chance to create their own

applications and express their creativity.

Consumer Computing aims to endorse consumers to create their own applications by provid-

ing consumers intuitive tools and technology for application creation. For instance, the current

approach for application development is to conduct a case study among consumers or collect

8



2. CONSUMER COMPUTING

their feedback, and then to hire the professional experts in programming such as software devel-

opers to implement the applications with desired functionalities according to the studies. This

approach reflects obvious inequality and divide in a today’s digital world [2]. On one side of

the digital world’s gap are the applications developers which are clearly the minority group try-

ing to serve all the needs for the applications consumers, which are the majority group on the

other side of the digital world’s gap. Consumer Computing is about to propose an alternative

approach for application development by providing the sole consumers ability to create appli-

cations. In such an approach, the consumers choose which applications to create and actually

drive the process of application development.Note that by letting consumer to create their appli-

cations, software developers still keep their role in the process of applications production. The

general idea is to let consumers combine the existing applications into a new composite appli-

cations and implement more advanced functionalities. However, the basic application modules

and components still need to be implemented by individuals formally educated in computer

science and who have prerequisite programming skills.

2.1.2 State-of-the-art Technology for Consumer Computing

The previous section provides arguments and underlying motivation for Consumer Com-

puting. However, another important question is the feasibility of Consumer Computing. In

particular, how can the existing technology be utilized in order to support applications creation

by the average consumers?

The recent technological innovation have led to creation of smartphones such as iPhone,

Google Phone and Android HTC, which are a pocket PC-s that can access the Internet, process

information almost as effective as desktop machines, and more important, their physical fea-

tures and characteristics get constantly improved. The importance of smartphones appearance

on the market is crucial for Consumer Computing. As already stated, a smartphone is a pow-

erful machine that stands in a pocket, and consequently can be carried everywhere and can be

used in many different situations, which demands new context-based applications development

for smartphones (such as location-based, event-based, social-based etc). The similar things

happened with the recent invention of tablets, a new set of tablet-specific applications were de-

veloped and offered to consumers (iPad, iPad-mini, Samsung Galaxy Tab etc). The smartphones

and tablets present the applications in a very similar manner as tiles on the working surface. The

most recent versions of web browsers also present commonly used web applications as tiles on

9



2. CONSUMER COMPUTING

the working surface (Google Chrome, Internet Explorer 10 etc). Finally, contemporary ver-

sions of popular desktop operation systems such as Windows 8 and Ubuntu Tablet also utilize

the tile-oriented style for applications presentation on a desktop surface.

The average consumers are using applications in a similar manner on different physical

devices and getting familiar with tile-application look. Once the applications is started and acti-

vated, regardless of the hosting physical device, it provides its specific functionality, but still ap-

plication’s graphic user interface remains very familiar and intuitive to consumers. Consumers

are familiar with plenty of features, such as adding new applications, removing the obsolete

applications, running and using applications, and also consumers know how to use applications

in chain. For example, it is often required to obtain the exact mailing address of the destination

location, which can be obtain by using a Search application, before the address is utilized in a

Driving Directions application.

All these mentioned facts and remarks indicate that the existing applications can be used as

the basic building components for new applications creation in Consumer Computing. In fact,

the existing applications are semantically intuitive to consumers and represent natural building

blocks for composite applications development. The programming methodology which is used

by consumers to create new applications in Consumer Computing is described in details in

Section 2.2.

2.1.3 Additional Benefits of Consumer Computing

The most important benefit of Consumer Computing is related to the Consumer Comput-

ing motivation. The process of applications creation would become much smoother and more

effective if consumers them self could create applications. This methodology would shorten

the time to market period for the variety of interesting consumer applications. The advanced

consumers would express their creativity by creating applications and bootstrap the other less

motivated consumers, but also software developers as well, to create similar more efficient and

more reliable applications. The most skilled individuals among consumers could create inter-

esting applications that could be popular on the application market and gain profit for their’s

creators.

Another important benefit of Consumer Computing is related to the divide that is present

in todays digital world [2]. The minority group in the digital world divide are the individuals

formally educated in computer science with excellent programming skills. Those individuals

10



2. CONSUMER COMPUTING

use the variety of creation tools and devices to provide the applications for the other group of

the digital world divide. The other group in the digital world divide is consisted of consumers

- the individuals without coding skills and formal education in programming, who simple con-

sume the existing applications provided by software developers. The Consumer Computing idea

would enable consumers to create applications on their own, which would eliminate the existing

inequality that is present today in a digital world and bridge the gap between consumption and

creation.

The additional benefit of Consumer Computing is related to the transformation of each in-

dividual’s tacit knowledge into a collective procedural knowledge stored in created consumer

applications. For instance, if a domain specific experts create their own applications to solve

domain specific problems in their field, the respectable knowledge those people posses gets

archived and stored as part of saved applications they create. In such manner, Consumer Com-

puting enables the individual’s tacit knowledge to be transferred to other consumers who can

reveal that knowledge by simple using applications certain individuals created. Although the

greatest potential lies in a domain-specific knowledge, the tacit knowledge of each average con-

sumer should not be underestimated. In fact, most creative average consumers may improve

specific use case applications such as Trip Planner, Party Organizer etc., due to their famil-

iarity with specific topics, and offer better applications than the one that are available, or even

create some specific use case applications that are not available yet.

There are plenty of more side-effect benefits of Consumer Computing such as encouraging

ordinary people to use modern technology, letting people to express their creativity by automat-

ing every day tasks as part of the applications they create, enabling average consumers to adopt

basic programming skills which could be helpful and beneficial while organizing different real

life activities etc.

2.1.4 Challenges in Consumer Computing

The goals, motivation and ideas of Consumer Computing are definitely interesting and

sounds promising for improvement of todays digital world. However, there are still challenges

that need to be addressed in order to achieve Consumer Computing.

For instance, to achieve digital world equality, each consumer should be given a chance to

create applications, which is a very difficult task. In fact, the appropriate consumer intuitive

technology needs to be offered. The recent technological improvements such as invention of

11



2. CONSUMER COMPUTING

tablets, smartphones, modern web browsers and most recent versions of popular desktop op-

erating system with their similar tile-representation of applications sound promising, but still

the appropriate methodology for application creation should be proposed. Note, however, that

the technology is still improving and another even more consumer intuitive device, a Google

Glass [38], is on the horizon. Perhaps a Google Glass can offer a better way to compose the

existing applications in a composite process to support more advanced features.

Another important challenge of Consumer Computing is related to the digital world sus-

tainability. The appropriate technology and suitable methodology for consumer applications

creation are not sufficient to achieve sustainable application development. According to their

structure, consumer applications are component based systems. Besides having a know how to

compose the existing applications, consumers still need help to find the appropriate functional

components and connect them correctly. Hence, consumers need different types of assistants

that help them during the process of application creation. The role of consumer assistants is to

output real time recommendations during the application creation. For instance, there should

be an assistant that analyses current application structure, compares it with the existing appli-

cations contained in the archive, and proposes consumer the next step in development process

such as which component applications to include, which parts in the existing applications to

connect etc. In addition, there should be assistant that analyses the current application’s com-

ponents, finds other consumers that used those components, and suggests the active consumer

a list of consumers that could be helpful with their advices during the application creation pro-

cess. There should be also assistants that help consumer to optimize nonfunctional properties

of the composite application. In fact, besides the appropriate logical functioning, nonfunctional

application’s properties such as reliability, availability, security etc., highly impact the perceived

quality of the application.

Finally, another important aspect that needs to be considered for effective Consumer Com-

puting is the scalability of the digital world. As already stated, consumer applications are

component based systems, where the existing applications are used as basic components for

new composite applications creation. In addition, new composite applications can be further

used as basic components for some other composite applications, which poses the challenge of

scalability of consumer applications in Consumer Computing. Although such an hierarchical

application composition, where each application may be consisted of several applications on

each level of composition seems practical for applications creation, it questions the possibility

12



2. CONSUMER COMPUTING

of effective real time execution [39]. To address this drawback and overcome scalability issues,

new composite applications need to be packed tightly and deployed as homogeneous systems,

or alternatively, their execution should be optimized and performed in the cloud.

2.2 Programming Methodology in Consumer Computing

There are several aspects that define each programming methodology as described in [28].

In order to present the programming methodology in Consumer Computing within this disserta-

tion, only most important characteristics are considered: programming elements, programming

language, programming technique and application’s software architecture. Programming el-

ements are the basic building blocks that programmers, or individuals who create computer

programs and applications, use to implement desired functionalities. For instance, program-

mers who prefer Object Oriented Programming (OOP) programming methodology use objects

as basic building blocks to create their computer programs. Programming language is an ar-

tificial language that programmers, or other individuals who create computer programs and

applications, use to instruct the behavior of their programs to the computer. For example, the

programmers who prefer already mentioned OOP programming methodology usually use gen-

eral purpose languages such as C++, Java or C#. Programming technique defines the procedure

how to transfer a sequence of operations or tasks representing computer program or application

to the computer. For instance, experienced programmers usually directly write code instructions

to transfer the program to the computer. Software architecture denotes a high level structure of

a certain software artifact. However, some problems are commonly occurring in software ar-

chitecture, which isolates general and reusable solutions as architectural patterns [40]. There

are plenty of architectural design patterns such as component based, layered, client-server, data

driven, event driven etc. The architecture of applications in Consumer Computing follows

component based design pattern, and it is described in details in Section 2.4.

The rest of the section is organized as follows. Section 2.2.1 explains the programming

elements used by consumer in Consumer Computing to create applications. Section 2.2.2 de-

scribes the programming language while Section 2.2.3 presents the programming technique

used in Consumer Computing.

13



2. CONSUMER COMPUTING

2.2.1 Programming Elements in Consumer Computing

Contemporary consumers use various types of applications on different sophisticated de-

vices such as smartphones, tablets, smart TVs etc. In addition, all those modern devices present

applications in a similar manner as tiles on the working surface. Consumer are very familiar

with application’s graphic user interface which provides simple representation of application’s

functionality and also hides the implementation details from consumers. Thus, consumers are

familiar with applications at least as much as the professional developers are familiars with the

programming elements they use. For instance, consumers know how to add, remove, use and

combine different applications on their physical devices. Further, consumers often use different

applications in chain in order to achieve some additional functionalities. All these mentioned

arguments substantiate reasoning that the existing applications are the ideal choice for program-

ming elements in Consumer Computing.

Figure 2.1: Software widgets presenting applications in Geppeto

As already stated, the researchers at the Consumer Computing Lab have implemented a tool

Geppeto [33], which is so far the closest implementation of Consumer Computing. Geppeto is

a web tool that enables consumers to create their own applications by composing the existing

applications. Applications in Geppeto are software widgets that provide their various function-

alities through a simple unified graphic interface consisted out of a set of controls supported

in HTML language [41]. Software widgets and HTML controls were chosen for applications

representation due to facts that software widgets are semantically intuitive to consumers who

are very familiar with web browser’s GUI controls. Figure 2.1 presents three software widgets

14



2. CONSUMER COMPUTING

representing applications in Geppeto. More detailed description of programming elements in

Consumer Computing can be found in [28]. The following sections describe the programming

language and technique utilized in Consumer Computing.

2.2.2 Programming Language in Consumer Computing

General purpose programming languages used by professional developers for computer

programs creation are too abstract and difficult for average consumers. In order to provide

consumers the ability to create applications, consumer intuitive and familiar programming lan-

guage need to be used. In fact, in his thesis [28], Skvorc introduces the principles of equality

of consuming and programming. The principle states that consumers need a programming lan-

guage that employs the programming paradigm that is not different than the paradigm which

is employed while using the programming elements. Hence, to connect the programming ele-

ments in Consumer Computing, the language used for consumption of programming elements

needs to be used. The language of programming elements consumption is consisted out of GUI

level actions that consumers perform to instruct the behavior of applications such as type the

text into the input field, press the control to trigger certain process, transfer the data from one

field to another etc.

In the most successful Consumer Computing implementation, Geppeto, the programming

language is consisted out of GUI level actions that can be performed over the HTML web con-

trols. In such manner, so far supported GUI level action are: Type In, Copy, Paste, Check,

Uncheck, Select, Click and Double Click. These actions enable various manipulations with the

software widgets and provide fully support for composite applications creation process. For

instance, let the reader consider a composite process containing the existing programming ele-

ments presented in Figure 2.1. The widget Bestsellers provides the list of most popular books

in a selected category containing each book’s basic information such as title, author, publisher,

price in US dollars and a brief book’s synopsis in English. The consumers in Croatia would

prefer the book’s synopsis to be displayed in Croatian language and book’s price to be in Croa-

tian currency. In order to achieve this preferences, the average consumers can use two other

software widgets: Google Translate and Currency Converter. As depicted in Figure 2.2, con-

sumers can achieve the desired preferences by performing a list of simple GUI level actions on

the widgets. Note that average consumers are very familiar with this type of actions. In fact,

consumers perform these actions everyday while using different web applications, which makes

15



2. CONSUMER COMPUTING

(2)

(3)

(1)

(4)

(5)
(6)

Consumers need to perform the following list of simple GUI actions:

(1) Copy the price in US dollars on the Bestsellers widget and paste it into the input field on the Currency Converter widget
(2) Select the Croatian currency on the checkbox on the Currency Converter widget
(3) Click the Convert! button on the Currency Converter widget
(4) Copy the synopsis text on the Bestsellers widget and paste it into the input field on the Google Translate widget
(5) Select the Croatian language on the checkbox on the Google Translate widget
(6) Click the Translate button on the Google Translate widget

Figure 2.2: Programming language consisted out of GUI actions used in Geppeto

them a reasonable choice for programming language in Consumer Computing.

2.2.3 Programming Technique in Consumer Computing

The most common programming technique used by professional developer is writing code

instructions in a dedicated development environment such as Eclipse or Microsoft Visual Stu-

dio. Note, however, that such an programming technique is too complex for average consumers

because of numerous rules and constraints that need to be followed while writing code. Obvi-

ously, writing code instructions is not likely to be adopted for application creation in Consumer

Computing. In Consumer Computing, consumers need a programming technique that requires

no more concentration than using the existing applications. There are few possible options that

accommodate these conditions such as Programming by Demonstration [42], Programming by

Example [43] or Visual Programming using GUI [44]. Another benefit of these programming

techniques is that they are less error prone than classical programming technique such as writing

code instructions.

In Geppeto, the Visual Programming technique is used. Consumers define GUI actions

16



2. CONSUMER COMPUTING

Figure 2.3: Floating context menu programming technique used in Geppeto

on widgets controls by using a special floating context menu as depicted in Figure 2.3. The

floating context menu gets activated once a consumer performs a right mouse button click over

a certain control. The activated context menu provides a list of available GUI actions that can

be automated as part of the consumer application. By repeatedly defining actions for different

controls, consumer defines control and data flow for the consumer application.

2.3 Consumer Computing Environment

The previous sections introduce the motivation for Consumer Computing and describe used

programming methodology which arguments the feasibility of Consumer Computing. In this

section, the entities that assure digital world’s equality, sustainability and scalability in Con-

sumer Computing are presented. As already stated, to enable sustainable applications develop-

ment, various assistants that help consumers during the creation process need to be developed.

In addition, to enable composite applications development and tackle consumers to create ap-

plications, the variety of basic components applications need to be developed by professional

developers. The intuitive programming methodology is not sufficient to fully achieve Consumer

Computing. Another important requirement for scalable composite applications development

is related to the consumer composite applications transparency. The composite applications

17



2. CONSUMER COMPUTING

created by consumers need to provide their functionalities through the same interfaces as basic

component applications. Additionally, composite applications need to be available for further

compositions as basic components for some other applications as well.

Consumer Assistants Applications

Crowd
Technical 
Systems

Domain Specific 
Applications

Generic Programmable 
Applications

Consumer 
Application

Figure 2.4: Consumer Computing environment

The Consumer Computing environment containing different entities which assure Con-

sumer Computing feasibility is presented in Figure 2.4. As can be seen in the figure, three dif-

ferent types of applications assure completely supported Consumer Computing environment:

Consumer assistants applications, Generic programmable applications and Domain specific

applications. Section 2.3.1 describes domain specific applications which are used as basic func-

tional components for new composite applications creation. Section 2.3.2 explains generic pro-

grammable applications that are used to create, encapsulate and deploy composite application’s

logic into a new application. Finally, Section 2.3.3 overviews consumer assistants applications

that provide help for different functional and nonfunctional composite application’s properties

adjustment during the process of application creation.

2.3.1 Domain Specific Applications

Domain specific applications are determined by their functional properties and they are

used as basic functional components for new applications creation. Consumers compose the

18



2. CONSUMER COMPUTING

existing domain specific applications in order to support more advanced desired features using

programming methodology described in Section 2.2. Composite applications expose their func-

tionalities in the same manner as the existing applications which enables sustainable growth of

domain specific applications base.

In Geppeto, there exist several domain specific applications sets implemented to demon-

strate the appliance of Consumer Computing in different fields. For instance, there exist a spe-

cial set of software widgets intended for planning and controlling the ROV during autonomous

underwater diving missions. Another interesting set of domain specific applications developed

for analysis of climate and oceanic data provided by the National Oceanic and Atmospheric

Administration (NOAA) is depicted in Figure 2.5. There are plenty of other specific sets of

applications implemented such as set for statistical data analysis, set for studying the financial

stocks data, set for chemistry, set for math etc.

Figure 2.5: Domain specific widgets for NOAA data analysis

The general idea is to provide as much as possible domain specific sets of applications

to employ Consumer Computing in different fields. These sets should be initially consisted

out of basic functional components designed considering domain specific experts’ advices, and

implemented by professional software developers. Using such developed basic functional com-

ponents, consumers with special interest for specific domains should create more advanced

composite applications according to their needs.

19



2. CONSUMER COMPUTING

2.3.2 Generic Programmable Applications

In Section 2.2, the programming methodology for application creation in Consumer Com-

puting is described. However, the detailed explanation of application’s logic encapsulation and

new application deployment is not provided. In order to support sustainable applications de-

velopment and increase of domain specific applications base, new composite applications need

to be deployed using the same technology as the existing applications. In fact, new composite

applications need to provide their functionalities using the same interfaces as the existing appli-

cations do. To accommodate these requirements, generic programmable applications are used.

Before they start defining control and data flow for their composite applications, consumers cre-

ate a new, blank generic programmable application, in which data flow, control flow and user

interfaces for the new application are stored.

Figure 2.6: Generic programmable Geppeto TouchMe widget

For instance, there are few different types of generic programmable software widgets sup-

ported in Geppeto. The most commonly used generic programmable widget is Geppeto TouchMe,

a widget in which a new composite application’s logic is encapsulated and deployed. The wid-

get also supports definition of GUI controls representing input and output fields for a new ap-

plication. The composite application encapsulated in a Geppeto TouchMe that implements the

example scenario shown in Figure 2.2 is presented in Figure 2.6. The name TouchMe indicates

that the new application’s execution is triggered by consumer when pressing the programmable

control. In this case, the application is triggered by pressing the button Go.

20



2. CONSUMER COMPUTING

There are more generic programmable widgets supported in Geppeto, such as Geppeto Trig-

gerMe which is triggered by signaling particular external event, GeppetoTickMe, a type of a

programmable widget that is triggered at the specific time, Geppeto LocateMe, a special widget

intended for mobile devices triggered once a device is found in a predefined area, message-

triggered programmable widgets that support synchronization and communication among dif-

ferent consumer applications (introduced by Miroslav Popovic and described in details in his

PhD thesis [29]), etc.

2.3.3 Consumer Assistants Applications

The consumer oriented programming methodology is not enough to bootstrap the massive

consumer applications creation. The process of appropriate component selection sometimes

can be very difficult task even for the experienced professional software developers. First, it is

crucial to select the functional components that accommodate the requirements coming out of

consumer application’s desired behavior. Even when exact desired behavior of the consumer

application is accomplished, the application may be suboptimal when nonfunctional properties

such as reliability, availability, security etc. are considered. In fact, even professional software

development environments such as Eclipse or Microsoft Visual Studio nowadays help developers

by activating various wizards that lead them through the process of application creation. Further,

one of the requirements for Consumer Computing feasibility is related to the substantially large

number of various domain specific applications which emphases the problem of appropriate

component application selection.

Figure 2.7: Geppeto MentorMe assistant widget

In order to help consumers during the process of application creation, a special entities, con-

21



2. CONSUMER COMPUTING

sumer assistants applications, are introduced in the Consumer Computing environment. These

elements are the primary focus of most recent Consumer Computing Lab’s research activities.

Consumer assistants are intended to help consumers during the process of selection of domain

specific applications. For instance, a special consumer assistant application helps consumer to

select the next component in the application creation process by analyzing current state of the

application and comparing it with composite applications archive [30]. Another interesting as-

sistant, already implemented in Geppeto, Geppeto MentorMe [31], analyzes the current state of

the application and finds the list of consumers that have already created similar applications and

whose advices might be beneficial and helpful during the application creation. The Geppeto

MentorMe assistant is depicted in Figure 2.7.

So far mentioned assistants are considering exclusively correct functioning of the appli-

cations. However, application’s nonfunctional properties such as reliability or availability also

influence the perceived quality of the application. Thus, assistants that help consumers optimize

different nonfunctional aspects of their applications should be proposed.

2.4 Architecture of Applications in Consumer Computing

The primary focus of this dissertation is prediction of consumer applications reliability

which is a nonfunctional property of a software system. Some of the most commonly con-

sidered nonfunctional properties of software systems are: fault tolerance, backward compati-

bility, extensibility, maintainability, reliability, availability , security, usability etc. In order to

analyze nonfunctional properties of a certain software system, it is crucial to understand the ar-

chitecture of the respected software system. The classical old-fashioned approaches in software

architecture design were usually driven by functional requirements and data flow of the sys-

tem [45]. Besides the correct functional operation, nonfunctional qualities are very important

for contemporary software systems. The system’s architecture highly impacts its nonfunctional

properties and that is the reason why modern quality-driven approaches in software design syn-

thesize software architecture of the system out of previously defined nonfunctional properties

requirements [46].

When consumer applications architecture is considered, there should be distinguished two

types of applications according to their structure: composite and atomic consumer applications.

The architecture of atomic consumer applications is presented in Section 2.4.1. Composite

22



2. CONSUMER COMPUTING

applications are built out of atomic applications and their architecture is briefly presented in

Section 2.4.2.

2.4.1 Architecture of Atomic Consumer Applications

The atomic consumer applications provide basic domain specific functionalities and they are

usually developed by professional developers. They are considered atomic and homogeneous

due to fact that there is no additional information about their inner structure or organization.

These applications provide their functionalities through a simple consumer intuitive graphic

user interface and hide the implementation details under the hub. However, they often require

some data retrieval and information processing on the server side over the unpredictable Inter-

net.

In Geppeto, so far most closest Consumer Computing implementation, the atomic applica-

tions are implemented as software widgets. Software widgets provide their functionalities via

consumer intuitive graphic user interface consisted out of HTML supported web browser’s con-

trols. Part of the widget’s code is executed locally on the hosting machine within the browser,

but most widgets usually contain the other part of the code that requires server side data pro-

cessing or retrieval over the Internet. In such manner, this other part of the widget’s code can be

viewed as dynamic software artifacts such services described in Service Oriented Architecture

(SOA) [47, 48].

Web Browser

Internet

Widget Widget

Server

Service Service

Figure 2.8: Architecture of Atomic Consumer Applications

23



2. CONSUMER COMPUTING

This widget’s service-characteristics are very important, especially for consideration of non-

functional application’s properties in Consumer Computing. The part of the code that is exe-

cuted locally on the hosting machine is considered less interesting in terms of nonfunctional

qualities modeling than the other part of the code that is executed over the Internet due to Inter-

net’s highly dynamic and unpredictable features. Accepting all afore mentioned arguments and

requirements, the architecture of atomic applications in Consumer Computing can be presented

as depicted in Figure 2.8.

2.4.2 Architecture of Composite Consumer Applications

Composite consumer applications are built out of atomic consumer applications that are

orchestrated and coordinated in order to provide the additional functionalities. In general, com-

posite applications are created by consumers and their functionality is encapsulated into a new

applications using a dedicated type of a generic programmable applications which are described

in Section 2.3.2. The composite applications encapsulation enables further utilization of such

applications as basic basic components for more composite applications creation. In this man-

ner, composite applications may be consisted out of atomic and composite applications on lower

composition levels.

Composite 
Application 

C

Composite 
Application 

A

Composite 
Application 

B

Atomic
Application

1

Atomic
Application

2

Atomic
Application

3

Atomic
Application

4

Atomic 
Applications

First Level of
Composition

Second Level of
Composition

Figure 2.9: Architecture of Composite Consumer Applications

The architecture of composite applications is presented in Figure 2.9. The figure also de-

scribes the process of applications composition, which is organized hierarchically. Hence, com-

posite applications may appear at different level of composition. For instance, composite ap-

24



2. CONSUMER COMPUTING

plication A at the second level of composition is consisted out composite applications B and

C, and atomic application 4. Composite application B at the first level of composition contains

atomic applications 1, 2. Note that each application, regardless of being atomic or composite,

can be contained in more than one composite application. For example, atomic application 2 is

contained in composite applications B and C.

Any additional information about internal architecture of some software artifact can be very

important and helpful when assessing its nonfunctional properties. The next chapter is focused

on reliability modeling of applications in Consumer Computing. Although the thesis of this

dissertation is primary focused on reliability modeling of atomic applications (note the appli-

cation is considered atomic in case no information about its internal structure is available), the

reliability of composite applications Consumer Computing is briefly presented.

25



Chapter 3

Reliability in Consumer Computing

The previous chapter describes Consumer Computing, a novel methodology that enables

consumers and encourages them to create their own component based applications. The basic

components for composite application creation in Consumer Computing are the existing appli-

cations. In order to implement additional functionalities, consumers compose the existing ap-

plications and create new composite applications that can be used later for further compositions.

It is extremely important for consumer to select the appropriate functional components while

creating a new application. In fact, in case consumer selects the wrong functional components it

is likely that the applications will not operate according to the desired behavior. To address this

potential drawback, the consumer assistant applications were introduced in Consumer Com-

puting environment. Consumer assistants are implemented as wizards that lead consumers and

help them during the process of application creation.

However, another important aspect that should be considered in component based systems

is the optimization of nonfunctional application’s properties. Nonfunctional properties such as

reliability, availability, security, etc. might have a significant impact on perceived quality of

the application. More specifically, nonfunctional properties are crucial for efficient execution

of component based applications. Thus, during the process of basic components selection and

composition, the optimization of nonfunctional application’s properties should be incorporated

as well. The research in this dissertation is studying reliability of applications in Consumer

Computing. When modeling reliability in component based systems, there should be distin-

guished two types of applications: atomic and composite applications. As already stated in

Section 2.4.1, the applications in Consumer Computing can be considered as dynamic software

artifacts such as services and SOA model can be soundly applied for studying reliability of con-

26



3. RELIABILITY IN CONSUMER COMPUTING

sumer applications. There has been proposed the variety of approaches for composite services

reliability modeling, but only few models consider reliability of atomic services.

The main topic of this research is to asses the reliability of atomic services underlying atomic

consumer applications. It is very challenging to assess the reliability of the service because of its

dynamic nature. Services are software artifacts whose nonfunctional properties i.e. reliability

change depending on service invocation context. The service invocation context is determined

by the set of user–, service– and environment–specific parameters. To address this challenge,

leveraging users and providers feedback should be utilized to collect partial but comprehensive

past invocations sample, and then, prediction methods should be used to estimate the reliability

of atomic services.

Finally, the last but certainly not the least important aspect that needs to be taken into con-

sideration is consumer’s perception of reliability. Consumers need a simple and intuitive way

to analyze and optimize applications reliability. Hence, there should be a special dedicated con-

sumer assistant widget intended for application’s reliability optimization during the process of

components selection. The assistant should provide consumers help and information about the

reliability of components they consider as selection candidates for composition.

The rest of the chapter is organized as follows. Section 3.1 provides basic theoretical soft-

ware reliability concepts and taxonomy. Section 3.2 analyzes Consumer Computing applica-

tions from the aspect of their execution and justifies the adoption of SOA model while assessing

reliability in Consumer Computing. Section 3.3 presents specific challenges while modeling re-

liability in service oriented systems. Finally, Section 3.4 describes the system used for reliability

prediction of Consumer Computing applications according to the adopted SOA model.

3.1 Software Reliability Basics

According to the commonly adopted taxonomy brought in [49], the reliability is one of the

aspects of broader dependability area. Other aspects of dependability are availability, safety,

maintainability and integrity. The reliability is related to the continuity of a correct service

delivered by a system. There are two most common definitions of reliability that can be found

in literature:

(i) the probability that the system performs its required functions under stated conditions for

a specified period of time [3] and,

27



3. RELIABILITY IN CONSUMER COMPUTING

(ii) the probability that the system successfully completes its task when it is invoked (this

definition is known as "reliability on demand" in literature) [50].

As stated in [51], the definition (i) refers to the "never ending systems" that must operate

correctly during the entire given mission (e.g., the on-board flight control system of an airplane

should not fail during the entire flight). The definition (ii) is related to the systems offering ser-

vices that, once invoked, must successfully complete response. Both of these definitions can be

applied to any software systems regardless of its granularity level (e.g., distributed software ar-

tifact, software component, software service etc.). It is only required that the correct behavior of

the given software system can be unambiguously defined. A correct behavior is a "failure-free"

behavior, in which the system produces the expected output for any input that accommodates

system’s specifications and requirements.

"Failure-free" behavior is only related to what can be observed at the system output, which

means that the system might experience a degree of incorrect functioning without demonstrat-

ing any failure at the output. In order to understand and explain these claims, three fundamental

reliability concepts are introduced: fault, error and failure. A fault is a wrong statement intro-

duced somewhere in the software system. An error is an unexpected state in which the system

might get upon it executes a fault statement (e.g., a local variable gets assigned an unexpected

value). A failure is the propagation of an error up to the system output (e.g., an output variable

gets assigned an unexpected value).

Even if the fault is introduced somewhere in the systems, that does not mean that the system

will encounter an error. Hence, the system might not execute the fault statement for a long

period of time, depending on the structure of the code or sequence of inputs given to the system.

In the case the system gets in an erroneous state, it does not imply that the failure will be

manifested at the system output. For instance, the error may be masked thanks to some other

operations executed between the erroneous state and the output production.

Different classification of failures are present with the respect to different attributes. Ac-

cording to the failures manifestation they can be classified as follows:

• Regular failure – A failure that manifests itself as an unexpected value at the system

output.

• Crash failure – A failure that causes immediate stop of the system operation; this type of

failure is common to systems known as fail-and-stop systems.

28



3. RELIABILITY IN CONSUMER COMPUTING

• Looping failure – A failure that prevents the system from producing any (correct or in-

correct) output; this type of failure is unpleasant due to the fact that it takes time to notice

that the system is experiencing such a failure.

According to their severity, failures can be classified as follows:

• Repairable failure – A failure that can be repaired without restarting the whole system.

• Unrepairable failure – A failure that requires the restart of the system in order to restore

its correct behavior.

These classifications are important in the terms of understanding which types of failures are

allowed to be experienced by the system in certain reliability models. As can be expected, the

less restrictive the requirements on types of allowed failures are, the more complicated is the

model formulation. The reader should note that the attributes specified in different classifica-

tions are not independent of each other. For example, a crash failure is obviously not repairable.

3.2 Adoption of SOA Model in Consumer Computing

The architecture of applications in Consumer Computing was described in Section 2.4. As

already stated, the crucial part of the code of consumer applications gets executed over the In-

ternet, which enables modeling of consumer applications as dynamic software artifacts that pro-

vide their functionalities on the Internet such as services described in SOA [47,48]. This section

justifies the adoption of SOA model while considering nonfunctional properties of applications

in Consumer Computing. In order to justify the adoption of SOA model, the execution process

of Consumer Computing applications needs to be studied carefully. As described in Section 2.4,

there should be distinguished two kinds of consumer applications: atomic and composite appli-

cations. Also, this section presents the composing methodology used in Consumer Computing

as a simple extension of service composition tools used in service-oriented computing.

The architecture of atomic consumer applications is described in Section 2.4.1. Atomic

consumer applications are executed as separate frames within the web browser hosted on con-

sumer’s machine. However, each consumer application contains dynamic part of the code that

communicates with remote resources on the Internet. For instance, consumer applications often

require some data retrieval or information processing which is usually achieved by performing

dynamic invocations to the remote services on the Internet. Hence, regarding their execution

29



3. RELIABILITY IN CONSUMER COMPUTING

Consumer 
Computing

GUIs

Service-oriented
Computing

APIs

Web Browser

Atomic Application

A1

Service provider 

Composite Service

CS2
Service

S1

Web Browser

Atomic Application

A2

Service

S21

Service

S22

Service

S2i

Service

S2n
... ...

Figure 3.1: The process of execution of atomic consumer applications

manner, atomic consumer applications can be viewed as dynamic software artifacts that rely

on one or more remote services on the Internet as presented in in Figure 3.1. Based on this as-

sumption, reliability of a particular atomic consumer application is determined by the reliability

values of services underlying the associated consumer application.

Since atomic consumer applications usually provide basic functionalities they can be seen

as the user interface extensions that provide graphic representations for the underlying services.

Hence, in most common case, each atomic consumer applications is corresponding to a single

service on the Internet, and it is certainly justified to associate the reliability of the consumer

application to the reliability of the underlying service. For instance, as depicted in Figure 3.1,

atomic consumer application A1 is relying on the service S1. In the second case, atomic con-

sumer application is depending on more different services. For instance, atomic consumer

application A2 is depending on services S21, S22, ..., S2i, ... and S2n. In general, if such an

application fails, it is not possible to exactly identify the failure reason from the consumer’s

perspective. The application failure can be caused by the failure of any of services S21, S22, ...,

S2i, ... or S2n. However, services S21, S22, ..., S2i, ... and S2n can be viewed as a composite

service CS2 and the failure of the application A2 can be addressed to the failure of the com-

posite service CS2. From the consumer’s perspective, such a composite service can be seen

30



3. RELIABILITY IN CONSUMER COMPUTING

Consumer 
Computing

GUIs

Service-oriented
Computing

APIs

Web Browser

Atomic Application

A1

Service provider 

Service

S1

Service

S2

Service

S3

Atomic Application

A2

Atomic Application

A3

Geppeto TouchMe

CA1
(1)

(2)

(3)

Figure 3.2: The process of execution of composite consumer applications

as an atomic service whose internal structure and dynamic execution properties are generally

unknown. Thus, for the second case, it is also justified to correlate the reliability of the atomic

consumer application A2 to the reliability of the service CS2.

Although composite consumer applications are not the primary topic of this dissertation,

SOA model needs to be applicable for their execution as well in order to fully justify its adoption

in Consumer Computing. There is a separate research dedicated to the reliability improvement

of composite consumer applications [32], which is conducted as part of the research activi-

ties in the CCL lab. Composite consumer applications are built out of more atomic consumer

applications in order to support more advanced functionalities. As depicted in Figure 3.2, com-

posite consumer application CA1 is comprised out of atomic consumer applications A1, A2 and

A3 each relying on its service S1, S2 and S3 respectively. Composite consumer applications

are executed in the web browser by performing GUI level actions defined by consumers while

creating composite applications. The logic of the composite application is encapsulated in a

dedicated generic programmable widget (see Section 2.3.2) as a set of GUI level actions that

needs to be performed in order to support the composite application’s functionality. It is impor-

31



3. RELIABILITY IN CONSUMER COMPUTING

Consumer
Computing

GUIs

Service-oriented
Computing

APIs Service  Composer Tool

Service

S1

Service

S3

Engineer

Services Repository

Service

S3
Service

S2

Service

S1

Service

S5
Service

S4

Service

CS1
...

Service

S5

Consumer

Geppeto Applications Repository

App

A1

App

A3App

A2App

A1

App

A5App

A4
App

A3

App

A5

App

CA1...

Figure 3.3: Consumer Computing as an extension of service oriented computing

tant that each atomic application (being part of the composition) needs to be present within the

browser for the composite application to function correctly. In fact, composite application sim-

ply performs orchestration and coordination by executing GUI level actions in the web browser.

For instance, composite application CA1 invokes application A1, waits for it to process its task,

then invokes application A2, waits for it to process its task, and finally invokes application A3.

Since all of the comprising atomic applications rely on their respected services, it is obvious that

the reliability of the composite consumer applications is depending exclusively on reliability of

services underlying atomic consumer applications (assuming the orchestration and coordina-

tion mechanisms are implemented correctly). Hence, it is justified to correlate the reliability of

the composite consumer application to the reliability of services underlying comprising atomic

applications.

Knowing the execution process of consumer applications, the composing methodology in

Consumer Computing can be seen as an consumer oriented extension of the service compo-

sition process which is used in service oriented computing. As presented in Figure 3.3, in

service oriented computing an engineer creates a new service CS1 that supports the additional

functionality by composing the existing services S1, S3 and S5. The services are composed by

32



3. RELIABILITY IN CONSUMER COMPUTING

manipulating the APIs using special service composition languages. The new service is then

deployed on the Internet and added into the services repository and it can be used for further

compositions. On the other hand, in Consumer Computing, consumer creates a new application

CA1 out of the existing applications A1, A3 and A5 by defining the set of GUI level actions

that need to be performed to support the desired functionality. The new application’s logic is

then encapsulated in a special generic programmable widget which is added to the applica-

tions repository and which can be used for further compositions. Consumer Computing can

be viewed as an extension for service oriented systems development. In fact, while consumers

create new consumer applications without having any knowledge about programming or APIs,

the system hides the implementation details from consumers and actually creates new service

compositions beneath.

To summarize, the arguments presented in previous paragraphs uphold the efforts to soundly

adopt the SOA model for consideration of reliability of applications in Consumer Computing.

Hence, in further sections the term consumer application and service are interchangeably used

when nonfunctional properties are considered, due to a fact the each consumer application can

be seen as a special representation of the relying service. According to the adopted model, the

next section provides some specific challenges that are present while modeling reliability in

service oriented systems.

3.3 Reliability Challenges In SOA

The arguments that justify sound adoption of service oriented model for reliability consider-

ation of consumer applications are presented in the previous section. According to the adopted

model, each consumer application can be considered as a dynamic software such as service

that provides its functionality on the Internet. However, by adopting service oriented model,

special challenges that are present while modeling reliability in service-oriented systems are in-

troduced. Service-oriented systems posses specific characteristics that make them unique when

nonfunctional properties are considered. The researchers have proposed a variety of different

approaches for modeling the reliability of traditional software systems [3–11]. However, these

approaches are not suitable for modeling reliability in service-oriented systems due to a specific

reliability challenges that come out of special services features. In this section specific issues

for modeling the reliability in service-oriented systems are discussed.

33



3. RELIABILITY IN CONSUMER COMPUTING

As stated in previous section, there exist two most common definitions of reliability in lit-

erature. For service-oriented systems, the "reliability on demand" definition (ii) suits better to

the nature of services since service invocations can be observed as a discrete, reasonably sparse

events. According to the adopted reliability definition the following sections discuss specific

issues in service-oriented environments as follows. Section 3.3.1 studies additional informa-

tion that needs to be available to support reliability analysis in service-oriented systems. Sec-

tion 3.3.2 examines possibilities how additional information necessary for reliability modeling

can be obtained. Section 3.3.3 provides detailed overview of service invocation context param-

eters that significantly impact experienced service reliability. Finally, Section 3.3.4 describes

the adopted failure model for reliability modeling in service-oriented systems.

3.3.1 Information to Support Reliability Analysis in SOA

Service-oriented systems are built according to the set of rules and principles defined in

SOA [47, 48]. In SOA environments, each service should publish the information which is nec-

essary to perform successful service invocation. This information, described using a dedicated

language such as WSDL [52], usually provides the names of the supported operations, and the

names and types of their input and output parameters. In order to support analysis of some non-

functional property such as service reliability, each service should publish the reliability related

information as well.

It is very important to isolate which information should be published in order to support

reliability analysis. One of the basic principles of SOA paradigm is that each services composi-

tion can be used as a service for further composition. Hence, there should be distinguished two

types of services:

(i) Atomic service, an indivisible software artifact that is too granular and executes fewer

technical functionalities without requiring any other resources to perform its tasks.

(ii) Composite service, built as a composition of other selected services which are required

for the composite service to carry out its task. The services are organized and orchestrated

using a special dedicated workflow description language such as BPEL [53], CL [54] or

SSCL [55].

The reader should note that there is a mapping between services and consumer applications,

meaning that the atomic consumer applications can be considered as atomic services, while

34



3. RELIABILITY IN CONSUMER COMPUTING

composite consumer applications can be viewed as composite services.

In terms of reliability, the difference between atomic and composite services is that the

service provider of an atomic service can publish complete reliability information that can be

used by clients for reliability modeling. On the other hand, the provider hosting a composite

service can only publish the part of the reliability information that is concerning the part of the

service implementation which is under the provider’s direct control. This part of the reliability

information is called internal reliability in literature [51]. However, this information needs to

be combined with the reliabilities of other selected services to obtain the entire reliability of the

composite service.

It is also challenging to combine these reliabilities properly to assess the reliability of the

composition. This means that the right weight should be assigned to each service’s reliability.

Thus, a rarely invoked service has a smaller impact on reliability than the frequently used one.

Besides having the information about the reliability of each service within the composition, it is

also important to obtain the information about the structure and dynamic execution properties

of the composition which is often called usage profile in literature [51].

When considering the reliability properties of service-oriented systems, most of the re-

searchers commonly focus on studying the reliability of service compositions. In such man-

ner, plenty of different approaches for prediction of the composite services reliability have been

proposed [51, 56–63]. These proposed approaches usually assume that the reliability values of

the atomic services are available or scarcely indicate how can they be acquired.

By contrast, this dissertation is focused on atomic services reliability modeling. The aim is

to determine the reliability values for atomic services when service users are heterogeneous and

varied. The following sections describe the difficulties and challenges that need to be overcome

in order to accurately asses the atomic services reliability.

3.3.2 Obtaining Reliability Information

The ideal scenario for obtaining the information about service reliability is the case when

the information is provided along with the service description at the time the provider publishes

and deploys the service. In a more realistic scenario, the service reliability data can be obtained

by monitoring the service.

As already, stated, the primary focus of this dissertation is atomic services reliability model-

ing. However, when composite services are considered, the structure of the composite workflow

35



3. RELIABILITY IN CONSUMER COMPUTING

is described using special service composition languages. The description provides the infor-

mation about possible invocation patterns of services comprised within the composition. Note

that sometimes is not possible to determine the exact execution flow due to the ambiguities in-

troduced by presence of some specific control flow statements. For instance, if there is a branch

statement in the composition workflow, it is not possible to determine which of the branches

will get executed. However, by monitoring the relative frequencies of the different branches,

and collecting such data over an adequate number of different invocations, the probability of

different patterns can be estimated.

Regarding the atomic services, the only necessary information is the internal reliability

of the service, which corresponds with the actual reliability of the service. According to the

adopted reliability definition (ii), the reliability value can be computed from the past invocations

sample as the ratio of the number of successful service invocations against the total number

of invocations. The accuracy and relevance of the computed reliability value depends on the

quality and quantity of the past invocations sample.

However, gaining a numerous and diverse past invocations sample proves to be a very dif-

ficult task in practice. There is a difference in a reliability perception from the user’s and

service provider’s perspective due to the variabilities stemming from the service invocation

context [51]. The reliability value computed considering exclusively the data obtained by the

service provider could be incorrect for a specific user due to oscillations caused by a variety

of parameters that influence the invocation context. For example, users in different geographic

locations might experience different reliabilities while using the same service. From the service

user’s perspective, further obstacles are related with the service usage cost and performance

issues. For example, collecting the invocation sample by performing service reliability testing

can be extremely expensive for the services that are not free of charge. On the other hand, con-

ducting "stress testing" can significantly impact the performance of the service and also make

the measured data irrelevant [13].

One possible approach to address these obstacles is to obtain partial but relevant history

invocation sample by leveraging human feedback regarding service usage and collecting as

much as possible data from the service providers (1), and to utilize prediction methods for the

estimation of missing reliability records (2).

36



3. RELIABILITY IN CONSUMER COMPUTING

3.3.3 Parameters of the Service Invocation Context

As already stated in previous section, acquiring a comprehensive past invocation sample

appears to be a challenging task. Furthermore, even if one could gain a comprehensive past

invocation sample, there are still difficulties when estimating the service reliability due to reli-

ability oscillations produced by the service invocation context parameters.

There are plenty of various factors that might impact and determine service’s nonfunctional

properties such as reliability, availability, etc. in service-oriented systems. However, it is use-

ful to systematize this matter in order to create an accurate and efficient reliability prediction

model. Hence, parameters that define the service invocation context can be grouped in three

basic categories: user–, service– and environment–specific parameters. Most of the existing

approaches for prediction of atomic services reliability (described in next Chapter 4) implicitly

incorporate only user– and service–specific parameters. Note, however, that services exist on

the Internet, which is a very dynamic environment by its nature. To propose an accurate service

reliability prediction approach, environment–specific parameters also need to be combined.

The user–specific parameters of the service invocation context include any potential factors,

introduced by user or caused by some user’s attributes, that might produce the variabilities in

the perceived service reliability. For instance, some user–specific parameters are user’s geo-

graphical location at the time of the invocation, quality of the Internet connection that a user is

subscribed to or physical device’s capabilities a user is using to perform the invocation etc.

The service–specific parameters of the service invocation context are related to any possible

cause of variabilities in perceived service reliability introduced by service itself or some ser-

vice’s characteristics. Some of the service–specific parameters that that cause service reliability

variabilities are: geographical location of service, computational complexity of the service,

quality of the service implementation, system resources dedicated to the service by the provider

such as CPU or RAM etc.

The environment–specific parameters are related to the current conditions in the environ-

ment comprising users and services that introduce fluctuations in the perceived service reliabil-

ity. The environment conditions are very important aspect for nonfunctional properties estima-

tion in dynamic environments such as Internet. The environment–specific parameters include

environment properties such as network performance or service provider load at the time of the

service invocation.

37



3. RELIABILITY IN CONSUMER COMPUTING

3.3.4 Failure Model for Service-oriented Systems

As stated in Section 3.1, failures can be classified as regular, crash and looping according to

their manifestation, and as repairable and non-repairable according to how severe they are.

Crash failures cause the system to stop functioning which means that these failures are the

simplest to model from the reliability point of view. Some authors support claims that Internet

based systems, including also service-oriented systems, should be design as "crash-only" in

order to be more reliable and efficient [64].

Regular failures generate incorrect values at the output of the system. The issue with these

type of failures is related to the fact that incorrect output value, produced by a certain service

within the service composition, does not need necessary to propagate at the output of the system.

In fact, some other service on the path to the output might mask the error. Thus, in order to

consider regular failures for reliability modeling, the error maskability factor, a capability for

a service to map any incorrect input to a correct output, should be included in the model. The

reliability modeling can be simplified by assuming that each regular failure in an inner service

always propagates to the composition output.

Another important remark regarding the adopted failure model is related to the assumption

of independence of atomic services within the composition. There is a possibility that originally

independent services are composed in such manner that they rely on some common service and

become no longer independent. In this research the impact of common service sharing on

reliability is not considered.

3.4 Reliability Prediction System in Consumer Computing

On the basis of analysis provided in previous sections there can be identified few distinct

entities that are necessary to support the reliability modeling of consumer applications in Con-

sumer Computing. These entities and relationship between them form a reliability prediction

system in Consumer Computing. The following remarks identify and briefly describe each

entity that needs to be present for reliability prediction in Consumer Computing.

The discussion in Section 3.2 justifies the sound adoption of service-oriented model for

presenting the execution of consumer applications which is a crucial process for consideration

of application’s nonfunctional properties such as reliability. The conclusions drawn in this

discussion confirm that consumer applications can be viewed as a dynamic software artifacts

38



3. RELIABILITY IN CONSUMER COMPUTING

that provide their functionalities over the Internet such as services defined in SOA. As stated

in Section 3.3.2, one possible approach to asses the reliability of services underlying consumer

applications is to use prediction models. Each prediction model utilizes the actual measured

data, collected during previously performed tasks, to produce the predictions for the ongoing

tasks. The prediction system produces predictions using a prediction algorithm. It is obvious

that the quality of produced predictions depend both on quality of the prediction algorithm and

the quality of the collected data.

Another important aspect of the reliability prediction system is related to the collecting feed-

back. In order to have a comprehensive data sample, the prediction system needs to collect the

feedback data about selected components both from consumers and service providers. In fact,

the past invocation sample needs to be maintained, it needs to be updated with the most recently

experienced reliability data, and also the expired past reliability data needs to be removed from

the sample.

In order to help consumers to optimize the reliability of components for their consumer ap-

plications, the functionality of the prediction system needs to be exposed and incorporated in

a special consumer assistant application. This assistant application, called Geppeto Reliability-

OptimizeMe, needs to provide recommendations for consumers during the components selection

by sorting the same functional components according to their predicted reliability values. For

the purpose of collecting consumers feedback on selected components an appropriate consumer

intuitive rating system should be proposed.

According to the afore mentioned remarks, the architecture of the reliability prediction sys-

tem in Consumer Computing is depicted in Figure 3.4. The following sections describe each

entity in details. Thus, Section 3.4.1 describes the Prediction System and the requirements

it needs to accommodate to be successfully applied in Consumer Computing. Section 3.4.2

describes the Feedback Management System that collects feedback and maintains the past invo-

cations sample. Section 3.4.3 provides a brief overview of most significant rating systems used

in moder recommendation systems on the Internet and analyzes the aspect of their potential

adoption and adjustment in Consumer Computing. Finally, Section 3.4.4 presents the consumer

assistant application Geppeto ReliabilityOptimizeMe that provides consumers recommendations

regarding the reliability of potential candidates during the process of selection.

39



3. RELIABILITY IN CONSUMER COMPUTING

SOA 
Environment 

Consumer s 
Environment 

App 1

Assistant Geppeto 
ReliabiityOptimizeMe

App 1 98 %

App 2 97 %

...

App n 85 %

App 1 App 2

App n

Domain Specific 
Applications Candidates

...

Provider 1

Service 
1 

Service 
2

Provider 2

Service 
n

Feedback Management System

Prediction System

Prediction
Algorithm

Past
Invocation

Sample

Collect 
Feedback

System

Maintain 
Sample
System

Consumer 
Application Rating 

System

Figure 3.4: Architecture of the reliability prediction system in Consumer Computing

3.4.1 Prediction System

As depicted in Figure 3.4, the Prediction System is consisted out of Prediction Algorithm and

Past Invocations Sample. The Prediction Algorithm module implements the chosen prediction

method and produces predictions for ongoing service invocations using the collected data about

previous invocation stored in the Past Invocations Sample.

As already described the quality of the prediction is depending on both quality of the algo-

rithm and quality of the past invocations sample. However, past invocations sample is main-

tained by the Feedback Management System which is described in the following section (see

Section 3.4.2 for details), while this section is focused on the prediction model qualities.

Real service-oriented systems, which are underneath the consumer applications in Con-

sumer Computing, comprise a substantially large number of users and services. However in

such systems, each user visits only a limited subset of services and also new users and ser-

vices emerge in real time. As a consequence, reliability values are known only for the limited

set of service invocation contexts, and there is a number of invocation contexts for which the

reliability values are missing and need to be predicted. Besides the accurate reliability predic-

tion for the missing invocation contexts, the designed method should support scalable and real

time reliability prediction performance. This is an very important requirement from the Con-

sumer Computing point of view. In fact, from consumer perspective, the algorithm that takes

too long to produce the predictions can make consumers less enthusiastic while creating their

40



3. RELIABILITY IN CONSUMER COMPUTING

applications.

The researchers have proposed several prediction models that leverage the available past in-

vocations records to estimate predictions for the ongoing invocations and they are described in

the next chapter (see details in Chapter 4). The proposed state-of-the-art prediction models are

based on collaborative filtering technique, often used in recommendation systems. Although the

existing collaborative filtering based approaches achieve promising performance, they demon-

strate disadvantages primarily related to the prediction accuracy in dynamic environments and

scalability issues influenced by the invocations sample size.

When prediction accuracy is concerned, collaborative filtering provides accurate recommen-

dations in static environments where the collected data records are relatively persistent. This

means that the records remain up to date for a reasonably long period of time (e.g. songs rat-

ings, band recommendations). On the other hand, SOA systems are deployed on the Internet, a

very dynamic environment in which service providers register significant load variations during

the day [65–67]. In such a dynamic environment, user perceived service reliability may consid-

erably change depending of the actual time of invocation. Furthermore, collaborative filtering

approaches store reliability values for each user and service pair. Having millions of users and

a substantially large number of services, these approaches do not scale.

As part of this dissertation two different prediction algorithms are proposed in order to ad-

dress the drawbacks of the existing approaches. The first proposed approach, called LUCS

(service Load, User location, service Class, Service location) according to the model parame-

ters, is described in details in Chapter 5. The LUCS aims to improve scalability and accuracy

of the existing collaborative filtering approaches by: (1) extending the model with the parame-

ters that describe the environment and the internals of a service and grouping the past invocation

data into discrete sets across several dimensions according to the model parameters, and (2) per-

forming collaborative filtering based on the set membership considering impact of each model

parameter for the ongoing invocation. The final reliability prediction is computed using a linear

combination of each model parameter’s impact.

The LUCS approach prediction accuracy is highly dependent on the explicit availability of

the model parameters which are sometimes difficult to gain. To address this drawback, a second

approach called CLUS (CLUStering) is proposed. The CLUS (described in details in Chap-

ter 6) aims to improve the performance of the state-of-the-art approaches by: (1) considering all

parameters of the service invocation context: user–, service– and environment–specific param-

41



3. RELIABILITY IN CONSUMER COMPUTING

eters (the existing approaches implicitly consider only user– and service– specific parameters,

while this approach introduces additional parameter that describes the condition of the envi-

ronment), and (2) reducing the redundant data by grouping users and services into respected

user and service clusters according to their reliability performance using K-means clustering

algorithm. The authors in [68–70] show that different nonfunctional qualities of a service are

influenced by specific service characteristics such as internal complexity or service location. In

fact, the existing collaborative filtering based approaches support claims that similar users and

services obtain similar reliability values, which can be utilized to aggregate the redundant data

and improve scalability.

3.4.2 Feedback Management System

In order to produce accurate predictions, the past invocations data sample needs to be main-

tained up to date. The role of Feedback Management System is to maintain the past invocations

sample as depicted in Figure 3.4. Although the challenge of collecting feedback and maintain-

ing the invocations sample is not the primary concern of this dissertation, some basic remarks

are presented in the following text.

As presented in Figure 3.4, the Feedback Management System is consisted out of two sep-

arate modules: Collect Feedback Module and Maintain Feedback Module. The role of Collect

Feedback Module is to collect feedback regarding the selected components both from con-

sumers and service providers. The role of Maintain Feedback System is to manipulate with the

reliability data records in the past invocations sample. The Collect Feedback Module passes the

collected feedback to the Maintain Feedback System which than directly manipulates with the

data.

In such manner, new recently experienced reliability values, collected either from consumers

or providers, need to be included in the sample. On the other hand, some old, expired reliability

records need to be removed from the sample. For instance, the service provider might decide

to improve the implementation of the service because of the poor reliability performance. In

this case, past reliability records need to be removed from the sample because these records

are not relevant for a new service implementation. In addition, some service might become

obsolete and service provider might decide to stop offering it. In this case, the reliability records

regarding that service need to be removed from the sample because they impact the accuracy of

the prediction. Also, in the case a very new service arises in the system, the collected reliability

42



3. RELIABILITY IN CONSUMER COMPUTING

records regarding a new service need to be added to the sample.

Furthermore, the existing user might change the Internet provider or choose some other ser-

vice plan that offers better network performance. In this case, the reliability records associated

with that users become obsolete and need to be excluded or replaced with the new one. Similar

like with the services, if a very new user appears in the system, the past invocation sample needs

to be updated with the reliability records associated with a new user. Different strategies can be

applied regarding the existing users that were active in the system sometimes in the past. One

possible approach is to keep those records, because the user might appear in the system any-

time. However, although such an approach seems to be fair to the users, it is questionable from

the prediction accuracy and performance point of view. First, it is not efficient to keep the old

records because of the size of the invocations sample. The new users arise in real time, keep-

ing the old records posses the scalability issues for the prediction algorithm. Second, the old

records obviously impact the prediction accuracy. However, the relevance and validity of those

records is questionable. The other possible approach is to dismiss the data from the sample once

it expires.

Regarding the expiration time and update frequency of reliability data records, different

strategies can be applied to maintain the invocation sample. One possible strategy is to update

the data as quick as possible, perhaps on a hourly or a daily basis, depending on the properties

of the environment comprising users and services. Such a strategy would assure the invocations

sample to be up to date and it would definitely improve the prediction accuracy. On the other

hand, this strategy demands significant processing and memory resources and it may disturb the

prediction performance which is closely related to the requirements of the prediction in real-

time. Another possible strategy would be to update the invocations sample less frequently on a

weekly or a monthly basis, again depending on the environment properties. This strategy would

not effect the performance of the prediction, but it could compromise the prediction accuracy in

the case the environment changes more frequently than the invocation sample is updated.

It is obvious that the optimal strategy is a compromise, somewhere "in the middle" between

the two edge cases. The optimal strategy requires the presence of the monitoring system within

the Maintain Sample System. The role of the monitoring system is to compare new, recently

collected data with the old records within the sample. By comparing old and new records, the

monitoring system can discover potential changes in the environment and determine the change

frequency for the environment. Hence, this strategy with the monitoring system is an effective

43



3. RELIABILITY IN CONSUMER COMPUTING

trade-off between the accuracy and performance. From the performance point of view, the

strategy with the monitoring system requires far less resources than the strategy that employs

frequent update of the sample. From the accuracy perspective, the monitoring system ensures

quick detection of significant changes in the environment and consequently triggers the eventual

update of the sample.

3.4.3 Rating System

The rating model is another very important aspect of each recommendation/prediction sys-

tem that needs to be considered in order to produce the quality recommendations/predictions.

There are two possible solutions to gain ratings regarding the reliability of components in Con-

sumer Computing. The first approach is to collect the data in service oriented environment

by analyzing the available service providers logs about the service usage. There has been

proposed a variety of approaches for monitoring nonfunctional properties in service oriented

systems [71–76], which can be used to retrieve the information about the service usage from

providers. However, the data collected exclusively from the provider’s side is not comprehen-

sive due to a significant number of reliability violations that appear on the user’s side while

delivering services. Hence, to gain a comprehensive data sample for the prediction system, the

users feedback should be also incorporated and equally combined along with the data obtained

form the providers logs as presented in Figure 3.4.

The majority of the researchers focus on improving prediction algorithms when enhancing

performance of the recommendation systems. However, some most recent efforts explore the

quality of ratings and their impact on prediction performance [77–82]. First, it is crucial to

design the appropriate rating model from users point of view. The purpose of rating systems is to

collect users feedback regarding items of interests in order to obtain data for future predictions.

Hence, it is important that users perceive the rating model as interesting in order to provide as

much as possible feedback. On the other hand, from recommender’s standpoint, it is important

to choose the rating model that is suitable for the particular prediction domain. For instance,

different prediction domains might prefer different granularity of ratings to produce the most

accurate predictions.

The existing literature provides ratings classifications regarding several aspects [83, 84].

According to the ratings relevance, there should be distinguished two kinds of ratings: positive

ratings and negative ratings. Users provide positive ratings to the items they are interested in,

44



3. RELIABILITY IN CONSUMER COMPUTING

while negative ratings are usually given to the items that are not of interest. According to the

ways the ratings are obtained, the ratings can be classified as implicit, explicit or hybrid ratings.

Implicit ratings are those ratings that are obtained by monitoring users activities and actions

rather then directly asking them about their preferences regarding particular items. For instance,

if a user views the specifications and characteristics of a particular product, the conclusion that

a user is interested in the product can be drawn. There are some additional actions that can be

tracked for the web documents, such as enlarging images, scrolling, printing, etc. In addition,

the time a user spends while examining a certain product can be measured and associated with

the user’s interest in a particular product. The benefit of implicit ratings is that they can be easily

obtained in lack of explicit ratings. However, the amount of data which collected by employing

implicit ratings is very large, and it often needs extensive transformation to replace the explicit

ratings.

By contrast, the explicit ratings are those that are collected by directly asking users to ex-

press their opinion on particular items. There are several kinds of different rating scales used in

contemporary recommendations systems. Social network sites such as Facebook and Google+

often use unary rating scales in which users can only express their positive attitude regarding

particular items (for example, users can "like" feeds they find interesting). Further, some web

sites such as YouTube and Digg use binary rating scales in which users can provide positive

ratings to the items they find interesting, but also negative ratings to the items that are not of

interest (for instance, users can "like" and "dislike" particular videos on YouTube). Addition-

ally, some web sites such as Amazon bookstore and IMDB movie database site enable users

to rate items on a discrete numerical scales (for instance, IMDB offers users to rate movies on

a 10-star rating scale). Finally, some web sites support explicit ratings by enabling users to

post textual comments regarding particular items (Movielens site enables ratings of movies via

textual comments). The most significant drawback of explicit ratings is related to the fact that

the Internet users are reluctant to invest personal time to provide feedback. However, there are

some motivators that could stimulate raters such as personal contributions to the community

advancement, access to some more advanced website functionality, satisfaction about having

their personal opinion voiced and valued, etc.

It is obvious from the arguments presented in previous paragraphs that both implicit and

explicit ratings have some advantages and disadvantages. As it often appears to be in many

different technologies, the best performance is produced by combining several existing ap-

45



3. RELIABILITY IN CONSUMER COMPUTING

proaches. In such manner, implicit and explicit ratings could be combined in order to create

the best resulting – hybrid approach. While implicit ratings reduce users efforts and mental ac-

tivities, explicit ratings provide accurate inputs to the recommendation system. In such a hybrid

approach, explicit ratings can be used to obtain some precise and direct data from users, while

implicit ratings can be used to actually confirm the validity of the ratings which are collected

explicitly. For instance, if a user explicitly rates a particular product, there should be a implicit

evidence that a user has examined the product. In case the evidence is missing, the confidence

in user’s explicit rating should be reduced.

Regarding the adoption of some particular rating system in Consumer Computing, several

approaches are possible. First, implicit ratings could be gained by analyzing data retrieved

from the service providers about how different consumers use particular services (underlying

consumer applications). However, those implicit ratings consider exclusively the reliability data

from the service provider’s standpoint which is not sufficient for accurate reliability prediction

(see Section 3.3.2 and Section 3.3.3). Hence, in order to collect the quality data sample for the

prediction algorithms, implicit ratings need to be combined with the explicit ratings obtained

directly by asking consumers to provide feedback regarding components they used. Another

open question is related to the rating scale that should be used while acquiring explicit ratings.

At first glance, it seems that the best possible choice is a binary scale, in which consumers

can provide positive ratings for components that operate successfully or negative ratings for

components that fail. The reason why a binary scale seems to be promising in this particular

domain is related to the fact that there are two possible outcomes of the service (underlying

consumer application) invocation: either it gets executed successfully or it fails. Note, however,

that rating scales are not the primary concern of this dissertation. In order to make conclusions,

a more deeper research should be conducted, in particular; how different rating scales impact

the prediction accuracy and performance.

3.4.4 Consumer Assistant Geppeto ReliabilityOptimizeMe

This section describes consumer assistant application Geppeto ReliabilityOptimizeMe which

is mandatory for reliability management in Consumer Computing. Geppeto ReliabilityOpti-

mizeMe provides consumers assistance regarding potential candidate’s reliability while select-

ing components.

As already presented in Figure 3.4, consumers create their applications by composing the

46



3. RELIABILITY IN CONSUMER COMPUTING

Consumer
Computing 

App 1

Prediction 
System

Consumer 
Application

Component Search 
System

Assistant Geppeto 
ReliabiityOptimizeMe

App 1 98 %

App 2 97 %

...

App n 85 %

functionality SEARCH (1)

(2a)

(2b)

(3a)

(3b)

(4)

Previously used components

95 %

80 %

Green, recommended components

Red, unrecommended components

Service 
1

99 %

Service 
2

99 %

...

Service
n

84 %

(4)

Consumer Applications                    hide

Services                                               hide

Service
1

Service
Composition

Service
2

Service
3

Figure 3.5: Geppeto ReliabilityOptimizeMe assistant and a use case scenario

existing applications as basic components. However, while selecting components, besides log-

ical functioning, consumer should also consider nonfunctional properties such as reliability of

potential selection candidates. The role of Geppeto ReliabilityOptimizeMe consumer assistant

is to provide reliability ratings for functional components which are considered for selection

by consumer. For the purpose of this dissertation, the description is focused on assistant’s user

interface which should be intuitive and contain all necessary information for consumers to se-

lect the adequate candidate. The Geppeto ReliabilityOptimizeMe consumer assistant and its use

case scenario as well are depicted in Figure 3.5.

As presented in Figure 3.5 consumers have the ability to search for a specific functional

component by textually describing the functionality of interest. Once the consumer describes

the desired functionality (1), the special part of the system (called Component Search System in

Figure 3.5) retrieves the list of components that match the desired functionality (2a− 2b).

Note that this part of the system, which is responsible for searching and retrieving functional

components, is not considered in this dissertation. As part of the Consumer Computing Lab,

separate research is conducted to perform efficient searching and fetching of components that

match the desired functionality. The first approach analyzes the morphological structure of the

composite consumer application created so far, and recommends the next functional component

47



3. RELIABILITY IN CONSUMER COMPUTING

[30]. The other approach inspects which components have been added to the composition so

far and finds most prominent consumers who have already used those components in the past

and who could be helpful during the process of application creation [31].

However, once the list of functional components is retrieved, the Geppeto ReliabilityOp-

timizeMe assistant sends the request containing list of components to the Prediction System to

asses the reliability values for each component within the list (3a−3b). Once the prediction sys-

tem produces predictions, the consumer assistant can display the components sorted according

to the predicted reliability values (4).

The reader should note that the prediction results are displayed in a consumer intuitive man-

ner. The reliability predictions of recommended components are presented in green color which

is often used to present something that is allowed, especially in western civilization (e.g., traf-

fic lights, etc.). On the other hand, the reliability predictions of unrecommended components

are marked in red color which is often used to present restrictions in western civilization (e.g.,

restricted area, etc.). Also, previously used components, which were rated positively by con-

sumer, are marked with a special star sign which is often used to symbolize favorite choices on

the Internet.

Another important note regarding the consumer assistant Geppeto ReliabilityOptimizeMe

is that it can be utilized by engineers and professional developers as well as presented in Fig-

ure 3.5. In particular, while creating different composite tasks in service oriented environment,

engineers can also use the assistant to select the most eligible service candidates from the relia-

bility point of view.

48



Chapter 4

State-of-the-art Models for Prediction of

Application’s Reliability

In the previous chapter (see Chapter 3), Consumer Computing environment and nature of

consumer applications were described. Also, the reasons and specific challenges which indicate

that traditional approaches for software reliability modeling are inappropriate for predicting the

reliability of consumer applications were described. This chapter provides a detailed overview

of most relevant existing state-of-the-art approaches for predicting the reliability of web appli-

cations.

As already described in previous chapters (see details in Chapter 3 and Chapter 2), Con-

sumer Computing environment is a very dynamic and heterogeneous ecosystem. Modeling

reliability of applications in the Consumer Computing ecosystem is very challenging due to a

variety of parameters that have influence on nonfunctional properties. First, the ecosystem con-

tains consumers located in different locations worldwide while building various domain-specific

applications. More specifically, consumers use various physical devices, obtain different net-

work capabilities and behave quite uniquely according to their personal usage profiles. Sec-

ond, consumer applications are accessible through a simple consumer graphic interface (web

interface, mobile interface, desktop interface, tablet interface etc.), but often require informa-

tion retrieval and data processing over the Internet. Hence, each consumer application can be

viewed as a component that provides its functionalities through a publicly accessible interface

on the Internet. However, behind the simple interface, there is an underlying dynamic software

which implements the desired functionality (see details in Figure 3.4). Finally, service invo-

cation context parameters that determine consumer application’s nonfunctional properties are

49



4. STATE-OF-THE-ART MODELS FOR PREDICTION OF APPLICATION’S
RELIABILITY

quite unstable and time dependent in a dynamic environment such as Internet.

All afore mentioned arguments bear out the assertions that consumer applications reliability

can be seen as the reliability of dynamic software artifacts such as services described in Service

Oriented Architecture (SOA) [47, 48].

The rest of the chapter is organized as follows. First, classical techniques commonly used in

statistics are presented. Section 4.1 describes the UMEAN approach for predicting the reliability

of services underlying consumer applications, while Section 4.2 provides the description of the

IMEAN approach for predicting the reliability of consumer applications.

In addition, most successful approaches for predicting the reliability of atomic services [14–

17] based on collaborative filtering [18] technique are presented.

There exist three types of collaborative filtering in literature [18]:

• memory-based,

• model-based and

• hybrid.

Since model-based and hybrid collaborative filtering are more complex and costly for im-

plementation [18], the thesis is focused on memory-based collaborative filtering underlying the

state-of-the-art recommendation systems [19–23].

Further sections of this chapter overview different types of collaborative filtering by pre-

senting most relevant and distinguished approaches of each type. Note, however, that hybrid

and model-based approaches were not considered in the evaluation process (see Chapter 7) due

to their greater computational complexity which makes them less scalable. Section 4.3 pro-

vides an overview of memory-based collaborative filtering approaches. Section 4.4 presents

most relevant model-based collaborative filtering approaches. Section 4.5 reviews most com-

mon hybrid collaborative filtering techniques. Finally, Section 4.6 provides a brief overview of

all collaborative filtering types presenting each type’s major characteristics and challenges.

4.1 The UMEAN Approach

The user-mean (UMEAN) approach, commonly used in statistics, estimates the result of

the current web service invocation considering the collected past invocation data about the user

performing the invocation. This approach calculates the average success rate for the associated

50



4. STATE-OF-THE-ART MODELS FOR PREDICTION OF APPLICATION’S
RELIABILITY

user while using different services in the past. In [85], the authors define user-perceived service

availability and they calculate it using UMEAN approach.

Similarly, the reliability of the service pu can be calculated using UMEAN approach as

follows:

pu =

∑
a∈S(u) pu,a

|S(u)|
, (4.1)

where S(u) represents the set of all services used by user u in the past, pu,a is the success rate

achieved by user u while using service a while |S(u)| is the cardinal number of the set S(u) i.e.

the number of services used by user u.

The advantage of this approach is that it can be applied in environments in which services

gain similar performance while users by them self introduce the oscillations in perceived service

reliability. The reliability oscillations may be caused by various reasons such as specific usage

profile or the specific set of services which are used. In addition, nonfunctional properties

may depend on a physical device or network infrastructure which is used while accessing the

services. For instance, while accessing service through a dial-up network connection, similar

reliability is obtained regardless of the invoked services.

The main disadvantage of this approach is that it does not consider different impacts of ser-

vices regarding the operation they execute, the infrastructure they use or the processing power

they posses. For instance, the service internal complexity caused by the implementation or

required functionality may impact the perceived quality of nonfunctional properties while ac-

cessing the service.

4.2 The IMEAN Approach

The item-mean (IMEAN) approach, which is also commonly used in statistics, estimates the

outcome of the current service invocation considering the collected reliability data about pre-

vious service invocations. This approach calculates the average success rate for the associated

service using past invocations performed by different users. In [12], the authors define service

reliability as successful execution rate and they use the IMEAN statistical approach to calculate

the reliability value.

According to the IMEAN approach, the reliability of the service pi is calculated as follows:

pi =

∑
a∈S(i) pa,i

|S(i)|
, (4.2)

51



4. STATE-OF-THE-ART MODELS FOR PREDICTION OF APPLICATION’S
RELIABILITY

where S(i) represents the set of users that have used the associated service i in the past, pa,i is

the success rate obtained by user a while accessing service i and |S(i)| is the cardinal number

of the set S(i) i.e. the number of users that have accessed the service i.

The advantage of this approach is that is applicable in environments where user specific

parameters obtain similar values (environments with broadband Internet speed and users with

physical devices that posses sufficient network and other infrastructure to accept and process

different service responses), but services by themselves cause the variability in perceived ser-

vice reliability. Note that the variability may be related to the processing power or some other

physical resources of the provider hosting the associated service. Also, the variability can be

related to some service specific heavy computation that is required for the service to execute its

task.

The main disadvantage of this approach is that it does not consider user’s impact on non-

functional properties. In general, all users neither have the same network infrastructure, nor

they use the same physical devices. The user specific variability is not considered at all in this

approach. However, it may considerably impact perceived quality of service’s nonfunctional

properties such as reliability.

4.3 Memory-Based Collaborative Filtering Approaches

Computation of 
similarity weights

Prediction of missing
values

Past 
Invocation 

Data

r p(r)

Similarity 
values

Legend

Input/Output 

Process

Data

Figure 4.1: Two basic phases in memory-based collaborative filtering.

The memory-based collaborative filtering extracts information or patterns using statistical

52



4. STATE-OF-THE-ART MODELS FOR PREDICTION OF APPLICATION’S
RELIABILITY

collaboration among multiple entities such as agents, viewpoints, and data sources. The main

characteristic of memory-based CF algorithms is usage of the entire user-item database to gen-

erate predictions. Special statistical methods and techniques are used in order to group entities

(usually users and items) into groups of people with similar interests. The benefit of this ap-

proach is that it can be applied in situations in which specific data that is lacking can be predicted

using the available data from the most statistically similar entities. For instance, the preferences

of an active user on some particular item can be predicted by considering preferences of active

user’s so-called neighbors on that particular item.

The neighborhood-based CF algorithms, the most common memory-based CF approaches,

operate according to the following phases as depicted in Figure 4.1:

• calculate the similarity or weight, wi,j , representing weight, distance, correlation or simi-

larity, between two users or items, i and j;

• produce the prediction for an active user by considering the weighted average of all the

ratings of the user or item on a particular item or user, or using a simple weighted average

[15].

For the case when the task is to produce a top-N recommendation, the algorithm should find

k most similar entities (users or items) after computing the similarities, and then suggest top-N

most suitable items as the recommendation.

4.3.1 Similarity Computation

Similarity computation between two entities is the critical step in memory-based CF al-

gorithms. In order to compute the similarity between two items i and j, the item-based CF

approaches first find all users who have rated both of these items, and then apply similarity a

relation to determine similarity, wi,j , between two co-rated items. On the other hand, the user-

based CF approaches calculate the similarity, wu,v,between two users u and v who have both

rated the same items.

There are numerous different methods to compute similarity or weight between users or

items.

53



4. STATE-OF-THE-ART MODELS FOR PREDICTION OF APPLICATION’S
RELIABILITY

Correlation-Based Similarity

In this case, the Pearson correlation similarity relation is used to compute the similarity or

weight between different entities (wu,v between two users u and v and wi,j , between two items

i and j). Pearson correlation measures the extent to which two variables linearly relate with

each other [86]. The appliance of the Pearson correlation relation provides Pearson correlation

coefficient representing the similarity measure between two entities. For the user-based PCC

(UPCC) approach, the similarity between users u and v is computed as:

wu,v =

∑
i∈I

(ru,i − ru)× (rv,i − rv)√∑
i∈I

(ru,i − ru)2

√∑
i∈I

(rv,i − rv)2

, (4.3)

where I presents the set of items that both users u and v have rated, ru,i and rv,i are users u and

v ratings on item i respectively, while ru and rv represent the average rating for users u and v

computed considering all items respected users have rated.

For the item-based PCC (IPCC), the similarity between two items i and j is computed as:

wi,j =

∑
u∈U

(ru,i − ri)× (ru,j − rj)√∑
u∈U

(ru,i − ri)2

√∑
u∈U

(ru,i − rj)2

, (4.4)

where U presents the set of users that have rated items i and j, ru,i and ru,j are user’s u ratings

on items i and j, while ri and rj are the average ratings for items i and j respectively.

There can be found some variations of user-based and item-based Pearson correlations in

the literature [87]. Other correlation-based similarities are constrained Pearson correlation, a

variation that uses midpoint instead of mean rate; Spearman rank correlation, similar to basic

Pearson correlation, except that ratings are ranks; and Kendall’s τ correlation, similar to the

Spearman rank correlation, but instead ranks themselves, only the relative ranks are used to

make the prediction [88, 89].

Note, however, that the basic Pearson correlation-based CF algorithm is a very popular and

representative memory-based CF algorithm which is commonly used in the research commu-

nity. The number of users and items in the computation process is usually called neighborhood

size for the active user or item, and the similarity based CF is regarded as neighborhood-based

54



4. STATE-OF-THE-ART MODELS FOR PREDICTION OF APPLICATION’S
RELIABILITY

CF.

Vector Cosine-based Similarity

To calculate similarity between two documents text mining techniques often present each

document as a vector of word frequencies, and then compute the cosine of the angle formed by

the frequency vectors [90]. This technique can be applied for collaborative filtering tasks by

presenting users or items instead documents and ratings instead of word frequencies.

The matrix R, shown in Figure 4.2, is the user-item n × m matrix which stores ratings of

n users on m items. The similarity between to items i and j is defined as the cosine of the n-

dimensional vectors corresponding to the ith and jth matrix columns which store users ratings

on those items.

Vector cosine similarity between items i and j is defined as:

wi,j = cos(~i,~j) =
~i •~j

||~i|| × ||~j||
, (4.5)

where "•" presents the vector-product of two vectors. For instance, for two 2-dimensional

vectors ~A = x1, y2 and ~A = x2, y2, the vector cosine similarity between A and B is computed

as:

wA,B = cos( ~A, ~B) =
~A • ~B

|| ~A|| × || ~B||
=

x1 × x2 + y1 × y2√
x1

2 + x2
2
√
y1

2 + y2
2

(4.6)

The disadvantage of the vector cosine similarity is that it does not consider that different

users may have different rating scales. To address this shortcoming, adjusted cosine similarity

measure is used. The adjusted cosine similarity subtracts each user’s rating by the average of

the respected user over each rated pair. Note that in that case adjusted cosine similarity has the

same formula as Pearson correlation.

Other Similarities

In [91, 92], the authors use conditional probability-based measure of similarity. This sim-

ilarity measure is based on the conditional probability of rating one of the items given that

the other item has been already rated. However, this similarity measure is not commonly and

widely used in recommendation systems.

55



4. STATE-OF-THE-ART MODELS FOR PREDICTION OF APPLICATION’S
RELIABILITY

4.3.2 Prediction and Recommendation Computation

The prediction or recommendation computation is the most important phase in the memory-

based CF system. In the case of a neighborhood-based CF, a set of most statistically similar

neighbor entities is chosen, and a prediction or recommendation for the active user is produced

based on the ratings of most similar entities using their weighted average [93].

Weighted Sum of Other’s Ratings

In order to make the prediction for the active user a, on a particular item i, collaborative

filtering can be applied on the data stored in the matrix r shown in Figure (4.2) in two different

ways.

The first approach, the user-based approach (UPCC) [14], employs the average rating of

the active user over all rated items, and the ratings of all other users in according to the extent

of their similarity with the active user. Using the UPCC approach, the prediction is computed

as follows [86]:

pa,i = puPCC = pa +
∑
u∈U

ωa,u × (pu,i − pu), (4.7)

where U is the set of most similar users for the active user a, pu,i is the rating of the user u on

the item i, pa and pu are the average ratings of the active user, a, and the user u, computed over

all rated items, while ωa,u is the weight factor that enables more similar users to contribute more

to the prediction computation. It is calculated as follows:

ωu,a =
wu,a∑

b∈U

wb,a
. (4.8)

where wu,a and wb,a are the similarity measures between the active and the associated user.

The second approach, called item-based approach (IPCC) [15], employs the average rating

on the active item which is computed considering each user’s rating on that item, and the ratings

of the active user on all other rated items according to the extent of similarity of those items with

the active item. The IPCC approach produces prediction according to the following formula:

pa,i = piPCC = pi +
∑
j∈I

ωj,i × (pa,j − pj), (4.9)

where I is the set of most similar items for the active item i, pa,j is the rating of user a on item j,

56



4. STATE-OF-THE-ART MODELS FOR PREDICTION OF APPLICATION’S
RELIABILITY

pi and pj are the average ratings on items i and j respectively, computed considering each user’s

rating on those items, and ωj,i is the weight factor that enables more similar items to contribute

more to the prediction computation. It is calculated as follows:

ωj,i =
wj,i∑

k∈I

wj,k
. (4.10)

where wj,i and wj,k are the similarity measures between the active and the associated item.

The main drawback of these approaches is that they exclusively employ either UPCC or

IPCC. I this manner, some of the valuable information gets neglected either way. To address

this drawback and improve the prediction accuracy, the researchers have proposed the Hybrid

approach to make predictions [16, 17]. The Hybrid approach considers both the impact of

similar users and similar items, and predicts the missing user-item records by utilizing a linear

combination of UPCC and IPCC approaches. In this approach, the prediction is produced using

the following formula:

pa,i = λ× puPCC + (1− λ)× piPCC , (4.11)

where λ is a model parameter, having 0 ≤ λ ≤ 1, and puPCC and piPCC are the values predicted

by user- and item-based approach respectively. They conducted the series of experiments and

their evaluation results demonstrate that better prediction accuracy is obtained when the Hybrid

approach is used.

Simple Weighted Average

Alternatively, instead of using the weighted sum of other’s ratings, the simple weighted

average can be used to calculate the prediction.

For the user-based approach prediction using the simple weighted average, the prediction

for user u on item i, pu,i, is computed as:

pu,i =

∑
binU

pb,i × wb,u∑
binU

|wb,u|
, (4.12)

where the summations are over all users b ∈ U that have rated item i, wb,u is the similarity

between users b and u, and pb,i is the rating of user b on item i.

57



4. STATE-OF-THE-ART MODELS FOR PREDICTION OF APPLICATION’S
RELIABILITY

m services  

n users  

Matrix n × m

nmnin

umuiu

mi

mi

ppp

ppp

pppp

pppp

1

1

222221

111211

?











UPCC

IPCC

Figure 4.2: The user-item matrix used for collaborative filtering.

Similarly, for the item-based approach, the prediction using simple weighted average is

obtained as follows:

pu,i =

∑
kinI

pu,k × wk,i∑
kinI

|wk,i|
, (4.13)

where the summations are over all items k ∈ I rated by user u, wk,i is the similarity between

items k and i, and pu,k is the rating of user u on item k.

4.3.3 Top-N Recommendation

Top-N recommendation aims to produce a set of N top-ranked items that will be of interest

to a particular user. For instance, each time a user logs in the social network site such as Face-

book, Google+ etc., the user gets recommendations to connect with new people, or each time

user logs into a Ebay account, the list of products that might be of interest gets recommended.

Top-N recommendation techniques analyze the user-item matrix data in order to discover the

relations between different users or items, and then utilize them to produce the recommenda-

tions.

58



4. STATE-OF-THE-ART MODELS FOR PREDICTION OF APPLICATION’S
RELIABILITY

User-based Top-N Recommendation Algorithms

User-based Top-N recommendations algorithms find the k most statistically similar users

(closest neighbors) to the active user using either Pearson correlation or vector cosine [14, 94].

Each user is regarded as a vector in the m-dimensional item space and similarities between

users are computed by calculating distance between representing vectors. Once the set of most

similar users K is identified, the rows of matrix R, which correspond to the selected set of users

K, are aggregated to discover the set of items C, which are purchased by the users within the

set K with their respected purchase frequencies. Finally, the N most frequent items which have

not been purchased by the active user yet, are selected as the recommendation system output.

The serious disadvantage of user-based Top-N recommendation algorithms is that they suffer

from potential scalability issues and real-time performance [91].

Item-based Top-N Recommendation Algorithms

In order to address scalability issues of Top-N user-based recommendation algorithms, the

Top-N item-based recommendation algorithms were proposed. These algorithms first discover

k most similar items for each item according to some similarity measure, and then identify the

set C, which is the union of each item’s k most similar items. At the same time, the items that

the active user has already purchased are excluded into a special set U . In the next step, the

similarity between each item of the set C and the set U is calculated. Finally, the Top-N most

similar items from the C will be recommended as the results list [91]. The drawback of this

approach is that in the case the joint distribution of a set of items differs from the distributions of

each single item the approach provides suboptimal recommendation. To tackle this drawback,

the authors [92] propose higher-order item-based Top-N recommendation algorithms that use

all combinations of items up to a particular size when recommending items to the active user.

4.3.4 Extensions to Memory-Based Collaborative Filtering Algorithms

Default Rating

Many collaborative filtering approaches [86, 94] base their predictions on the intersection

of items that both users have rated. However, this approach will not be confident in the case

there are to few available values to compute the similarities. Also, focusing exclusively on the

intersection of items ignores the global rating behavior of the active user which is registered

59



4. STATE-OF-THE-ART MODELS FOR PREDICTION OF APPLICATION’S
RELIABILITY

in the user’s rating history. In such situations, the researchers have empirically shown that

prediction accuracy can be improved if some default rating values for the missing ratings are

assumed. In [93], the authors reduce the weight of users that have small intersections containing

fewer than N items in common. Chee et al. [95] use the average of the group as a default rating

to extend each user’s rating history.

Inverse User Frequency

The inverse user frequency idea [90] aims to emphasize the impact of less common rated

items rather than the impact of universally rated items since the less common rated items are

more useful for determining similarities. The inverse frequency can be defined as:

fi = log(
n

ni
), (4.14)

where ni is the number of users that have rated the item i and n is the total number of users. If

everyone have rated some item i than fi is zero. To apply the inverse frequency in collaborative

filtering, for the similarities computation phase, the item with higher fi should be given more

weight in the similarity calculation, and for the prediction computation phase, the transformed

ratings should be used which are simply the original ratings multiplied by the fi factor [14].

Case Amplification

The case amplification idea is about to transform the weights used in the basic collaborative

filtering in a way that higher similarities are emphasized and lower similarities are disfavored.

The transformed weights are calculated as follows:

ẃi,j = wi,j × |wi,j|ρ−1, (4.15)

where ρ is the case amplification power, ρ ≥ 1, and a typical choice of ρ is 2.5 [96]. Case

amplification is use to reduce the noise in the data, it tends to favor high similarities while low

similarities values raised to a power become negligible.

Imputation-based Collaborative Filtering Algorithms

The experiments have shown that Pearson correlation-based CF algorithms have problems

with producing accurate predictions for the extremely sparse data. To address this drawback,

60



4. STATE-OF-THE-ART MODELS FOR PREDICTION OF APPLICATION’S
RELIABILITY

Su et al. [97, 98] proposed imputation-based CF algorithms (IBCF). The IBCF approach first

uses the imputation technique to fill in the missing data, and then uses a traditional Pearson cor-

relation-based CF algorithm on this completed data to make predictions for a specific rating.

The authors investigated a variety of standard imputation techniques such as mean imputation,

linear regression imputation, predictive mean matching imputation [99], Bayesian multiple im-

putation [100], and as well machine learning classifiers [98] such as naive Bayes, SVM, neural

network, decision tree, lazy Bayesian rules to complete the data in IBCF and found that pro-

posed IBCF can perform effectively. More specifically, they found that IBCF using Bayesian

multiple imputation, IBCF-NBM (a mixture IBCF that uses naive Bayes for denser datasets and

mean imputation for sparser ones) [97], and IBCF using naive Bayes outperform the content-

boosted CF algorithm which is a representative hybrid CF approach.

Weighted Majority Prediction

In [101], the authors proposed weighted majority prediction that makes prediction using the

rows with measured data in the same column, weighted by the similarity between the rows with

binary ratings. The similarity weights are initialized to the value of 1, and further computed

using the following equation:

wi,́i = (2− γ)Ci,́iγWi,́i , (4.16)

where 0 < γ < 1, Ci,́i is the number of rows that have the same value as in row i, while

Wi,́i is the number of rows that have different values then the ith row. The prediction on a

certain item is produced using the value on that item in the row that has highest accumulated

similarity weight with the active row. The algorithm can be extended to multi-class data [102].

The disadvantage of this approach is scalability, once the number of users or items, n, gets

substantially large, it becomes impractical to update the values in the matrix which requires the

computational complexity of O(n2).

4.4 Model-Based Collaborative Filtering Approaches

In order to improve the prediction accuracy of simple memory-based collaborative filtering

techniques and provide more intelligent predictions, the researchers have proposed the design

of models. The general idea is to use more advanced techniques such as machine learning and

data mining algorithms to learn the prediction model to recognize complex patterns based on

61



4. STATE-OF-THE-ART MODELS FOR PREDICTION OF APPLICATION’S
RELIABILITY

training data, and then use the model to make predictions on the real-world data. The primary

motivation for model-based CF algorithms is to address well known disadvantages and chal-

lenges in memory-based CF algorithms [14, 103]. Most commonly used models are Bayesian

models, clustering models and dependency networks. Classification algorithms can be applied

in the case user-item ratings are discrete and categorical, while regression models are usually

used for numerical user-item ratings.

4.4.1 Bayesian Belief Net Collaborative Filtering Algorithms

A Bayesian belief net (BN) is a directed acyclic graph (DAG) define with a triplet (N,A,Θ).

Each graph node n ∈ N is a random variable, each directed arc a ∈ A represents probabilistic

relation between variables, and Θ is a conditional probability table specifying how each node

depends on its parents [104]. Bayesian belief nets (BNs) are commonly used for classification

tasks.

Simple Bayesian Collaborative Filtering Algorithm

In simple Bayesian CF algorithm a naive Bayes (NB) strategy is used to predict missing

values for CF tasks. The probability that missing values belong to a specified class is calculated

for each available class assuming the features are independent given the class. The class with

the highest probability is chosen as the predicted class [105]. The incomplete data class value

class is computed using each complete data d from the set of collected complete data D:

class = arg max
j∈classSet

p(classj)
∏
d∈D

P (Xd = xd|classj). (4.17)

In order to calculate the probability and avoid conditional probability of 0, the Laplace Estima-

tor is used:

P (Xi = xi|Y = y) =
#(Xi = xi|Y = y) + 1

#(Y = y) + |Xi|
, (4.18)

where |Xi| is the cardinal number of class set.

For example, if the binary class is considered, P (Xi = 0|Y = 1) will be (0 + 1)/(1 + 2) =

1/4, and P (Xi = 1|Y = 1) will be (2 + 1)/(1 + 2) = 3/4 using Laplace Estimator.

The majority of real-world CF data sets are multi class ones. In order to apply NB CF

algorithm on the multi class data easier, the authors in [106] transform multi class data into

binary class data and then perform the algorithm. However, the data conversion introduces

62



4. STATE-OF-THE-ART MODELS FOR PREDICTION OF APPLICATION’S
RELIABILITY

issues of scalability and information loss for multi class data.

In [107], the authors perform naive Bayes strategy directly on the multi class data and show

that NB algorithm has worse prediction accuracy but better computational performance than

Pearson correlation memory-based CF because the prediction process is less time consuming.

NB-ELR and TAN-ELR Collaborative Filtering Algorithms

Extended logistic regression (ELR) is a "discriminative learning" algorithm that maximizes

log conditional likelihood (CL) rather than "generative learners" that maximize log likelihood.

Generative learning algorithm would create a perfect model of the distribution that will perform

optimally for any possible input. However, CF tasks include limited training data, which is

not suitable for generative learners. Hence, the ELR algorithm aims to find the parameters that

will perform well according to the collected data. The ELR uses logistic regression to seek

parameters which maximize CL [108, 109].

Both, TAN-ELR, which is tree augmented naive Bayes [110] and NB-ELR, which is a naive

Bayes optimized by ELR, have shown to perform significantly better than NB CF algorithms and

consistently better than the Pearson correlation memory-based CF from the aspect of prediction

accuracy. However, these algorithms require a longer time to train the modes. The solution is to

run the time-consuming models training phase off-line, and then to deploy the optimal models

to produce the real-time predictions.

Other Bayesian Belief Nets Collaborative Filtering Algorithms

Bayesian belief nets with decision trees at each node model has a decision tree at each node

of the BNs, each node represents the item object and the states of each node represent each item’s

ratings [14]. The evaluation of the model shows that it achieves similar performance as the

Pearson correlation memory-based CF regarding the prediction accuracy and better scalability

than the vector cosine memory-based CF.

Baseline Bayesian model uses Bayesian belief nets with no arcs and makes predictions

according to the overall item popularity [111]. However, the performance of the model is poor.

4.4.2 Clustering-Based Collaborative Filtering Algorithms

A data cluster contains data objects that are similar to each other within the same cluster

and dissimilar to the data objects in other clusters [112]. There exist different measurements of

63



4. STATE-OF-THE-ART MODELS FOR PREDICTION OF APPLICATION’S
RELIABILITY

similarity between data objects defined using different metrics and similarity relations such as

Minkowski distance and Pearson correlation.

The popular Minkowski distance for two data objects,X = (x1, x2, ..., xn) and Y = (y1, y2, ..., yn)

is defined as follows:

d(X, Y ) = q

√√√√ n∑
i=1

|xi − yi|q, (4.19)

where n is the dimension of the compared data objects, xi, yi are the values of the ith dimension

of data objects X and Y respectively, and q is a parameter of the distance relation that may be

assigned with a positive integer value. For the case q = 1, d(X, Y ) is the Manhattan distance

and for the case q = 2, d(X, Y ) is the Euclidean distance.

There exist three categories of clustering methods in literature [112,113]: partitioning meth-

ods, density-based methods, and hierarchical methods. The most popular partitioning method

is k-means clustering [26], which is very easy to implement and very effective. Most com-

mon density-based clustering methods are DBSCAN [114] and OPTICS [115]. The density-

based methods search for dense clusters of data objects isolated by sparse regions that represent

boundaries among clusters. Hierarchical clustering methods split the data into clusters set by

applying hierarchical decomposition using some given criterion. A typical representative of

hierarchical clustering is BIRCH [116].

Usually, the clustering methods are performed as an intermediate step prior to further data

processing such as prediction, classification or some other task. The clustering methods can be

applied in various ways for the CF tasks. In [117, 118], the researchers use clustering methods

to split the data set into smaller distinct clusters, and then they perform Pearson correlation

memory-based CF algorithm to predict the missing values on the reduced data within clusters.

The RecTree method [95] recursively splits a large data set into two sub-clusters using k-

means, k = 2, and it forms an unbalanced binary tree with leaf nodes representing data clusters.

Each leaf node contains the data that belongs to its cluster and external nodes contain centroid

information about their subtrees. The binary tree structure containing centroid information in

external nodes is used to guide active user-item value prediction to the leaf node presenting

the cluster that it belongs to, and then the prediction is made within the given cluster. The

computational complexity required to form the binary tree is O(n log2(n)) and the complexity

required to make on-line predictions is O(b), where n is the data set size and b is a constant

representing partition size. Their evaluation results show that RecTree method improves the

64



4. STATE-OF-THE-ART MODELS FOR PREDICTION OF APPLICATION’S
RELIABILITY

accuracy of Pearson correlation memory-based CF algorithm when an appropriate partition

size is chosen.

In [119], the authors separately cluster users and items into respected users and items clus-

ters. The users are clustered based on the items they rated and the items are clustered based on

users that rated them. The prediction accuracy of the approach is good on the synthetic data,

but it does not look promising on the real data.

Another approach, flexible mixture model (FMM) [120], uses the extension of existing clus-

tering methods to group both users and items allowing each user and item to be in multiple

clusters. The evaluation results show that FMM approach provides better prediction accuracy

than Pearson correlation memory-based CF algorithm and the aspect model [121].

In general, clustering CF models have better scalability than the simple memory-based CF

algorithm due to a fact that they make predictions on the reduced clustered rather than on the

entire data set [94, 95, 122, 123]. These algorithms usually have time-consuming and expensive

clustering phase which is performed off-line. However, the quality of produced predictions

using these algorithms is poor. To improve the predictions, more advanced and fine tuned

segments should be used. Note, however, that such mechanism degrade the performance and

make the on-line prediction phase as expensive as finding similar entities using memory-based

CF algorithms [124].

4.4.3 Regression-Based Collaborative Filtering Algorithms

The memory-based CF algorithms demonstrate a number of well known shortcomings. One

of the main disadvantages for the memory-based CF is related to the fact that two rating vec-

tors may have significantly different similarity rates depending on which similarity relation is

applied. For example, two rating vectors may be very distant in the case the Euclid distance is

used but they may have a very high similarity when the vector cosine or Pearson correlation

similarity measure is applied. In order to address this issue, regression models are applied. Re-

gression models are effective at making predictions on the numerical data sets which are very

common in real-life CF prediction tasks.

A regression method uses an approximation of ratings to make predictions based on a re-

gression model. Let Y = (Y1, Y2, ..., Yi, ..., Yn) represents user preferences on n items. Then,

Yi = (yi1, yi2, ..., yij, ..., yin) is the preference for the item i and each yij represents user j’s

rating on item i. Let Xi = (xi1, xi2, ..., xik) be a random variable representing preferences of

65



4. STATE-OF-THE-ART MODELS FOR PREDICTION OF APPLICATION’S
RELIABILITY

user k , which is a kind of user personal profile. For instance, in the case the data set contains

movie ratings, each xik may be the user affinity for certain movie types such as crime, drama,

thriller etc. It should be noted that k << n is assumed. The linear regression model can be

defined as follows:

Y = ∆X +N, (4.20)

where ∆ is a n×k matrix. N = (N1, N2, ..., Nn) is a random variable representing noise in user

choices, X is a k ×m matrix where each matrix column represents an estimate of the random

variable Xi (user’s personal profile in k-dimensional rating space) for a single user.

In [125], the authors propose a sparse factor analysis, that fills out the missing user-item

pairs with default voting values (the average of some available values, either the average by

rows, or by columns or by all) and uses linear regression to initialize the values for the Expecta-

tion Maximization (EM) iterations [126]. The experiments conducted on various data sets show

that this approach scales better than the Pearson correlation memory-based CF algorithm and

Personality Diagnosis (PD), which a hybrid CF representative algorithm [127], and manifests

better prediction accuracy than singular value decomposition (SVD) [128]. Additional benefit

of sparse vector analysis approach is that it supports privacy protection thanks to the ability to

compute the encrypted user data.

Another regression based approach for dealing with the CF tasks on the numerical ratings

data [129] searches for similarities between items, forms a collection of simple linear models,

and combines them effectively to make predictions for missing user-item values. The authors

used the ordinary least squares to estimate the parameters of the linear regression function. Ac-

cording to the evaluation results, the approach seems to be successful in addressing the sparsity,

prediction latency and numerical prediction issues of memory-based CF algorithms.

A slope one regression based algorithm [130] is proposed to address the scalability of

memory-based CF algorithms by improving the time that takes to produce the predictions.

4.4.4 MDP-Based Collaborative Filtering Algorithms

MDP-Based CF algorithms present collaborative filtering prediction tasks as the sequential

optimization problems and use a Markov decision process (MDPs) formalism [131] to make

predictions for CF tasks.

An MDP is a formal model for sequential stochastic decision problems often used in sit-

66



4. STATE-OF-THE-ART MODELS FOR PREDICTION OF APPLICATION’S
RELIABILITY

uations where each environment participant impacts its surroundings through decisions and

actions. A Markov decision process can be defined as a four-tuple:

MDP = (S,A,R, Pr), (4.21)

where, S is a set of process states, A is a set of actions (alternatively, As is a set of actions

associated with the state s), R is an expected immediate reward function for each state/action

pair, and Pr is a transition probability function between every pair of states given each action.

An optimal solution to the MDP is to maximize the function of its reward stream through the

steps of iteration. The process starts with the initial policy that specifies the actions the decision

maker will choose in state s:

π0(s) = arg max
a∈A

R(s, a). (4.22)

At each step of iteration, the reward value function Vi(s) is computed based on the previous

policy, and the policy is updated with the new function value until the iteration will converge to

an optimal policy [132, 133].

Shani et al. [134] use a MDP for the CF tasks where MDP states are k-tuples of items with

some empty values representing missing values. The actions of the MDP correspond to the

item recommendations and the rewards in the MDP are corresponding to item selling. The state

following each recommendation is depending on weather the user buys recommended item,

buys some other not recommended item, or buys nothing. It is assumed that the probability that

a user buys an item depends on the current state, the associated item and weather the item is

recommended or not, but it does not depend on other recommended items. The authors deployed

Mitos, the recommendation system for on-line bookstore based on the designed MDP, and the

recommender caused the bookstore to gain significantly higher profit than without using the

recommender. Also, the MDP-recommender outperformed a simple Markov chain (MC) based

recommender, which is a simplification of an MDP without actions.

The proposed MDP model can be described as approximation of a partial observable MDP

(POMDP) [135]. Since the computational and representational complexity of POMDPs is very

high, the researchers have proposed the approximate solutions to address these problems. The

POMDPs approximate solutions can be classified in three very wide categories: value function

optimization [136], policy based optimization [123, 137], and the most recent stochastic sam-

pling optimization [138]. These strategies can be potentially applied to make predictions for CF

67



4. STATE-OF-THE-ART MODELS FOR PREDICTION OF APPLICATION’S
RELIABILITY

tasks.

4.4.5 Latent Semantic Collaborative Filtering Algorithms

A Latent Semantic CF algorithm is a statistical modeling technique that uses latent class

variables in a mixture model with the aim to discover user communities and interest profiles.

Basically, this approach decomposes user preferences using overlapping communities. This

technique demonstrates higher prediction accuracy and better scalability over standard memory-

based CF algorithms [139, 140].

The aspect model [121] is a probabilistic latent-space model that describes individual ratings

as convex linear combination of rating factors. The latent class variable is associated with

each particular user-item pair assuming that users and items are independent from each other

given the latent class variable. The aspect model manifests much better performance that the

clustering model working on EachMovie dataset [141].

A multinomial model is a simple probabilistic model for categorical data [14, 142] that as-

sumes only one user type. On the other hand, a multinomial mixture model supports multiple

types of users, and assumes that the rating variables are independent with each other and with

the user identity given the user type [143]. The user rating profile (URP) [142] approach is a

combination of the multinomial mixture model and the aspect model with a high-level genera-

tive semantics of generative probabilistic Latent Dirichlet Allocation (LDA) model [144]. The

URP approach outperforms both the multinomial mixture model and the aspect model for CF

prediction tasks.

4.4.6 Other Model-Based Collaborative Filtering Algorithms

Some applications require ordering of potentially desirable items for a specific user rather

than classifying the items in the adequate clusters. In [145], the authors propose a two stage

order learning CF approach which aims to optimize the order of recommended items. In this

approach, the first stage learns a preference function by conventional means, and the second

stage aims to order new set of instances by finding the total ordering that best approximates

the preference function. Since the problem of finding the total ordering is NP-complete, a

greedy-order algorithm is applied to approximate the optimal ordering function. The obtained

evaluation results show that this approach performs better that a nearest neighbor CF algorithm

and linear regression algorithm.

68



4. STATE-OF-THE-ART MODELS FOR PREDICTION OF APPLICATION’S
RELIABILITY

Another type of CF algorithms used for top-N recommendations rather than prediction and

classification are Association rule based CF algorithms. In [94], the authors present their ap-

proach to find rules for developing top-N recommendation systems by using traditional associ-

ation rule mining algorithm. In their approach, they choose all the rules that meet the thresholds

for support and confidence values, sort items according to the confidence value of the rules in

a way that the items predicted by the rules with higher confidence value are ranked higher, and

finally select the first N highest ranked items as the recommended set. Fu et al. [146] proposed

a web pages recommender that uses an apriori algorithm to mine association rules over the

navigation history of the associated user. Leung et al. proposed another collaborative filtering

framework based on fuzzy association rules and multi-level similarity [147].

A maximum entropy approach [148] clusters the data first, and then uses maximum entropy

as an objective function to form a conditional maximal entropy model to make predictions.

A dependency network is a graphical model for probability relationships with a potentially

cyclic graph. The probability component of a dependency network is a set of conditional dis-

tributions each belonging to a graph node given its parents. The advantage of the dependency

networks over the Bayesian belief nets is that dependency networks make predictions faster.

and require less memory and time to learn the model [111]. On the other hand, the dependency

networks are less accurate than Bayesian belief nets.

Decision tree CF algorithms view the CF tasks as classification problem and they use a

decision tree as the classifier [149].

Another graph-based model, Horting, uses a graph-based technique where each graph node

presents user and edges between nodes represent similarity rate between users [150].

Multiple multiplicative factor models (MMFs) are the casual, discrete latent variable models

that combine factor distributions multiplicatively and readily make predictions on missing data

[151].

Probabilistic principal components analysis (pPCA) [125, 152] finds the principal axes of

a set of observed data vectors using maximum likelihood estimation of parameters in a latent

variable model similar to factor analysis.

To improve scalability and data sparsity issues of CF tasks, the researchers proposed matrix

factorization based CF algorithms which are proven to be effective [153–155].

While developing their model-based collaborative filtering, Wang et al. proposed proba-

bilistic relevance CF models [156, 157] that gain benefits from information retrieval theories

69



4. STATE-OF-THE-ART MODELS FOR PREDICTION OF APPLICATION’S
RELIABILITY

and models.

4.5 Hybrid Collaborative Filtering Approaches

Hybrid collaborative filtering approaches combine CF with other recommendation methods

(mostly with content-based recommendation systems) to make predictions for CF tasks.

Content-based recommendation systems make predictions by analyzing the semantics of

the content of textual information. The textual information is typically comprised in textual

documents, news, feeds, URLs, messages, web logs, item’s labels and descriptions, and pro-

files containing user’s preferences, tastes and needs. All above mentioned textual information

is analyzed in order to extract regularities in the content which can be used to make predic-

tions [158]. The importance of the textual content is determined by various elements such

as observed browsing features of the words or pages (e.g. term frequency and inverse doc-

ument frequency), and similarity between items liked by user previously [159]. In this case

content-based recommender uses heuristic methods and classification algorithms to make pre-

dictions [160]. The start-up problem reflected in a fact that the content-based recommender

must have enough information to build a reliable classifier is common to all content-based tech-

niques [160]. Another limitation of content-based approaches is the tight and explicit associa-

tion with the objects they recommend and the information is sometimes hard to extract, while

CF approaches can make predictions and recommendations without any explicit description and

meta-data. The overspecialization problem is another common shortcoming of content-based

techniques, that is, they can only recommend items that highly match along with user’s profile

or his/her rating history [161, 162].

There are other hybrid recommender systems such as demographic-based recommender

systems, which use some personal user information such as gender, postcode, occupation, etc.

to make user profiles [163], utility-based recommender systems and knowledge-based recom-

mender systems, which both require the information about how a particular item can be useful

to users [20, 164].

In general, hybrid CF algorithms aim to improve prediction performance and overcome the

limitations of recommender systems by: adding content-based features to CF models, adding

CF characteristics to content-based models, combining CF techniques with content-based or

other models, or combining different CF algorithms [161, 165].

70



4. STATE-OF-THE-ART MODELS FOR PREDICTION OF APPLICATION’S
RELIABILITY

4.5.1 Hybrid Recommenders Combining Collaborative Filtering and Content-

Based Features

The content-boosted CF algorithm uses naive Bayes to classify the content, and then fills in

the missing values of the rating matrix with the predictions of the content predictor to form a

pseudo rating matrix. Thereby, the observed values are preserved and the missing rating values

are replaced by the predictions of the content predictor. In the next step, the algorithm makes

predictions over the pseudo rating matrix using weighted Pearson correlation-based CF algo-

rithm, which gives higher impact to the items rated by more users, and the ones rated by the

active user [166]. The content-boosted CF algorithm has improved performance over some pure

content-based algorithms and some pure memory-based CF algorithms as well. Additionally,

this approach addresses the cold start issue and sparsity problem common to all memory-based

CF approaches. In [108], the authors used TAN-ELR as the content predictor and directly ap-

plied Pearson correlation based CF instead of weighted Pearson correlation-based CF algo-

rithm on the pseudo rating matrix to make predictions. Evaluated on the reasonably reduced

data subsets instead on the entire data set, their approach improved CF prediction accuracy.

In [167], the authors propose a Bayesian preference model that statistically integrates vari-

ous useful information for making predictions, such as user preferences, user and item profiles

and expert remarks. In their approach they use Markov chain Monte Carlo (MCMC) meth-

ods [168] for sampling-based inference and their approach provides better prediction accuracy

than pure memory-based CF algorithms.

Balabanovic et al. propose a recommender Fab [165] which maintains user profiles in web

pages using content-based techniques, and then applies CF techniques to identify profiles with

similar tastes. It can then recommend documents and web pages across user profiles. Sarwar

et al. [169] implemented a set of knowledge-based filter bots representing artificial users which

base their opinion using certain criteria. For instance, the example of filter bot is a genre bot that

rates items according to their genre. The "jazz bot" would rate any CD in the jazz section with a

high score, while any other CD that is not in the jazz section would get low rates. In [170], the

authors use predictions from CF algorithms as the input for the content-based recommender.

Condiff et al. [162] propose a Bayesian mixed model that integrates user ratings along item’s

features in a single unified framework to make predictions. The CF recommender Ripper uses

both user ratings and item’s features to provide predictions [103].

71



4. STATE-OF-THE-ART MODELS FOR PREDICTION OF APPLICATION’S
RELIABILITY

4.5.2 Hybrid Recommenders Incorporating Collaborative Filtering and

Other Recommendation Systems

A weighted hybrid recommender incorporates various recommendation techniques by their

weights, which are calculated using the approach employed in [20]. The combination can be

linear, the weights can be fine tuned [171], and weighted majority voting [158,172] or weighted

average voting [173] can be used. The P-Tango system [171] gives CF and content-based

technique equal weights at the beginning, but then gradually fine tunes the weights according

to the feedback obtained from users while making on-line predictions. The boosting approach

[174] applies the similar strategy as the one used in P-Tango.

A switching hybrid recommender switches between different recommendation approaches

according to some criteria such as confidence levels from various used recommendation tech-

niques. Once certain recommendation system can not produce predictions according to the

required confidence level, then another recommendation technique is activated. Switching rec-

ommendation systems may improve predicting performance but also introduce the complexity

of parametrization for the switching criteria [20].

Some other proposed recommendation systems in this category include mixed hybrid rec-

ommenders [175], cascade hybrid recommenders [20], meta-level recommenders [20, 158, 165,

176].

The evaluation results gained in the variety of experiments conducted to compare the perfor-

mance of the pure CF, content-based methods and hybrid recommendation systems support the

claims that hybrid-based recommendation systems may improve prediction accuracy, especially

for the new user and the new item situations, in which pure CF approaches can not produce qual-

ity predictions. Note, however, that hybrid recommendation systems require additional external

information that does not have to be available in the general case, and also, the evaluation results

confirm that hybrid-based recommendations systems increase the computational complexity of

the prediction [20, 158, 177].

4.5.3 Hybrid Recommenders Based on Combination of Other Collabora-

tive Filtering Algorithms

The basic categories of CF approaches, memory- and model-based CF approach, can be

combined to form a hybrid CF approach. In general, the prediction/recommendation perfor-

72



4. STATE-OF-THE-ART MODELS FOR PREDICTION OF APPLICATION’S
RELIABILITY

mance of such an approach is better when compared to the pure memory-based or model-based

CF approach [127, 178].

Probabilistic memory-based collaborative filtering (PMCF) uses both memory-based and

model-based techniques [178]. In this approach a mixture model is introduced on the basis of a

set of stored user profiles, and then the posterior distribution of user rankings is used to produce

predictions. The new user problem is tackled by adding an active learning extension to the

PMCF that queries a user for additional information if an insufficient amount of information

is available. The computational performance is addressed by selecting the small subset of user

rankings called profile space. Then, the prediction is produced based on the limited profile space

rather then considering the entire database of user rankings. The evaluation results show that

PMCF has better accuracy than Pearson correlaton memory-based CF and the model-based CF

using naive Bayes.

Personality diagnosis (PD) is another popular hybrid CF approach that mixes memory-

based and model-based CF techniques and demonstrates some advantages against both algo-

rithms [127]. In this approach, the active user is generated by employing the random selection

of some other user and adding Gaussian noise to the selected user’s ratings. The probability

that the active user belongs to some "personality type", and the probability that the active user

likes a certain item can be computed considering user’s known ratings. The PD can be seen

as a clustering method with exactly one user per one cluster. While performing predictions

on EachMovie [141] and CiteSeer [179] data sets, PD demonstrated better prediction accuracy

than Pearson correlation and vector similarity memory-based CF, and Bayesian clustering and

Bayesian networks model-based CF as well [14].

In general, a hybrid CF approach can be used to improve prediction accuracy in situations

in which an ensemble of classifier can produce more accurate predictions than a member clas-

sifier. Thus, a hybrid CF approach that combines more different CF techniques can be useful

to improve the prediction accuracy for the CF tasks [173].

4.6 Characteristics and Challenges in Different Collabora-

tive Filtering Approaches

The basic purpose and most important functionality of every prediction or recommendation

system is to provide accurate and real-time predictions or recommendations, which will bring

73



4. STATE-OF-THE-ART MODELS FOR PREDICTION OF APPLICATION’S
RELIABILITY

CF Category Representative Approaches Advantages Disadvantages

Memory-based
CF

• Neighbor-based CF
(item– or user–based
CF with Pearson or
vector cosine corre-
lation)

• Item– or User–based
top-N recommenda-
tions

• easy implementation

• simple adding of new
data records

• content independent
recommendation of
items

• scale well for co-
rated items

• dependent on human
ratings

• low prediction accu-
racy for sparse data

• new item and new
user issue

• do not scale for large
data sets

Model-based CF

• Bayesian belief nets
CF

• clustering CF

• MDP-based CF

• latent semantic CF

• sparse factor analysis

• SVD-based CF

• improve scalability
and data sparsity
issues

• better prediction ac-
curacy

• sparse factor analysis

• SVD-based CF

• expensive model
building

• trade-off between
scalability and
accuracy

• lose information
for dimensionality
reduction techniques

Hybrid CF

• content-based CF

• content-boosted CF

• hybrid CF com-
bining model– and
memory–based CF
algorithms

• addresses drawbacks
of CF and content-
based recommenders

• improve prediction
accuracy

• provide solutions
for data sparsity and
gray sheep issues

• have increased com-
plexity and expen-
sive to implement

• need additional
external information
usually not trivial to
collect

• provide solutions
for data sparsity and
gray sheep issues

Table 4.1: A brief overview of different Collaborative Filtering Types

satisfaction to the users of the system, and benefits to the company as well. Table 4.1 provides

a brief overview of all collaborative filtering types, which are described in details in previous

sections. The overview summarizes typical representative approaches, main advantages and

disadvantages for each CF category.

The collaborative filtering based prediction systems are evaluated depending on how well

they cope with challenges which are common to all collaborative filtering approaches. Some of

the most common challenges of these approaches include: data sparsity, scalability, accuracy

in dynamic environments, synonymy, gray sheep and shilling attacks. The rest of the section

analyzes each of these challenges, especially from the aspect of collaborative filtering appliance

for prediction of web services reliability.

74



4. STATE-OF-THE-ART MODELS FOR PREDICTION OF APPLICATION’S
RELIABILITY

4.6.1 Data Sparsity

In real-world recommendation systems, collaborative filtering is used to produce predictions

or recommendations on a considerably large amount of data, including both substantially large

number of users and items. In addition, each user in the system is determined with her/his

personal interest, and uses a very limited subset of items according to her/his preferences. Also,

in a real recommendation environment, new users and new items emerge in real-time. Thus, the

user-item matrix is often very sparsely-populated with a number of missing cells capturing the

expected ratings whose values needs to be predicted.

The data sparsity issue is manifested in different situations. More specifically, the data

sparsity issue is related to the cold start problem, which occurs when a new user or a new

item appears in the system. In such situations, it is very difficult to find similar entities and

produce predictions for the new entity due to a lack of information about it (the cold start

issue is also called new user problem or new item problem in the literature [161, 178]). The

percentage of entities for which the recommendation algorithm can produce predictions is called

coverage. The reduced coverage problem appears when the number of ratings is very small

compared to the number of items in the system. In situations like this, it is impossible for

the recommendation system to produce quality predictions. Neighbor transitivity is related to

the data sparsity problem, in which users with similar preferences have not both rated the same

items. In this case, the efficiency of the recommendation systems which are based on comparing

users in pairs, is reduced.

To address the data sparsity challenge, many approaches have been proposed. Singular

Value Decomposition (SVD) [128], is a dimensionality reduction technique that removes unrep-

resentative or insignificant entities to reduce the dimensionality in the user-item matrix. The rep-

resentative and patented approach based on SVD is Latent Semantic Indexing (LSI) [180, 181],

where similarities between users are computed by the representation of the users in the reduced

space. In [88], the authors developed the eigentaste, which is based on Principle Component

Analysis (PCA), closely related to the factor analysis technique first proposed by Pearson in

1901 [182], to reduce dimensionality. Note, however, that dimensionality reduction discards

certain entities and useful information about them, which may impact the quality of predictions

or recommendations [94, 124].

Hybrid-based CF approaches, such as content-boosted CF algorithm [166], are quite effec-

tive in addressing data sparsity issues. In such approaches, the external content information is

75



4. STATE-OF-THE-ART MODELS FOR PREDICTION OF APPLICATION’S
RELIABILITY

brought in the system to produce predictions for new users and new items. To address the data

sparsity, in [183], the authors propose exact product classification according to the taxonomic

information based on profiles creation through inference of super-topic score and topic diver-

sification. To tackle cold start issue, Shein et al. proposed the aspect model latent variable

method that combines both CF and content information in model fitting [184]. Kim and Li pro-

posed a probabilistic model to address the cold start issue by classifying items into groups and

predictions are produced for users, considering the Gaussian distribution of user ratings [185].

Model-based CF approaches, such as TAN-ELR (tree augmented naive Bayes optimized

by extended logistic regression [107, 108]), provide more accurate predictions for sparse data.

The recently proposed model-based CF approaches use association retrieval technique, which

includes retrieval framework and related algorithms to explore transitive associations among

users considering their rating history [186]. Some of the above mentioned approaches include:

Maximum margin matrix factorization (MMMF), a convex, infinite dimensional alternative to

low-rank approximations and standard factor models [153, 154], ensembles of (MMMF) [187],

multiple imputation-based CF approaches [188], and imputation-boosted CF algorithms [97].

All afore mentioned data sparsity related issues are present in service-oriented systems,

underlying the Consumer Computing environment, in which the reliability of consumer appli-

cations needs to be predicted. In terms of web services reliability prediction, where each value

in the user-item matrix represents the reliability experienced by the user u on the service (item)

i, the issues related to the data sparsity are present. In real-service oriented systems, having

millions of users and services, new users and services emerge in real-time. Also, a certain user

visits only a very limited subset of services, according to her/his preferences and interest. Thus,

the user-item matrix is extremely sparse and there is a significant amount of missing values that

needs to be predicted. The new user and new item issues closely related to the cold start problem

are also present and even more emphasized. For instance, in case a very new service appears

in the system, the internal complexity and the implementation details of the service are usually

not provided. Additionally, some environment related parameters such as service provider load

are commonly not available for the very new services and providers. The same remarks can

be identified when a very new user enters the system. A lot of user-specific parameters highly

influence the perceived service reliability such as: user’s physical device, geographic location,

network bandwidth or personal usage profile etc.

76



4. STATE-OF-THE-ART MODELS FOR PREDICTION OF APPLICATION’S
RELIABILITY

4.6.2 Scalability

In general, the collaborative filtering approaches suffer from potentially serious scalability

issues when the numbers of existing users and items substantially grow. More specifically,

these approaches require storing ratings for each user-item pair in a matrix. In a real-world

recommendation system, given millions of users and items, these approaches demand a great

amount of computational resources which causes potential scalability issues. In addition, a

real recommendation system needs to react in real-time while producing predictions for all

users in the system regardless of their rating history, which requires high scalability of a CF

system [124].

The techniques of dimensionality reduction such as SVD can deal with the scalability related

issues and produce predictions and recommendations fast, but they have to perform expensive

matrix factorization steps. An incremental SVD CF algorithm [189] performs decomposition

using the existing users. Once a new set of ratings are added to the system, the algorithm uses the

folding-in projection technique [181,190] to build an incremental system without re-computing

the low-dimensional model from scratch. Hence, this technique makes the recommender more

scalable.

Memory-based CF algorithms, such as the item-based Pearson correlation algorithm (IPCC)

can achieve respectable scalability in one of its variations. Instead of computing similarities be-

tween all pairs of items, this variation of IPCC calculates the similarity only between the pair

of co-rated items by the active user [15, 124]. A simple Bayesian CF algorithm addresses the

scalability issue by producing predictions based on observed ratings [105]. Model-based CF

approaches, such as clustering CF algorithms, improve scalability by reducing the data set size

and considering users for recommendation within the smaller and similar clusters instead the

entire data set [95, 117, 118, 122]. However, these approaches present a trade-off between scal-

ability and prediction accuracy.

In real service-oriented systems, having tremendously large number of users and services,

the collaborative filtering tasks for prediction of nonfunctional service properties suffer from

serious scalability issues. In the Consumer Computing environment, consumers need to select

services (underlying consumer applications) with appropriate reliability properties in real-time.

Hence, the prediction and recommendation approaches should provide fast and accurate predic-

tions in real-time and demonstrate higher scalability than the existing CF approaches.

77



4. STATE-OF-THE-ART MODELS FOR PREDICTION OF APPLICATION’S
RELIABILITY

4.6.3 Dynamic Environments

Another important challenge that is very specific to collaborative filtering based approaches

is related to the low prediction accuracy issue in dynamic environments. Regarding the predic-

tion accuracy, collaborative filtering provides accurate recommendations in static environments

where the collected data records are relatively stable. This means that the records remain up to

date for a reasonably long period of time (e.g. movie ratings, product recommendations).

However, service-oriented systems, which are infrastructure underneath the consumer com-

puting, are deployed on the Internet which is a very dynamic environment in which service

providers register significant load variations during the day [65–67]. In such a dynamic environ-

ment, user perceived service reliability may considerably change depending on the invocation

context parameters (already described in Section 3.3.3).

4.6.4 Synonymy

The challenge of Synonymy is related to the fact that the same or very similar items may

have different names. The recommendation systems usually do not have the ability to detect

the latent connection between such items, and commonly threat them as different items. For

instance, items labeled "movie" and "film" have different names but have the same meaning and

actually present the same item. However, the collaborative filtering systems do not discover

the equivalence between same items and threat them differently, which results in decreasing of

prediction and recommendation performance.

The first attempts to address the synonymy challenge used intellectual or automatic terms

expansion, or the construction of a thesaurus. The disadvantage of these automated approaches

is that some new added terms might get associated with some other meanings different from

those originally intended, which again results in degrading of prediction and recommendation

performance [191].

The SVD techniques, especially Latent Semantic Indexing (LSI), demonstrate promising

results in dealing with synonymy challenge. SVD uses a large matrix of term-document associ-

ation data and constructs a semantic space where terms and documents that are closely related

are placed closely to each other. The performance of LSI in coping with the synonymy chal-

lenge is significant at higher recall levels where precision is usually low, while the performance

at lower recall levels is rather poor than impressive deerwester1990indexing.

Also, the LSI approach provides only a partial solution to the polysemy challenge, which is

78



4. STATE-OF-THE-ART MODELS FOR PREDICTION OF APPLICATION’S
RELIABILITY

related to the fact that respectable amount of words and terms commonly have more than one

distinct meaning [181]

In service-oriented systems, underlying consumer computing, collaborative filtering is used

to predict the values of nonfunctional properties (such as reliability, availability etc.) of services.

In such an environment, the synonymy challenge is not so relevant because each service is a

unique resource on the Internet, accessible via public interfaces and located at a unique URL.

4.6.5 Gray Sheep

The Gray sheep issue is related to the fact that there are users whose opinions do not consis-

tently match with any group of people which makes the recommendation for those people more

difficult [171]. On the other hand, the Black sheep are the group of people whose individual

tastes make high quality recommendations almost impossible. Although, the recommendation

systems fails in this case, black sheep users are considered as an acceptable failure [192].

In [171], the authors propose a hybrid approach using content-based and CF recommenda-

tions and producing the prediction as a weighted average of content-based and CF prediction, in

which the weights of the content-based and CF predictions are determined on a per-user basis,

allowing the system to balance the optimal mix of content-based and CF recommendation for

each user, and thus, improve the performance for the gray sheep users.

The gray sheep phenomena is present in case the collaborative filtering technique is applied

for predicting the reliability in service-oriented computing. In fact, the prediction process is

more difficult for those entities which do not belong to any of distinct entity groups.

4.6.6 Shilling Attacks

In the systems where everyone can provide ratings, people may give a lot of positive ratings

for their own content and negative ratings for their competition. Successful recommendation

CF systems should provide mechanisms to disable this kind of activities [193].

The shilling attacks models for collaborative filtering have been studied recently and their

effectiveness has been analyzed. In [194], the authors discovered that item-based collabora-

tive filtering recommendation systems are more resilient to shilling attacks that user-based ap-

proaches, and they suggest that new approaches should be used to mitigate shilling attacks on

recommendations systems. Mobasher et al. over-viewed the shilling models for item-based

79



4. STATE-OF-THE-ART MODELS FOR PREDICTION OF APPLICATION’S
RELIABILITY

approaches, and the authors claim that alternative CF algorithms such as model-based and hy-

brid CF approaches, provide the partial solutions to the bias ratings injection problem [195].

In [196], the authors addressed the shilling attacks by analyzing recommender’s immunity to

potentially malicious manipulations in user-item matrix.

Bell and Koren [197] propose a comprehensive approach for solving shilling attacks by

removing global effects in the data normalization stage of neighbor-based CF, and thus, working

with residual of global effects to select neighbors.

When services reliability prediction is considered, the collaborative filtering output is used

to select the most eligible items according to their reliability values, and compose them to

support more advanced functionalities as services compositions. It is extremely important to

predict the reliability of each component as accurately as possible, since the errors in prediction

propagate on the output as even greater errors when composite reliability is computed. Thus,

any possible malicious or biased manipulations with the collected reliability data would com-

promise the entire process of composite services development, which marks the shilling attacks

as an important challenge in this context.

4.6.7 Other Challenges

People usually do not want to share their personal preferences and interests, and make them

publicly accessible, which raises personal privacy as an important challenge in collaborative

filtering. Some of the proposed approaches, such as [125,198], try to address the privacy issues

in CF algorithms.

Another important challenge is noise which gets increased as the population of users grows

and becomes more diverse. Some proposed techniques, such as ensembles of MMMFs [187],

instance selection [199] find a way to reduce the problem of increased noise in CF. When

knowledge representation and classification tasks are considered, Dempster-Shafer (DS) theory

[200, 201] and imputation techniques [202] are found useful for processing imperfect or noisy

data, which suggests that those techniques could be employed to address the noise issue in CF.

Explainability is a very important feature of the recommendation systems. The idea is to

provide the users an explanation why certain items are recommended, such as "you might like

this item A because you previously liked items B and C". Although such an simple explanation

might not be completely accurate, most of the users will find it useful and beneficial [203].

The privacy challenge is also very important aspect in consumer computing, since the av-

80



4. STATE-OF-THE-ART MODELS FOR PREDICTION OF APPLICATION’S
RELIABILITY

erage consumers prefer to keep their personal preferences private but still get quality recom-

mendations and predictions. Regarding explainability, it is crucial to provide an explanation

to the consumers reasoning why a particular component is recommended. For instance, while

creating his composite application, the consumer might be in doubt which of the recommended

components to choose. The recommender’s explanation like "the component A is very likely to

be more reliable for you than the component B" would be very appealing and helpful during the

selection process.

81



Chapter 5

LUCS - Model for Prediction of

Application’s Reliability

In this chapter, LUCS, a model for service reliability prediction is presented [24]. Section 5.1

provides a brief overview of the model, introduces the model parameters and describes the

reliability prediction process. Section 5.2 provides a detailed mathematical description of the

model.

5.1 LUCS Overview

This section overviews LUCS (service Load, User location, service Class, Service location),

prediction model that utilizes contextualized information about the user and service to obtain a

more accurate prediction of service reliability. For example, different users may be in different

geographic locations with different network capabilities thus resulting in varying service relia-

bilities. Section 5.1.1 introduces different LUCS parameters while Section 5.1.2 illustrates the

overall process for predicting the service reliability.

5.1.1 Model Parameters

In the LUCS model the following parameters are used to predict the service availability: the

users’ and services’ geographic locations, the load of the service provider at the actual time of

the invocation, and the computational requirements of the invoked service.

Service users are grouped into a finite set of user groups by their geographic locations using

their IP address and this set is named U (User locations). Generally, these groups may be

82



5. LUCS - MODEL FOR PREDICTION OF APPLICATION’S RELIABILITY

Similarity

calculation

Similar 

entities

identification

Reliability

prediction

r Reliability

(2p) (3p)

(4p)

Similarity 

values
Similar

entities

Legend

Data

Process

Input/Output

Data 

classification
(1c) (2c)

Request

classification
(1p)

Input

parameters

History

data

Classified

data

Figure 5.1: The process of reliability prediction using LUCS.

determined using the appropriate granularity (e.g., continent, region, city or suburb) depending

on the requirements and the scale of the designed system.

Additionally, services are grouped into a finite set of service groups by their geographic

locations and this set is named S (Service locations). Similarly like user groups, the appropriate

granularity should be selected with respect to the system requirements and its scale.

Furthermore, collected records about previous service invocations are grouped into a finite

set of service provider loads by the actual time of the service invocation and this set is named L

(Loads). The service load is defined as the number of requests received per second. In general,

the load may be determined according to the load curve obtained from the service provider.

For example, the service provider may provide a curve that defines time windows related to the

times of the day, where each window has an assigned average load.

Finally, services are grouped into service classes with respect to their computational re-

quirements and this set is named C (Service classes). For evaluation purposes, the amount of

memory required for the service execution is used to define different service classes. Note,

however, that model is general and different grouping criteria (e.g., CPU demand) may be used.

5.1.2 Reliability Prediction Process

Figure 5.1 depicts the proposed service reliability prediction process, which starts with the

classification of the collected past invocation data into the sets related to the model parameters.

The process of data classification is performed only once as a step preceding the prediction (1c,

2c). Once the collected data is classified, the service reliability prediction is performed through

83



5. LUCS - MODEL FOR PREDICTION OF APPLICATION’S RELIABILITY

four steps executed in a pipeline (1p–4p in the flowchart).

The input of the prediction process is a specific invocation r for which the reliability of the

invoked service needs to be predicted. Each prediction step in the pipeline uses the classified

data. In the first step (1p), an ongoing invocation is classified in the four-dimensional parameter

space. In the second step (2p), similarity relations among entities are calculated. In the third

step (3p), the entities most similar to the current invocation are chosen based on the similarity

relations obtained in the second step. In the final step (4p), the missing reliability values are

estimated using the known reliability values of the most similar entities.

5.2 Formal Definition of LUCS

This section formally defines data classification process and four prediction steps of the

LUCS reliability prediction process from Figure 5.1.

5.2.1 Data Classification

The service invocation r is formally defined with its properties as:

r(s, u, t). (5.1)

In the above Equation 5.1, s is the service to be invoked, u is the user performing the service

invocation and t is the actual time of the service invocation. These properties of the service in-

vocation are used in LUCS model to determine the input parameters for the reliability prediction

(e.g., information about the user u contains the location information).

A special function f that determines the user location group of a user associated to a given

service invocation r is defined. The grouping is done according to the IP of the user:

f : r(s, u, t)→ ur, ur ∈ U. (5.2)

Similarly, a special function g determines the service location group of the service associated

to a given service invocation r using the IP of the service:

g : r(s, u, t)→ sr, sr ∈ S. (5.3)

84



5. LUCS - MODEL FOR PREDICTION OF APPLICATION’S RELIABILITY

In addition, a special function h that determines the service provider load using the load

curve of the provider and the actual time of the invocation for a given service invocation r is

defined:

h : r(s, u, t)→ lr, lr ∈ L ∪ {null}. (5.4)

Function h leverages the statistics collected from the past invocation data and the load curve

obtained by the provider to estimate the actual load on the service provider. When the provider

load is unavailable, h simply returns a null value.

Finally, a special function j determines the computational service class for a given service

invocation r using the data about internal service complexity published by the provider:

j : r(s, u, t)→ cr, cr ∈ C ∪ {null}. (5.5)

In cases when the service class cannot be determined (e.g., the invoked service is new), j returns

a null value.

In order to perform the prediction for future service invocations the collected past invoca-

tions data is classified in a four dimensional space D[u× s× l× c] using the functions defined

in the Equations 5.2 – 5.5. The dimensions u, s, l, c are mapped to the sets defined in the LUCS

model: User location, Service location, service provider Load, service Class computational

requirement.

5.2.2 Request Classification

Consider a new service invocation r(s, u, t) whose availability p needs to be predicted. First

the invocation r is classified using the functions defined in the Equations 5.2 – 5.5 and the

groups ur, sr, lr and cr are determined for the invocation. These groups are then used as input

parameters for predicting the reliability. Below, formally specification describing the process of

reliability calculation is presented. Separate definitions are provided for the cases when some

of the parameters are not available and the cases when all of the parameters are available.

For the cases in which either one of the parameters lr or cr is unavailable (i.e., has an

85



5. LUCS - MODEL FOR PREDICTION OF APPLICATION’S RELIABILITY

assigned value null), the prediction is calculated as follows:

p =


D[ur, sr], lr = null ∧ cr = null

D[ur, sr, cr], lr = null ∧ cr 6= null

D[ur, sr, lr], cr = null ∧ lr 6= null

(5.6)

In the Equation 5.6, the D[ur, sr] presents the average availability value for the user location ur

and service location sr; D[ur, sr, cr] is the average availability value for the user location ur,

service location sr and service class cr; and D[ur, sr, lr] is the average availability value for the

user location ur, service location sr and load lr.

For the cases in which both lr and cr are available (i.e., not null), two cases depending

of whether the particular user u has previously invoked the service s are distinguished. If

such an invocation previously occurred and there exists sufficiently extensive history data for

that particular user-service invocation in the four-dimensional space D[ur, sr, lr, cr], the value

produced with the Equation 5.7 is the reliability.

p = D[ur, sr, lr, cr] (5.7)

In the case when the history data is not available for that particular invocation in the four-

dimensional space D[ur, sr, lr, cr], the reliability is predicted via the steps described in the fol-

lowing sections.

5.2.3 Calculating Similarity Relations

To predict reliability of a new service invocation with no prior invocation data, the similar-

ity of that invocation with other previously observed invocations is utilized.The similarity rela-

tions between the different entities are defined using the Pearson Correlation Coefficient (PCC),

which is a correlation metric widely used in different recommendation systems [17,20–23]. In-

tuitively, PCC measures the statistical similarity between two different entities represented with

86



5. LUCS - MODEL FOR PREDICTION OF APPLICATION’S RELIABILITY

generic variables e1 and e2.

Sime(e1, e2) =

∑
h∈H

(D[e1, h]−D[e1])× (D[e2, h]−D[e2])√∑
h∈H

(D[e1, h]−D[e1])2

√∑
h∈H

(D[e2, h]−D[e2])2
(5.8)

The following sections discuss how the PCC is used to calculate the similarity of user locations,

service locations, service loads, and service classes. Similarity in this case denotes the statistical

correlation of the experienced service reliabilities.

User location similarity

To calculate the similarity Simu(u1, u2) of user locations u1 and u2, the substitution e1 = u1

and e2 = u2 is performed in the similarity relation presented with the Equation 5.8:

Simu(u1, u2) =

∑
h∈H

(D[u1, h]−D[u1])× (D[u2, h]−D[u2])√∑
h∈H

(D[u1, h]−D[u1])2

√∑
h∈H

(D[u2, h]−D[u2])2
(5.9)

where H is defined as:

H = {(s, l, c) ∈ [s× l × c]|∃D[u1, s, l, c] ∧ ∃D[u2, s, l, c]}. (5.10)

In the Equation 5.9, D[u1, s, l, c] and D[u2, s, l, c] are the reliabilities perceived by users at

locations u1 and u2 while accessing services of a class c at the service location s during the

provider load l. D[u1] and D[u2] are the average reliabilities perceived by users at locations u1

and u2. Equation 5.10 defines a set of triples H where both values D[u1, s, l, c] and D[u2, s, l, c]

need to be available in D for them to contribute to the similarity measure. The calculated

similarity value Simu(u1, u2) is in the interval [−1, 1], where higher value indicates a higher

degree of similarity between the entities.

87



5. LUCS - MODEL FOR PREDICTION OF APPLICATION’S RELIABILITY

Service location similarity

The substitution of e1 = s1 and e2 = s2 in the similarity Equation 5.8 provides Sims(s1, s2),

the similarity relation for two different service locations s1 and s2

Sims(s1, s2) =

∑
h∈H

(D[s1, h]−D[s1])× (D[s2, h]−D[s2])√∑
h∈H

(D[s1, h]−D[s1])2

√∑
h∈H

(D[s2, h]−D[s2])2
(5.11)

where H is defined as:

H = {(u, l, c) ∈ [u× l × c]|∃D[u, s1, l, c] ∧ ∃D[u, s2, l, c]}. (5.12)

In the Equation 5.11, D[u, s1, l, c] and D[u, s2, l, c] are the reliabilities for services at loca-

tions s1 and s2, both of service class c, perceived by users at the location u, during the provider

load l. D[s1] andD[s2] are the average reliabilities perceived by users at service locations s1 and

s2. The Equation 5.12 defines a set of triplesH where both values D[u, s1, l, c] and D[u, s2, l, c]

need to be available in D to contribute to the similarity calculation.

Service load similarity

To calculate the similarity Siml(l1, l2) of the loads l1 and l2 for two different service loads,

the substitution e1 = l1 and e2 = l2 is performed in the similarity Equation 5.8:

Siml(l1, l2) =

∑
h∈H

(D[l1, h]−D[l1])× (D[l2, h]−D[l2])√∑
h∈H

(D[l1, h]−D[l1])2

√∑
h∈H

(D[l2, h]−D[l2])2
(5.13)

where H is defined as:

H = {(u, s, c) ∈ [u× s× c]|∃D[u, s, l1, c] ∧ ∃D[u, s, l2, c]}. (5.14)

In the Equation 5.13, D[u, s, l1, c] and D[u, s, l2, c] are the reliabilities during the service

provider loads l1 and l2, perceived by users at the location u while accessing services of class

c at the location s. D[l1] and D[l2] are the average reliabilities perceived by users during the

service provider loads l1 and l2. The relation (5.14) defines a set of triples H where both

88



5. LUCS - MODEL FOR PREDICTION OF APPLICATION’S RELIABILITY

values D[u, s, l1, c] and D[u, s, l2, c] need to be available in the D to contribute to the similarity

calculation.

Service class similarity

Finally, the substitution of e1 = c1 and e2 = c2 in the similarity Equation 5.8 provides

Simc(c1, c2), the similarity relation for two different service classes c1 and c2:

Simc(c1, c2) =

∑
h∈H

(D[c1, h]−D[c1])× (D[c2, h]−D[c2])√∑
h∈H

(D[c1, h]−D[c1])2

√∑
h∈H

(D[c2, h]−D[c2])2
(5.15)

where H is defined as:

H = {(u, s, l) ∈ [u× s× l]|∃D[u, s, l, c1] ∧ ∃D[u, s, l, c2]}. (5.16)

In the Equation 5.15, D[u, s, l, c1] and D[u, s, l, c2] are the reliabilities perceived by users at

the location u while accessing services of classes c1 and c2 at the locations s during the provider

load l. D[c1] and D[c2] are the average reliabilities perceived by users while accessing services

of classes c1 and c2. The relation (5.16) defines a set of triplesH where both valuesD[u, s, l, c1]

and D[u, s, l, c2] need to be available in the D to contribute to the similarity calculation.

5.2.4 Determining Similar Sets of Entities

In Section 5.2.3 the relations that measure similarity between entities considered in the pro-

posed model are defined. In this section, the subsequent step that determines the most similar

sets of entities is discussed. Similar like in the previous sections, the generic equation is pre-

sented to describe sets of the most similar entities for a given service invocation r. Using the

similarity relation captured in the Equations 5.9, 5.11, 5.13 and 5.15, the similarity of the cur-

rent entity er with all the others corresponding entities is calculated. According to the given

PCC values, a ranking of the entities according to their similarity values is performed. The

dissimilar entities have negative PCC values and they are not taken into consideration. The top

89



5. LUCS - MODEL FOR PREDICTION OF APPLICATION’S RELIABILITY

k similar entities are selected into the set of the most similar entities Se(er).

Se(er) = {e ∈ E|∃D[e, hr] ∧ (Sime(e, er) ≥ Sime(ek, er)) ∧ (Sime(e, er) > 0) ∧ (e 6= er)}

(5.17)

The Equation 5.17 defines the set of similar entities Se(er), where E represents the set of enti-

ties, er stands for the current entity, ek is the entity with kth largest PCC value and the condition

Sime(e, er) > 0 stands for the exclusion of dissimilar entities.

By substituting the actual variables u, s, l, c in place of the generic variable e and the actual

sets U , S, L, C in place of the generic set E used in Equation 5.17, the following sets of the

most similar entities for a given service invocation r are determined:

• Set of most similar user locations:

Su(ur) ={u ∈ U |∃D[u, hr] ∧ (Simu(u, ur) ≥ Simu(uk, ur))

∧ (Simu(u, ur) > 0) ∧ (u 6= ur)},
(5.18)

• Set of most similar service locations:

Ss(sr) ={s ∈ S|∃D[s, hr] ∧ (Sims(s, sr) ≥ Sims(sk, sr))

∧ (Sims(s, sr) > 0) ∧ (s 6= sr)},
(5.19)

• Set of most similar service provider loads:

Sl(lr) ={l ∈ L|∃D[l, hr] ∧ (Siml(l, lr) ≥ Siml(lk, lr))

∧ (Siml(l, lr) > 0) ∧ (l 6= lr)},
(5.20)

• Set of most similar service classes:

Sc(cr) ={c ∈ C|∃D[c, hr] ∧ (Simc(c, cr) ≥ Simc(ck, cr))

∧ (Simc(c, cr) > 0) ∧ (c 6= cr)}.
(5.21)

The generic variable hr in the Equations 5.18 – 5.21 presents the set of triples defined in the

Equations 5.10, 5.12, 5.14 and 5.16 for each set respectively.

90



5. LUCS - MODEL FOR PREDICTION OF APPLICATION’S RELIABILITY

5.2.5 Calculating the Expected Reliability

In the final step of the LUCS prediction model (recall Figure 5.1), the missing reliability

value for a given service invocation r is calculated. The reliability is calculated considering

impacts of the four LUCS parameters. The generic equation that can be adopted to calculate the

impact of different LUCS parameters is provided. This equation uses the results obtained from

the Equations 5.9, 5.11, 5.13 and 5.15 which capture similarity computation, and the Equa-

tions 5.18 – 5.21 which compute the most similar entities. According to the generic equation,

the expected reliability per of the current invocation is calculated considering similar entities

data as follows:

per =


∑

a∈Se(er)

ωa ×D[a, hr]×
D[er]

D[a]
, Se(er) 6= ∅

D[er], Se(er) = ∅

(5.22)

where

ωa =
Sime(er, a)∑

b∈Se(er)

Sime(er, b)
(5.23)

In the Equation 5.22, D[er] and D[a] are the average reliabilities for the entities er and

a collected on the whole set of triples H , while ωa is the weight factor that enables more

similar entities with higher Sime(er, a) values to contribute more to the prediction. The generic

variable hr presents the set of triples defined in Equations 5.10, 5.12, 5.14 and 5.16 for each

LUCS parameter respectively. In case the similar set of entities is empty, the average reliability

D[er] is used.

By substituting the actual variables u, s, l, c instead of generic variable e into Equations 5.22

and 5.23, four different contributions to the reliability prediction according to the respected

LUCS parameters are obtained:

• prediction based on similar user locations:

pur =


∑

a∈Su(ur)

ωa ×D[a, hr]×
D[ur]

D[a]
, Su(ur) 6= ∅

D[ur], Su(ur) = ∅

(5.24)

91



5. LUCS - MODEL FOR PREDICTION OF APPLICATION’S RELIABILITY

where

ωa =
Simu(ur, a)∑

b∈Su(ur)

Simu(ur, b)
, (5.25)

• prediction based on similar service locations:

psr =


∑

a∈Ss(sr)

ωa ×D[a, hr]×
D[sr]

D[a]
, Ss(sr) 6= ∅

D[sr], Ss(sr) = ∅

(5.26)

where

ωa =
Sims(sr, a)∑

b∈Ss(sr)

Sims(sr, b)
, (5.27)

• prediction based on similar service loads:

plr =


∑

a∈Sl(lr)

ωa ×D[a, hr]×
D[lr]

D[a]
, Sl(lr) 6= ∅

D[lr], Sl(lr) = ∅

(5.28)

where

ωa =
Siml(lr, a)∑

b∈Sl(lr)

Siml(lr, b)
, (5.29)

• prediction based on similar service classes:

pcr =


∑

a∈Sc(cr)

ωa ×D[a, hr]×
D[cr]

D[a]
, Sc(cr) 6= ∅

D[cr], Sc(cr) = ∅

(5.30)

where

ωa =
Simc(cr, a)∑

b∈Sc(cr)

Simc(cr, b)
(5.31)

In order to make the prediction more accurate, all four prediction impacts defined in the

Equations 5.24, 5.26, 5.28 and 5.30 are incorporated in the final prediction equation. Hence,

to combine the individual reliability prediction impacts, their linear combination is used as

92



5. LUCS - MODEL FOR PREDICTION OF APPLICATION’S RELIABILITY

proposed:

p = α× pur + β × psr + γ × plr + (1− (α + β + γ)× pcr) (5.32)

where:

α, β, γ ∈ [0, 1] ∧ α + β + γ ≤ 1. (5.33)

The above Equation 5.32 assigns weights α, β, and γ for different prediction impacts that

correspond to the respected LUCS dimensions. These are model parameters which may have

different values for specific user and service locations, service loads and classes. In the evalua-

tion chapter (see Chapter 7), the heuristics for adjustment of the parameter’s values to a specific

environment is presented.

93



Chapter 6

CLUS - Model for Prediction of

Application’s Reliability Based on

K-means Clustering

In this chapter, CLUS [25], a model for service reliability prediction is presented. Sec-

tion 6.1 provides a brief overview of the model, introduces the model parameters and describes

the reliability prediction process. Section 6.2 provides a detailed mathematical description of

the model.

6.1 CLUS Overview

In this section, the overview of the CLUS, model for prediction of atomic web services re-

liability is provided. With the aim to improve the prediction accuracy and scalability, user–,

service– and environment specific parameters are defined to determine service invocation con-

text in greater detail then the related prediction models (described in Chapter 4). The collected

history invocation data is grouped across three different dimensions associated with the defined

model parameters. The rest of the section is organized as follows. Section 6.1.1 describes the

parameters that determine service invocation context, while Section 6.1.2 presents the reliability

prediction process required in CLUS.

94



6. CLUS - MODEL FOR PREDICTION OF APPLICATION’S RELIABILITY BASED ON
K-MEANS CLUSTERING

6.1.1 Invocation Context Parameters in CLUS

In CLUS model three different groups of parameters that impact the reliability performance

of the service are distinguished: user–, service– and environment– specific parameters.

User-specific parameters

User-specific parameters are associated with user-introduced fluctuations in the service re-

liability performance. Those parameters include a variety of factors that might impact the reli-

ability of s service such as user’s location, network and device capabilities, usage profiles. To

incorporate user-specific parameters in the process of prediction, users are grouped into clus-

ters according to their reliability performance gained from the past invocation sample using

K-means clustering algorithm.

Service-specific parameters

Service-specific parameters are related with the impact of service characteristics on the re-

liability performance. Numerous factors influence service-specific parameters such as service’s

location, computational complexity and system resources (e.g. CPU, RAM, disk and I/O op-

erations). The service-specific parameters are included in the prediction process by grouping

services into clusters according to their reliability performance obtained from the past invoca-

tion sample using K-means clustering algorithm.

Environment-specific parameters

Environment-specific parameters relate to the current conditions in the environment such as

service provider load or network performance at the time of the invocation. For the purposes

of evaluation, only service load is considered as the environment parameter. Service load is

defined as the number of requests received per second. The nonfunctional qualities of a service,

such as availability and reliability are significantly influenced by fluctuations in the service load.

Since web servers register considerable load variations during the day [67], the day is divided

into an arbitrary number of time windows. In order to improve the prediction accuracy the past

invocation data is dispersed among different time windows. Finally, time windows are grouped

into clusters according to the reliability performance computed from the past invocation sample

using K-means clustering algorithm.

95



6. CLUS - MODEL FOR PREDICTION OF APPLICATION’S RELIABILITY BASED ON
K-MEANS CLUSTERING

Data ClusteringData Clustering

Environment
clustering

Raw 
Data

Clustered 
Data

Reliability

(1c)
Users

clustering
Services

clustering
(2c)

Predictionr(u,s,t)

(3c)

Data

Process

Input/Output

Figure 6.1: CLUS reliability prediction overview

6.1.2 Reliability Prediction Process

The high level overview of CLUS, model for prediction of atomic web services is depicted

in Figure 6.1. Prior to reliability prediction, the clustering of the history invocation data is

performed. First, time windows associated with the environment conditions are clustered ac-

cording to the reliability performance fetched from the past invocation sample. Then, users (2c)

and services (3c) are clustered considering their reliability performance for each time window

cluster. Once the data is clustered, the prediction of service reliability can be performed.

6.2 Formal Definition of CLUS

In this section, CLUS, the model for web services reliability prediction is presented in formal

description. Each step of data clustering process that is crucial for the reliability prediction is

separately described.

Let the service invocation be formally defined as:

r(u, s, t). (6.1)

In the presented Equation 6.1, u is the user executing the invocation, s is the service to be

invoked and t is the actual time of the service invocation.

The history invocation sample contains data addressed as in the Equation 6.1. In order to

96



6. CLUS - MODEL FOR PREDICTION OF APPLICATION’S RELIABILITY BASED ON
K-MEANS CLUSTERING

make scalable and accurate reliability predictions for future service invocations, the data needs

to be transformed into a more structured and compact form. The idea is to store the data into a

three-dimensional space D[u, s, e] according to the defined groups of parameters. Each dimen-

sion u, s and e in space D is associated with one group of parameters respectively. The follow-

ing sections describe how particular records are clustered and associated with environment–,

user– and service–specific parameters. Finally, the creation of space D is described, i.e. how

each entry in D is calculated and how the reliability is predicted for an ongoing service invoca-

tion.

6.2.1 Environment-specific Data Clustering

First, the set of different environment conditions E is defined as follows:

E = {e1, e2, ..., ei, ..., en}, (6.2)

where ei refers to a specific environment condition determined by service provider load and n

is an arbitrary number of distinct environment conditions.

The aim is to correlate each available history invocation record with the service provider

load at the time it was performed. As already stated in Sections 3.4.1 and 4.6.3, the analyses

of the collected data from different service providers can pinpoint the regularities in the load

distribution for certain time periods [65–67]. Thus, the day is divided into an arbitrary number

of time windows, where each time window wi is determined with its start time ti and end time

ti+1. This is performed under the assumption that the environment-specific parameters are stable

during the same time window. Once the time windows are determined, the average reliability

value pwi
for each time window wi is calculated as follows:

pwi
=

1

|Wi|
∑
r∈Wi

pr (6.3)

whereWi is the set of records within the time windowwi, r is the record from the past invocation

sample and pr is user perceived reliability for that invocation.

The average reliability value pwi
is assigned to each respected time window wi. Each partic-

ular time window is clustered using K-means clustering algorithm into an appropriate environ-

ment condition ei according to its average reliability value. Now each particular record from the

97



6. CLUS - MODEL FOR PREDICTION OF APPLICATION’S RELIABILITY BASED ON
K-MEANS CLUSTERING

history invocation sample can be correlated with the environment conditions at the time it was

performed. By applying a transitive relation, if the record about previous invocation r(u, s, t)

belongs to the time window wi and the time window wi is clustered into environment condition

ei, than the invocation r(u, s, t) is performed during the environment condition ei.

6.2.2 User-specific Data Clustering

Next, the set of different user groups is defined U as follows:

U = {u1, u2, ..., ui, ..., um}, (6.4)

where each user group ui contains users that achieve similar reliability performance, while m

is the number of different user groups.

For each user u in the past invocation sample, the n-dimensional reliability vector pu is

calculated as follows:

pu = {pe1 , pe2 , ..., pei , ..., pen}, (6.5)

where each vector dimension pei represents the average reliability value perceived by the given

user u during the environment conditions ei. Once the the average reliability n-dimensional

vector is calculated and assigned to each user, K-means clustering is performed to group users

into different user groups according to their reliability vector’s pu values. Now each available

previous invocation record r(u, s, t) can be easily correlated with an appropriate user group ui.

6.2.3 Service-specific Data Clustering

Finally, the set of distinct service groups S is defined as follows:

S = {s1, s2, ..., si, ..., sl}, (6.6)

where each service group s contains services that achieve similar reliability performance, while

l is an arbitrary number of different service groups.

For each service s in the past invocation sample, the n-dimensional reliability vector ps is

calculated as follows:

ps = {pe1 , pe2 , ..., pei , ..., pen}, (6.7)

98



6. CLUS - MODEL FOR PREDICTION OF APPLICATION’S RELIABILITY BASED ON
K-MEANS CLUSTERING

where each vector dimension pei represents the achieved average reliability for invoking service

s during the environment conditions ei. Once the the average reliability n-dimensional vector

is calculated for each service, K-means clustering is performed to group services into different

service groups according to their reliability vector’s ps values. Now each available previous

invocation record r(u, s, t) can be easily associated with appropriate service group si.

6.2.4 Creation of Space D and Prediction

After the steps which are described in previous sections are completed, each available his-

tory invocation record r(u, s, t) is associated with the respected data clusters ei, uk and sj . The

next step in the reliability prediction process is to create the space D and calculate each value

in D. Each entry of D is calculated as follows:

D[uk, sj, ei] =
1

|R|
∑
r∈R

pr. (6.8)

where pr is user perceived reliability for invocation r and:

R = {r(u, s, t)|r ∈ uk ∧ r ∈ sj ∧ r ∈ ei} (6.9)

Now, let there is an ongoing service invocation rc(uc, sc, tc) whose reliability pc needs to be

predicted. First, the past invocation sample is checked for the set H containing records with the

same invocation context parameters as rc:

H = {rh|uh = uc ∧ sh = sc ∧ th, tc ∈ wi}. (6.10)

If the set H is not empty, than the reliability pc is calculated by using the existing reliability

values in the set H:

pc =
1

|H|
∑
r∈H

pr. (6.11)

Otherwise, if the setH is empty, the reliability pc is calculated using the data stored in the space

D as follows:

pc = D[uk, sj, ei], (6.12)

where current user uc belongs to the user group uk, current service sc belongs to the service

group sj and the actual time tc is associated with the environment conditions ei.

99



Chapter 7

Evaluation

In this chapter, the proposed models CLUS and LUCS, are evaluated and compared to the

existing collaborative filtering based approaches primary regarding prediction accuracy and per-

formance. Also, several quality aspects of the CLUS and LUCS models are studied.

In the evaluation, the proposed models are compared to three state-of-the-art approaches:

user-based approach (UPCC) [14], item-based approach (IPCC) [15] and the Hybrid approach

[16], [17], which is a linear combination of IPCC and UPCC. User-based approach employs the

impact of similar users, while item-based approach employs exclusively the impact of similar

services. By contrast, the Hybrid approach utilizes both the impact of similar users and services

for reliability prediction. Presented evaluation results suggest that proposed approaches are

significantly more accurate than the existing collaborative filtering based techniques. Regard-

ing prediction performance, evaluation results confirm that proposed approaches obtain better

scalability and have greater potential to produce real time reliability predictions.

To compare the prediction accuracy of competing approaches, commonly used measures

Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) are applied. The MAE

calculates the average magnitude of the errors in a prediction set. It is defined as follows:

MAE =

N∑
j=1

|pj − p̂j|

N
(7.1)

In the Equation 7.1, pj is the measured reliability value calculated from the data collected in

experiment, p̂j is the predicted reliability value, while N is the number of predicted values. The

RMSE is a quadratic scoring rule which measures the average magnitude of the error and is

100



7. EVALUATION

defined as:

RMSE =

√√√√√√
N∑
j=1

(pj − p̂j)2

N
(7.2)

Both MAE and RMSE can range from 0 to∞. They are negatively-oriented scores, which means

that lower values are better.

To compare the prediction performance of competing approaches, aggregated time that takes

to produce the predictions for the entire prediction set is measured. In addition, the analytical

proof containing the analysis of complexity for each considered approach is provided to support

claims in favor of better CLUS’s and LUCS’s scalability.

The rest of the chapter is organized as follows. Section 7.1 describes the experiment setup.

Section 7.2 compares the predicted and measured reliability values with a special focus on the

areas where the accuracy of proposed approaches notably differs from the others. Section 7.3

analyzes the impact of the collected data density on the prediction accuracy and performance.

Section 7.4 analyzes the impact of different loads and service classes on the accuracy of pre-

diction for each model. Section 7.5 analyzes the influence of the explicit availability of LUCS’s

input parameters on prediction accuracy. Section 7.6 assesses the sensitivity of the LUCS model

on the homogeneity inside the parameter classes. Section 7.7 provides a heuristic for fine-tuning

the values of LUCS’s model parameters (α, β and γ in the Equation 5.32). Section 7.8 reveals

how the impact of clusters number in CLUS model affects its prediction accuracy and per-

formance. Section 7.9 analyzes the theoretical worst case complexity as well as the expected

practical complexity for different prediction approaches. Section 7.10 provides a brief overview

of the entire evaluation chapter summarizing all evaluation results together.

7.1 Experiment Setup

In order to perform experiments that test different aspects of proposed models, a controlled

environment comprising a set of web services was constructed. The implemented web services

create two random matrices and execute a matrix multiplication operation. By doing so, the

external noise was limited, while full control on the services computations, locations, and loads

was preserved.

The computational complexity of a web service can depend on the variety of specific param-

eters such as CPU demands, the amount of memory, and the amount of disk or I/O operations.

101



7. EVALUATION

Service class 1 2 3 4 5 6 7
Matrix rank 350 310 280 250 210 180 150

Table 7.1: Matrix ranks in different service classes

Load level 1 2 3 4 5 6 7
Time interval / sec 3 4 5 6 7 8 9

Table 7.2: Time intervals in different load levels

For technical reasons, in this evaluation the amount of memory to group services into classes

was chosen. Note, however, that this does not reduce the generality of obtained results as other

factors that impact reliability may be considered as well. Seven different computational classes

of the matrix multiplication web services were created. Each class requires a different amount

of memory for its execution as depicted in Table 7.1. All of the service classes have the same

computational complexity O(n3).

To test the location-related parameters of the proposed approaches, the Amazon Web Ser-

vices [204] technology as the platform for deployment of web services was used. The amount

of 49 web services were deployed in seven available Amazon EC2 (Elastic Compute Cloud)

geographic regions: Ireland, Virginia, Oregon, California, Singapore, Japan and Brazil, having

each service class in each region. Each service was deployed on an Amazon machine image run-

ning Microsoft Windows Server 2008 R2 SP1 Datacenter edition, 64-bit architecture, Microsoft

SQLServer, Internet Information Services 7 and ASP.NET 3.5.

In a similar manner, users coming from different locations were simulated by placing in-

stances of loadUI [205], an open source tool intended for stress and performance testing, on

different cloud locations. Two different types of environments regarding network connection

capabilities were simulated during the experiment. The first simulated environment is a typical

high bandwidth Internet connection where users obtain very similar network capabilities. The

second simulated environment is a more realistic environment where users network capabilities

differ due to provider’s network infrastructure or physical constraints of the access device. This

environment was achieved in the experiment by using special tools for limiting the performance

of the network adapter.

The loadUI tool enables creation of various test cases including different load generators.

In the experiment, the services were burdened with seven different load levels defined by the

time interval between sending each request as depicted in Table 7.2. The maximum load level,

102



7. EVALUATION

Load 1, uses the time interval of 3 sec, while each higher load level increases the time interval

by 1 sec, and thus the minimum load level, Load 7, uses the time interval of 9 sec. For each

load level, a special test case was defined. Each defined test case was delivered as a task to

all distributed agents running in the cloud. During the test case each agent sent 150 requests

to each deployed web service. When the test case was done, the data from the agents was

collected and the machines hosting services were restarted to fully recover for the next text

case. Each test case was done for both considered environment for the purposes of proposed

approaches evaluation. Overall, as part of experiments, the information about 5.145, 000 distinct

web service invocations was collected.

The final reliability prediction in LUCS model is calculated using the Equation 5.32. It

should be noted that an equal value of 0.25 for each model parameter α, β and γ was used

during the model evaluation in experiments.

7.2 Overall Prediction Accuracy

Model LUCS CLUS Hybrid IPCC UPCC
RMSE 0.01697 0.04632 0.09372 0.09082 0.10199
MAE 0.00810 0.02615 0.07287 0.07040 0.07974

Table 7.3: MAE and RMSE values for each approach for the density of 25% in the environment
where users have similar network capabilities.

To evaluate the overall quality of the CLUS and LUCS prediction models in comparison

with the other state-of-art models, MAE and RMSE values for their predicted reliabilities are

analyzed. This calculation is done for each model over the complete set of data collected and

measured during the experiments. The MAE and RMSE value depend of the amount of the

available history data in D, and both of the distribution of the available data in D. The impact

of the amount of the available data (see details in Section 7.3) is separately analyzed. For the

purpose of overall prediction accuracy analysis, the amount of available history data is assumed

to be 25% of all the data in D. In order to minimize the impact of the potentially biased

distribution of available data, the calculation is repeated 1k times having different randomly

generated distributions of available data each time. Finally, average MAE and RMSE values for

each particular approach were calculated.

Table 7.3 shows obtained average MAE and RMSE values for every considered approach

103



7. EVALUATION

for the environment where users have similar network capabilities. The collected results clearly

indicate that both LUCS and CLUS outperform the other analyzed approaches. The LUCS

approach achieves best prediction accuracy among considered approaches with at least 81%

lower RMSE value (for the Hybrid model) and at least 88% lower MAE value, while CLUS

model achieves second best prediction accuracy among analyzed approaches with at least 48%

lower RMSE value (for the Hybrid model) and at least 62% lower MAE value. In terms of the

absolute values, the LUCS predictions are typically off by only a couple of percentage points.

Such inaccuracy is significantly more acceptable during application selection than several times

higher errors of other, less scalable, approaches. In particular, application selection involves

comparing the quality of candidate application of similar functionalities. Hence, each decrease

in the prediction accuracy may be increased by a factor of two during application selection.

Table 7.4 shows obtained average MAE and RMSE values for every considered approach for

the environment where users have different network capabilities. The evaluation results show

that CLUS approach provides best prediction performance regarding prediction accuracy. The

CLUS approach achieves better prediction accuracy in this environment than LUCS approach

due to implicit consideration of user specific parameters by performing clustering of users ac-

cording to their performance. The LUCS approach considers only user’s location as the user

specific parameter which is obviously not sufficient to provide best prediction accuracy. Both

LUCS and CLUS approach significantly outperform the existing state-of-the-art approaches.

The CLUS approach achieves at least 44% lower RMSE value and 57% lower MAE value com-

pared to the Hybrid approach while LUCS approach achieves at least 37% lower RMSE value

and 45% lower MAE value than the Hybrid approach. The importance of user specific pa-

rameters in this environment is manifested in fact that UPCC approach improves its prediction

accuracy when compared to the prediction performance in the environment where users have

similar network capabilities.

Model LUCS CLUS Hybrid IPCC UPCC
RMSE 0.05830 0.05185 0.09405 0.09194 0.10129
MAE 0.03935 0.03116 0.07280 0.07117 0.07862

Table 7.4: MAE and RMSE values for each approach for the density of 25% in the environment
where users have different network capabilities.

To explore the primary causes of variance between the different prediction models, the four-

dimensional space D is analyzed. This analysis confirms the underlying motivation for the

104



7. EVALUATION

Figure 7.1: LUCS, predicted and measured reliability, users location: Ireland, services location:
Brazil

additional LUCS and CLUS dimensions and parameters. These findings are illustrated using the

four graphs depicted in Figures 7.1–7.5 that show the predicted reliability values (A) alongside

the measured reliability values (E) for each of the four evaluated approaches for the environ-

ment with users that have similar network properties having available data density 25% of all

measured data. The area shown in these figures includes all points from D where the user lo-

cation is Ireland and the service location is Brazil, while the values for service load and service

class are on the axes. Each figure shows two transparent plots where the blue plot presents

the measured values and the other plot presents values predicted by model. Note that the plots

obtained for other combinations of user locations and service locations are qualitatively similar.

The Figures 7.1–7.5 reinforce the overall results that the LUCS predictions provide the best

accuracy among the competing approaches. Furthermore, the Figures 7.3–7.5 discover the pri-

mary source of the inaccuracies of the Hybrid, UPCC and IPCC prediction models — these

models do not consider environment conditions such as service load as a parameter. As a con-

sequence, the reliability prediction highly differs from the expected values in those areas where

105



7. EVALUATION

Figure 7.2: CLUS, predicted and measured reliability, users location: Ireland, services location:
Brazil

the service load differs from the average values. By contrast, in the areas where the service load

is average, the Hybrid, UPCC and IPCC prediction models provide predictions that are similar

to the LUCS and CLUS predictions and notably closer to the measured reliability values.

7.3 Impact of Data Density

The overall accuracy results presented in the previous section suggest LUCS and CLUS

models as a better solutions than the alternative options. However, these conclusions were made

for a specific experiment instantiation with densely populated reliability data matrix D. To

assess how lower amount of available data affects the different prediction models, various data

densities between 5% and 50% with a step value of 5% are simulated. Section 7.3.1 analyses

the impact of data density on prediction accuracy while Section 7.3.2 studies how data density

effects computational performance of the prediction for every considered approach.

In this evaluation, three distinct cases related to the variations of environment conditions are

106



7. EVALUATION

Figure 7.3: Hybrid, predicted and measured reliability, users location: Ireland, services loca-
tion: Brazil

considered. In the first case, variable loads with request frequencies between req/3 sec, req/4

sec, req/5 sec, req/6 sec, req/7 sec, req/8 sec, and req/9 sec and users with very similar network

capabilities are assumed. In the second case, variable loads with request frequencies like in the

first case are considered, but users are distinguished having different network capabilities. The

third case considers users having similar network capabilities in the environment with constant

service load with request frequency of req/3 sec.

To evaluate the accuracy and performance of the prediction, for all cases, the testing sets

containing all measured reliability records are determined. Once the testing set is determined,

the amount of 5% of the collected data is included and put it into the set of data that is used

to calculate the reliability prediction. Then, reliability prediction for each approach for the

testing set using the available data is calculated. Since the actual reliability values have been

measured during the experiments, the MAE and RMSE values are calculated for each approach.

In addition, the time that takes to compute the predictions for all approaches is measured. In

the next step, data density is increased by adding another 5% of the collected data into the

107



7. EVALUATION

Figure 7.4: IPCC, predicted and measured reliability, users location: Ireland, services location:
Brazil

set of available data and the reliability predictions and predictions performance measures are

recalculated. This process is repeated until the data density reaches 50%.

7.3.1 Prediction Accuracy

The Figures 7.6a and 7.6b capture the relation between the data density and the MAE and

RMSE values for the case with varying service loads and having users with similar network ca-

pabilities. These results show that the data density highly impacts the prediction accuracy for all

of the analyzed approaches (e.g. for the IPCC approach the RMSE value varies between 0.274

and 0.090). Furthermore, the figures confirm that LUCS has a significantly better prediction

accuracy with near-constant margin compared to the CLUS and Hybrid model. As expected,

the LUCS approach improves prediction accuracy as the data density increases, lowering the

RMSE and MAE values from 0.038 to 0.012 and 0.024 to 0.004 respectively. It is also important

to note that the prediction accuracy of LUCS even for data density of 5%, with the RMSE value

of 0.038, is significantly better or similar to (in the case of CLUS) than the accuracy reached by

108



7. EVALUATION

Figure 7.5: UPCC, predicted and measured reliability, users location: Ireland, services location:
Brazil

the other approaches at 50% of data density. The second proposed approach CLUS, provides

better prediction accuracy than the existing collaborative filtering based approaches (the MAE

value from 0.063 to 0.016 and the RMSE from 0.106 to 0.035).

The differences in the accuracy of the IPCC, UPCC and Hybrid models stem from the struc-

ture of experimental conditions. In particular, the evaluation was performed using 50 distributed

agents and 49 different applications. The higher number of services implies less information per

individual application, which affects IPCC because its predictions are based on service-specific

parameters. In the environment where users have similar network capabilities, the service-

specific parameters make the difference in the perceived reliability. Hence, having different

service classes like in the experiments, the IPCC approach is expected to provide better predic-

tions than UPCC. For the lower data densities, the Hybrid expectedly outperforms both IPCC

and UPCC, but with relatively small margin. It should be noted that all collaborative filter-

ing based approaches achieve similar prediction accuracy that cannot be considerably improved

with the increase of the collected data due to negligence of environment’s dynamic nature and

109



7. EVALUATION

æ
æ

æ æ æ æ æ æ æ æ

à

à
à à à à à à à à

ì

ì ì ì ì ì ì ì ì ì

ò

ò

ò

ò ò ò ò ò ò ò

ô

ô
ô

ô ô ô ô ô ô ô

5 10 15 20 25 30 35 40 45 50
Density � %

0.05

0.10

0.15

0.20

MAE

ô Hybrid

ò uPCC

ì iPCC

à CLUS

æ LUCS

(a) MAE

æ
æ

æ æ æ æ æ æ æ æ

à

à
à à

à à à à à à

ì

ì ì ì ì ì ì ì ì ì

ò

ò

ò

ò ò ò ò ò ò ò

ô

ô
ô

ô ô ô ô ô ô ô

5 10 15 20 25 30 35 40 45 50
Density � %

0.05

0.10

0.15

0.20

0.25

0.30
RMSE

ô Hybrid

ò uPCC

ì iPCC

à CLUS

æ LUCS

(b) RMSE

Figure 7.6: The impact of data density in the environment with load intensity having users with
similar network capabilities

110



7. EVALUATION

inefficient usage of the collected data.

The evaluation results for the environment with different service loads and having users with

different network capabilities are captured in Figures 7.7a and 7.7b. It is obvious from the pre-

sented MAE and RMSE values that proposed approaches provide significantly better prediction

accuracy than the existing collaborative filtering based approaches. For the lower data densities

LUCS approach provides best prediction accuracy (the MAE value from 0.054 to 0.026 and the

RMSE value from 0.073 to 0.047), while CLUS approach provides best prediction accuracy for

densely populated data (the MAE value from 0.076 to 0.019 and the RMSE value from 0.111

to 0.039). Such results are expected in the environment where users obtain different network

capabilities. The CLUS approach achieves best prediction accuracy thanks to consideration

of user-specific parameters and users clustering according to their reliability performance. It

is interesting that LUCS approach still achieves better prediction accuracy for the lower data

density. This results is related to the poor clustering performance in CLUS approach due to in-

sufficient available data. The collaborative filtering based approaches achieve similar prediction

performance like in the first case and the same remarks can be applied in this case.

The Figures 7.8a and 7.8b depict relationship between the data densities obtained for con-

stant service load and the resulting MAE and RMSE errors. These figures demonstrate that, even

in this seldom expected case, the LUCS model either outperforms or provides accuracy that is

very similar to the accuracy of the other analyzed approaches. In particular, LUCS predictions

are more accurate for the sparser data density (the RMSE value between 0.072 and 0.012 as

the density increases), while the IPCC, UPCC, and Hybrid models provide marginally better

prediction accuracy for higher data densities (the RMSE value between 0.188 and 0.013 for the

IPCC model). This result is unsurprising since LUCS model aggregates the data by grouping

the services into service classes. The CLUS approach provides better prediction accuracy for the

sparser data density (the RMSE value between 0.105 and 0.043) when compared to the collab-

orative filtering based approaches. Note that as the data density increases, prediction accuracy

of the CLUS approach is remarkably worse which is expected due to CLUS approach inability

to achieve full precision of services clustering unlike LUCS. However, the CLUS and specially

LUCS approach should be considered for prediction even is such case of an environment with

constant service load because of their better scalability (further discussed in Section 7.3.2 and

Section 7.9).

111



7. EVALUATION

æ
æ

æ æ æ æ æ æ æ æ

à

à

à
à

à à à à à à

ì

ì ì ì ì ì ì ì ì ì

ò

ò

ò

ò ò ò ò ò ò ò

ô

ô
ô

ô ô ô ô ô ô ô

5 10 15 20 25 30 35 40 45 50
Density � %

0.05

0.10

0.15

0.20

MAE

ô Hybrid

ò uPCC

ì iPCC

à CLUS

æ LUCS

(a) MAE

æ
æ æ æ æ æ æ æ æ æ

à

à

à
à

à à à à à à

ì

ì ì ì ì ì ì ì ì ì

ò

ò

ò

ò ò ò ò ò ò ò

ô

ô
ô

ô ô ô ô ô ô ô

5 10 15 20 25 30 35 40 45 50
Density � %

0.05

0.10

0.15

0.20

0.25

0.30
RMSE

ô Hybrid

ò uPCC

ì iPCC

à CLUS

æ LUCS

(b) RMSE

Figure 7.7: The impact of data density in the environment with load intensity having users with
different network capabilities

112



7. EVALUATION

æ

æ

æ æ
æ æ æ æ æ æ

à

à

à à
à à à à à à

ì

ì ì ì ì ì ì ì ì ì

ò

ò

ò

ò ò

ò
ò

ò ò ò

ô

ô

ô

ô ô
ô ô ô ô ô

5 10 15 20 25 30 35 40 45 50
Density � %

0.05

0.10

0.15

MAE

ô Hybrid

ò uPCC

ì iPCC

à CLUS

æ LUCS

(a) MAE

æ

æ

æ æ

æ
æ æ

æ æ æ

à

à

à à
à

à
à à à à

ì

ì ì ì ì ì ì ì ì ì

ò

ò

ò

ò ò
ò

ò
ò ò ò

ô

ô

ô

ô ô
ô

ô ô ô ô

5 10 15 20 25 30 35 40 45 50
Density � %

0.05

0.10

0.15

0.20

RMSE

ô Hybrid

ò uPCC

ì iPCC

à CLUS

æ LUCS

(b) RMSE

Figure 7.8: The impact of data density in the environment without load intensity having users
with similar network capabilities

113



7. EVALUATION

7.3.2 Computational Performance

The evaluation results for computational performance are captured in Figures 7.9a and 7.9b.

The execution time that takes to compute the predictions is chosen as the measure for compu-

tational performance. The figures depict aggregated prediction time for the whole testing set

in milliseconds in relation to the data density for the LUCS, CLUS and collaborative filtering

based approaches in the logarithmic scale. Since all the collaborative filtering approaches have

similar analytical complexity (see Section 7.9), the Hybrid approach is selected as the repre-

sentative for the computational performance evaluation. The CLUS prediction process is done

in two phases data clustering and prediction calculation as depicted in Figure 6.1. Thus, both

clustering time and prediction time are presented for the CLUS approach. Note that the data

clustering phase is done only once prior to the prediction phase.

Figure 7.9a depicts computational performance evaluation for the competing approaches in

the case of a dynamic environment with different service loads. It is obvious from the presented

graphs that the CLUS approach provides better performance for the two orders of magnitude

(e.g. prediction time of 1543 ms for LUCS approach and 4437 ms for collaborative filtering

approach against CLUS clustering time of 40 ms and prediction time of 17 ms for the data

density of 30%). Note that both CLUS clustering and prediction times are relatively stable as

the data density changes. On the other hand, both LUCS and collaborative filtering approaches

prediction time depends on the data density. In the case of collaborative filtering, for sparser

data densities, the computational performance is better (prediction time of 3579 ms for the data

density of 5%) since low amounts of collected data require less computation. With the increase

of the collected data, the computation time increases as can be expected (e.g. prediction time

of 4437 ms for the density of 30%). As the amount of the collected data continues to increase,

the number of records with available reliability values grows. Thus, the reliability value needs

to be predicted for fewer records which in turn results in decrease of the prediction time (e.g.

prediction time of 3892 ms for the density of 50%). In the case of LUCS approach, the prediction

time highly depends of the data density. For the low data density LUCS achieves the longest

prediction time among competing approaches (e.g. prediction time of 8893 ms for the density

of 5%) on collected data set size. Note, that real web application systems contain substantially

large number of users and applications which results in a larger data set size. Hence, in a such

environment LUCS approach performance is expected to be considerably better when compared

to collaborative filtering performance. With the increase of data density, the number of records

114



7. EVALUATION

æ æ
æ

æ

æ

æ

æ

æ

æ

æ

à à à à à à à à à à

ì ì ì ì ì ì ì ì ì ì

ò ò ò ò ò ò ò ò ò ò

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Density � %

101

102

103

104
Time � ms

ò CF predictions
ì CLUS predictions
à Clustering time
æ LUCS predictions

(a) Prediction time, with load intensity

æ æ

æ

æ

æ

æ

æ
æ

æ

æ

à à à à
à à à à à à

ì ì

ì

ì ì

ì ì

ì

ì ì

ò ò ò ò
ò ò ò ò ò ò

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Density � %

101

102

103
Time � ms

ò CF predictions
ì CLUS predictions
à Clustering time
æ LUCS predictions

(b) Prediction time, without load intensity

Figure 7.9: The impact of data density on prediction performance

115



7. EVALUATION

with available reliability values grows which reduces the computation time (e.g. prediction time

of 68 ms for the density of 50%).

The computational performance of the prediction in the case of a static environment with

constant load is presented in Figure 7.9b. Like in the case of a dynamic environment, the perfor-

mance is presented in the logarithmic scale. The evaluation results show that CLUS approach

provides better performance for the order of magnitude whern compared to the collaborative

filtering (e.g. prediction time of 662 ms for collaborative filtering approach against CLUS clus-

tering time of 44 ms and prediction time of 3 ms for the data density of 30%). The CLUS

approach provides almost constant clustering and prediction time as the data density changes,

while collaborative filtering approaches manifest similar behavior like in the case of a dynamic

environment. The LUCS approach achieves better prediction performance on the data set size

reduced to the constant application load when compared to collaborative filtering (e.g. predic-

tion time of 152 ms for the density of 5% and prediction time of 2 ms for the density of 50%).

Note that LUCS approach as the data density increases outperforms the clustering phase of the

CLUS approach. However, these measures are not suitable to be directly compared since the

clustering phaseof the CLUS approach is done only once prior to prediction phase. The predic-

tion phase of the CLUS approach still provides best performance as can be seen in the presented

graphs.

7.4 The Significance of Service Load and Class Parameters

This section studies how two specific parameters, which are considered in the proposed

approaches, service load and service class affect the accuracy of reliability predictions.

7.4.1 Significance of Load Parameter

To study the impact of the service load parameter utilized by LUCS and CLUS, the accuracy

of the five prediction models is analyzed when reliability is being predicted for services of

different loads. The reader should note that the same analysis is conducted for data densities of

20% and 50% and that two different environments are considered:

1. Environment where users have similar network capabilities, and

2. Environment where users have different network capabilities.

116



7. EVALUATION

æ
æ æ æ æ

æ æ

à à

à

à

à

à
à

ì

ì

ì

ì

ì

ì

ì

ò

ò

ò ò

ò

ò

ò

ô

ô

ô
ô

ô

ô

ô

Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7
Load

0.02

0.04

0.06

0.08

0.10

0.12

0.14

RMSE

ô Hybrid

ò uPCC

ì iPCC

à CLUS

æ LUCS

(a) data density 20%

æ æ æ
æ æ æ æ

à

à à
à à

à à

ì

ì

ì
ì

ì

ì

ì

ò

ò

ò
ò

ò

ò

ò

ô

ô

ô
ô

ô

ô

ô

Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7
Load

0.02

0.04

0.06

0.08

0.10

0.12

0.14

RMSE

ô Hybrid

ò uPCC

ì iPCC

à CLUS

æ LUCS

(b) data density 50%

Figure 7.10: The impact of different service loads on prediction accuracy in the environment
with users having similar network capabilities

117



7. EVALUATION

æ
æ

æ æ æ
æ æ

à

à
à

à

à

à
à

ì

ì

ì

ì

ì

ì

ì

ò

ò

ò
ò

ò

ò

ò

ô

ô

ô
ô

ô

ô

ô

Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7
Load

0.02

0.04

0.06

0.08

0.10

0.12

0.14

RMSE

ô Hybrid

ò uPCC

ì iPCC

à CLUS

æ LUCS

(a) data density 20%

æ æ
æ æ æ

æ æ

à
à à

à
à

à
à

ì

ì

ì
ì

ì

ì

ì

ò

ò

ò
ò

ò

ò

ò

ô

ô

ô
ô

ô

ô

ô

Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7
Load

0.02

0.04

0.06

0.08

0.10

0.12

0.14

RMSE

ô Hybrid

ò uPCC

ì iPCC

à CLUS

æ LUCS

(b) data density 50%

Figure 7.11: The impact of different service loads on prediction accuracy in the environment
with users having different network capabilities

118



7. EVALUATION

The Figures 7.10a and 7.10b depict the relation between the load for the service whose re-

liability is being predicted and the resulting RMSE values for the environment in which users

have similar network capabilities. These results support the prior results in that the LUCS model

provides the best prediction accuracy for each individual load level. Moreover, the prediction

errors of the LUCS model for different service load levels are fairly similar (the RMSE value be-

tween 0.010 and 0.013 for different service loads for the density of 50%). The second proposed

approach, CLUS, provides less accurate predictions compared to predictions of LUCS, which is

expected in this environment knowing the results from the previous Section 7.3.1. Note, how-

ever, that CLUS’s predictions are far more accurate and stable when compared to collaborative

filtering approaches (the RMSE value between 0.026 and 0.043 for different service loads for

the density of 50%). By contrast, the errors of the IPCC, UPCC and Hybrid models are highly

dependent on the service load of the input service (e.g. for the Hybrid model the RMSE value

varies between 0.023 and 0.126 for different loads for the density of 50%). This is expected

since these models do not consider the provider’s service load in their prediction calculations.

Hence, these models achieve their best prediction accuracy at average loads.

The Figures 7.11a and 7.11b depict the relation between the load for the application whose

reliability is being predicted and the resulting RMSE values for the environment in which users

have different network capabilities. The results draw similar conclusions as the one for the

environment considered in the first case, except CLUS approach provides better prediction ac-

curacy than LUCS approach expectedly (see explanation in Section 7.3.1). Note that in this

case, collaborative filtering based approaches provide similar or even better prediction accuracy

for average loads (especially for the lower data density) than CLUS and LUCS approaches.

7.4.2 Significance of Class Parameter

Similarly to the case of service loads, the accuracy of the five prediction models is analyzed

when reliability is being predicted for services of different computational classes. The reader

should note that the same analysis is conducted for data densities of 20% and 50% and that two

different cases are considered:

1. Environment where users have similar network capabilities, and

2. Environment where users have different network capabilities.

119



7. EVALUATION

æ æ æ
æ

æ
æ æ

à

à à

à

à

à

à

ì ì ì

ì

ì

ì

ì

ò ò ò

ò

ò

ò

ò

ô ô ô

ô

ô

ô

ô

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7
Class

0.05

0.10

0.15

RMSE

ô Hybrid

ò uPCC

ì iPCC

à CLUS

æ LUCS

(a) data density 20%

æ æ æ
æ

æ æ æ
à à à

à

à

à

à

ì ì ì

ì

ì

ì

ì

ò ò ò

ò

ò

ò

ò

ô ô ô

ô

ô

ô

ô

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7
Class

0.02

0.04

0.06

0.08

0.10

0.12

0.14

RMSE

ô Hybrid

ò uPCC

ì iPCC

à CLUS

æ LUCS

(b) data density 50%

Figure 7.12: The impact of different service classes on prediction accuracy in the environment
with users having similar network capabilities

120



7. EVALUATION

æ
æ

æ

æ

æ

æ
æ

à
à à

à

à

à

à

ì ì ì

ì

ì

ì
ì

ò ò
ò

ò

ò

ò ò

ô ô ô

ô

ô

ô
ô

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7
Class

0.02

0.04

0.06

0.08

0.10

0.12

0.14

RMSE

ô Hybrid

ò uPCC

ì iPCC

à CLUS

æ LUCS

(a) data density 20%

æ
æ

æ
æ

æ

æ æ

à
à à

à

à

à
à

ì ì ì

ì

ì

ì ì

ò ò ò

ò

ò

ò ò

ô ô ô

ô

ô

ô ô

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7
Class

0.02

0.04

0.06

0.08

0.10

0.12

0.14

RMSE

ô Hybrid

ò uPCC

ì iPCC

à CLUS

æ LUCS

(b) data density 50%

Figure 7.13: The impact of different service classes on prediction accuracy in the environment
with users having different network capabilities

121



7. EVALUATION

The Figures 7.12a and 7.12b capture the distribution of prediction errors for different ser-

vice classes in the environment in which users obtain similar network capabilities. The results

indicate that each respective model provides better prediction accuracy for predicting reliabil-

ity of computationally heavier service classes. This result is unsurprising given that the lighter

service classes (class 6 and class 7) are less similar to other classes (referred in literature as

gray sheep [18]). Thus, the sets of similar entities for those classes are more limited compared

to other classes, which increases the prediction error. Note, however, that this error increase is

significantly less prominent for LUCS (the RMSE value between 0.006 and 0.017 for different

classes for the density of 50%) and CLUS (the RMSE value between 0.014 and 0.059 for differ-

ent classes for the density of 50%) approaches than the collaborative filtering based models (i.e

the RMSE value for the Hybrid model between 0.051 and 0.139 for different classes for the den-

sity of 50%), which makes proposed approaches, specially LUCS, more reliable for real-world

systems with rich types of services.

The Figures 7.13a and 7.13b show the prediction errors distribution on different service

classes in the environment in which users achieve different network capabilities. The results

draw similar conclusions as in the first case, except CLUS approach outperforms LUCS ap-

proach which is quite expected knowing the discussion in Section 7.3.1.

It should be noted that similar results and conclusions regarding LUCS’s and CLUS’s spe-

cific parameters are obtained if MAE values are studied.

7.5 The Importance of Each Individual LUCS’s Input Pa-

rameter

Section 5.1.2 states that LUCS provides the reliability prediction even in the case when

some of the input parameters are missing. The input parameters u (user location) and s (service

location) can be easily determined by checking the IP address of the user and the service. How-

ever, determining parameters l (service load) and c (service class) can be challenging in case

the service provider is unwilling to immediately share them. Furthermore, when a new service

provider appears in the system, the provider’s load can only be approximated since the load

curve is not available yet. Similarly, the service class may be difficult to determine for a new

service with certain notable exceptions (e.g., when deploying a service on a third-party cloud

infrastructure, the computational demands are often specified in advance). In order to deter-

122



7. EVALUATION

mine how the access to the input parameters impacts the performance of LUCS, two tests were

conducted. The first test studies the impact of each individual parameter available on LUCS

approach prediction accuracy. The second test assesses how lack of each individual parame-

ter influence the prediction accuracy of LUCS. These tests were performed on the testing sets

comprising all collected records during the experiments. For the purpose of input parameters

importance evaluation, two different environments are considered:

1. Environment where users have different network capabilities, and

2. Environment where users have similar network capabilities.

7.5.1 The Impact of Individual Input Parameter Available

In the first test, the impact of availability of each particular LUCS parameter is considered.

The RMSE values are calculated for the testing set while considering only a single input param-

eter with varying rates of points having considered parameter available from 0% to 100%.

The Figures 7.14a and 7.14b show the RMSE values obtained in the test for two different

data densities for the environment where users have different network capabilities. Addition-

ally, the figures depict the RMSE for CLUS and Hybrid approaches which are not affected by

the availability of LUCS’ s input parameters. As expected, the availability of the input param-

eters highly impacts the accuracy of the LUCS model. In particular, for the lower data density

(Figure 7.14a), the service class is a parameter that can be used in isolation to predict service

reliability more accurately than the Hybrid model (in the case the service class parameter is

known for at least 40% of all invocations in the testing set), but still it can not be used to achieve

the accuracy of the CLUS approach. By contrast, the service load l, user location u, and service

location s parameters used in isolation can not accurately predict the reliability of a current

invocation. For high data density (Figure 7.14b), no single parameter can be used in isolation

to achieve better accuracy than the Hybrid or CLUS approach.

The Figures 7.15a and 7.15b show the RMSE values obtained in the test for two different

data densities for the environment where users have similar network capabilities. In this en-

vironment, knowing the results from previous discussions (see Section 7.3.1), LUCS approach

achieves even better prediction accuracy. Thus, for lower data densities, (Figure 7.15a), the

service class is a parameter that can be used in isolation to predict service reliability more ac-

curately than the Hybrid model (in the case the service class parameter is known for at least

123



7. EVALUATION

æ æ æ æ æ æ æ æ æ æ æ

à à à à à à à à à à à

ì ì ì ì ì ì ì ì ì ì ìò ò ò ò ò ò ò ò ò ò òô
ô

ô
ô

ô
ô

ô

ô

ô

ô

ô

ç ç ç ç ç ç ç ç ç ç ç
á

á

á

á

á

á

á

á

á

á

á

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

known � %

0.05

0.10

0.15

0.20

0.25

RMSE

á all known

ç l known

ô c known

ò s known

ì u known

à Hybrid

æ CLUS

(a) data density 5%

æ æ æ æ æ æ æ æ æ æ æ

à à à à à à à à à à à

ì ì ì ì ì ì ì ì ì ì ìò ò ò ò ò ò ò ò ò ò òô
ô

ô
ô

ô
ô

ô

ô

ô

ô

ô

ç ç ç ç ç ç ç ç ç ç ç
á

á

á

á

á

á

á

á

á

á

á

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

known � %

0.05

0.10

0.15

0.20

0.25

RMSE

á all known

ç l known

ô c known

ò s known

ì u known

à Hybrid

æ CLUS

(b) data density 25%

Figure 7.14: The impact of individual input parameters on the LUCS prediction accuracy in the
environment in which users have different network capabilities

124



7. EVALUATION

æ æ æ æ æ æ æ æ æ æ æ

à à à à à à à à à à à

ì ì ì ì ì ì ì ì ì ì ìò ò ò ò ò ò ò ò ò ò òô
ô

ô
ô

ô

ô

ô

ô

ô

ô

ô

ç ç ç ç ç ç ç ç ç ç ç

á

á

á

á

á

á

á

á

á

á

á

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

known � %

0.05

0.10

0.15

0.20

0.25

RMSE

á all known

ç l known

ô c known

ò s known

ì u known

à Hybrid

æ CLUS

(a) data density 5%

æ æ æ æ æ æ æ æ æ æ æ

à à à à à à à à à à à

ì ì ì ì ì ì ì ì ì ì ìò ò ò ò ò ò ò ò ò ò òô
ô

ô
ô

ô

ô

ô

ô

ô

ô

ô

ç ç ç ç ç ç ç ç ç ç ç

á

á

á

á

á

á

á

á

á

á

á

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

known � %

0.05

0.10

0.15

0.20

0.25

RMSE

á all known

ç l known

ô c known

ò s known

ì u known

à Hybrid

æ CLUS

(b) data density 25%

Figure 7.15: The impact of individual input parameters on the LUCS prediction accuracy in the
environment in which users have similar network capabilities

125



7. EVALUATION

35% of all invocations in the testing set). However, it can not be used to achieve the accuracy

of the CLUS approach unless the parameter is available for all the invocations in the testing set.

Other parameters can not be used in isolation to achieve the prediction accuracy of the CLUS

approach. For high data density (Figure 7.15b), no single parameter can be used to predict the

service reliability more accurately than the Hybrid or CLUS approach.

7.5.2 The Impact of Individual Input Parameter Missing

In the second test, the impact of lack of each particular LUCS parameter on prediction

accuracy is considered. The RMSE values are calculated for the testing set while having three

input parameters readily available and the fourth one missing with varying rates of points with

the missing parameter from 0% to 100%.

The Figures 7.16a and 7.16b show the RMSE values obtained in the test for two different

data densities for the environment where users have different network capabilities. Note that

the "all missing” group in the figures varies the availability of all of the parameters together

(e.g., 80% missing for this group means that none of the input parameters is available in four

out of five cases). The collected results indicate that the lack of service class parameter c highly

decreases the prediction accuracy of the model. For lower data density, it is important to note

that, according to Figure 7.16a, LUCS exhibits better accuracy with all of its input parameters

missing than when only parameter c is missing. This behavior is a consequence of the fact that,

with all of the parameters missing, LUCS predicts the average values calculated on the whole

space D. By contrast, when only c parameter is missing, LUCS calculates the average values on

fewer points that are determined according to the other known parameters. Since the reliability

varies widely for two of seven service classes (recall Section 7.4.2), the errors become higher

as some of the groupings in the sparse 3-dimensional space will have records for those service

classes, while others will not. In addition, the graphs show that the lack of load parameter

l degrades LUCS prediction accuracy but not as much as the lack of class parameter c. The

lack of parameters u and s degrades the prediction accuracy of LUCS. However, in this case the

model still achieves better prediction accuracy than the Hybrid approach. In particular, for lower

data density, as depicted in Figure 7.16a, the LUCS model can tolerate up to 10% of individual

parameters missing and still achieve better performance than CLUS model. Also, the model

can tolerate up to 45% of individual parameters missing and still achieve better performance

than the Hybrid approach. For high data density, as depicted in Figure 7.16b, the LUCS model

126



7. EVALUATION

æ æ æ æ æ æ æ æ æ æ æ

à à à à à à à à à à à

ì
ì

ì
ì

ì
ì

ì
ì

ì
ì

ì

ò

ò
ò

ò
ò

ò
ò

ò
ò

ò
ò

ô

ô

ô

ô

ô

ô

ô

ô

ô

ô

ô

ç
ç

ç
ç

ç
ç

ç
ç

ç
ç

ç

á

á

á

á

á

á

á
á

á
á

á

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

missing � %

0.05

0.10

0.15

0.20

0.25

0.30
RMSE

á all missing

ç l missing

ô c missing

ò s missing

ì u missing

à Hybrid

æ CLUS

(a) data density 5%

æ æ æ æ æ æ æ æ æ æ æ

à à à à à à à à à à à

ì ì ì ì ì ì ì ì ì ì ì
ò ò ò ò ò ò ò ò ò ò ò

ô

ô

ô

ô

ô

ô

ô

ô

ô
ô

ô

ç
ç

ç
ç

ç ç
ç ç ç ç ç

á

á

á

á

á

á

á

á

á

á

á

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

missing � %

0.05

0.10

0.15

0.20

0.25

RMSE

á all missing

ç l missing

ô c missing

ò s missing

ì u missing

à Hybrid

æ CLUS

(b) data density 25%

Figure 7.16: The impact of lack of individual input parameters on the LUCS prediction perfor-
mance in the environment in which users have different network capabilities

127



7. EVALUATION

æ æ æ æ æ æ æ æ æ æ æ

à à à à à à à à à à à

ì

ì

ì
ì

ì
ì

ì
ì

ì
ì

ì

ò

ò

ò
ò

ò
ò

ò
ò

ò
ò

ò

ô

ô

ô

ô

ô

ô

ô

ô

ô

ô

ô

ç

ç

ç
ç

ç
ç

ç
ç

ç
ç

ç

á

á

á

á

á

á

á

á
á

á
á

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

missing � %

0.05

0.10

0.15

0.20

0.25

0.30
RMSE

á all missing

ç l missing

ô c missing

ò s missing

ì u missing

à Hybrid

æ CLUS

(a) data density 5%

æ æ æ æ æ æ æ æ æ æ æ

à à à à à à à à à à à

ì ì ì ì ì ì ì ì ì ì ìò
ò

ò ò ò ò ò ò ò ò ò

ô

ô

ô

ô

ô

ô

ô

ô

ô

ô
ô

ç

ç
ç

ç
ç

ç
ç

ç
ç ç

ç

á

á

á

á

á

á

á

á

á

á

á

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

missing � %

0.05

0.10

0.15

0.20

0.25

RMSE

á all missing

ç l missing

ô c missing

ò s missing

ì u missing

à Hybrid

æ CLUS

(b) data density 25%

Figure 7.17: The impact of lack of individual input parameters on the LUCS prediction perfor-
mance in the environment in which users have similar network capabilities

128



7. EVALUATION

can tolerate up to 10% of individual parameters missing and outperform the state-of-the-art the

Hybrid model.

The Figures 7.17a and 7.17b capture the RMSE values obtained in the test for two differ-

ent data densities for the environment where users have similar network capabilities. Quite

similar conclusions can be drawn as in the case of the environment where users have different

network capabilities. The parameter class c proves to be the most important for the LUCS ap-

proach prediction accuracy, while lack of parameter load l significantly degrades the prediction

accuracy. However, LUCS approach manifests considerable tolerance to lack of u and s param-

eters. Specifically, for the lower data density, as depicted in Figure 7.17a, the LUCS model can

tolerate up to 10% of individual parameters missing and still achieve better performance than

CLUS model. Also, the model can tolerate up to 50% of individual parameters missing and

still achieve better performance than the Hybrid approach. For high data density, as depicted

in Figure 7.17b, the LUCS model can tolerate up to 5% of individual parameters missing and

outperform the CLUS model. Also, the model can tolerate up to 15% of individual parameters

missing and still achieve better performance than the state-of-the-art Hybrid approach.

In general, our results suggest that the LUCS model is limited to the environments where

the input parameters are highly available.

7.6 The Sensitivity of LUCS Groupings

The evaluations presented in the previous sections confirm the importance of the two LUCS’s

specific input parameters—service load l and service class c. However, a potential obstacle to

considering these two input parameters is that grouping the services into similar computational

classes or determining the load at the time of the current request (recall Section 5.2.2) may be

a difficult and error-prone tasks. For example, a lack of sufficient information about a service’s

computational demands may result in an incorrect classification of that service as a computa-

tionally less intensive application. Similarly, a recently developed services may have limited

accompanying information about its average load. Hence, the magnitude of the risk that the

prediction accuracy of LUCS is highly dependent on fully correct groupings is analyzed.

In order to evaluate the sensitivity of LUCS on the correctness of the parameter groupings,

fault injection [49, 206] technique is utilized. Specifically, a testing set containing all points

from the four-dimensional space D is used, and a currently invoked service is allowed to be

129



7. EVALUATION

incorrectly classified into the neighboring groupings. For example, this fault injection process

can group a service that actually belongs to the computational class 3 into the computational

class 2 or computational class 4 instead. Similarly, when the current load of a servuce is req/5

sec, the current service load can be erroneously classified as req/4 sec or req/6 sec. The effect

of these errors is analyzed by calculating the RMSE for different grouping error rates ranging

between 0% and 100%. The reader should note that the same analysis is conducted for data

densities of 5% and 25% and that two different cases are considered:

1. Environment where users have different network capabilities, and

2. Environment where users have similar network capabilities.

The Figures 7.18a and 7.18b depict the results for two different data densities for the en-

vironment where users have different network capabilities. The figures include RMSE values

of error-free LUCS, CLUS and Hybrid models as well as the LUCS model with faults injected

into load and class groupings in isolation, and load and class groupings at the same time. As

expected, the obtained results confirm that incorrect groupings impact the prediction accuracy.

However, this impact is generally acceptable since, for low data densities, CLUS outperforms

LUCS only once more than 40% of service class groupings are erroneous, and Hybrid does not

outperform LUCS even in the extreme case when every analyzed request is classified in a wrong

way. For high data densities, Hybrid outperforms LUCS once more than 30% of service class

groupings are erroneous. Our results also indicate that LUCS is resilient to errors in the service

load groupings as these incorrect groupings decrease the accuracy by only up to a couple per-

centage points. LUCS is more sensitive to incorrect classification of the computational service

classes, but the accuracy is still better than that of the Hybrid model even for high error rates.

The Figures 7.19a and 7.19b depict the results for two different data densities for the en-

vironment where users have similar network capabilities. The figures include RMSE values of

error-free LUCS, CLUS and Hybrid models as well as the LUCS model with faults injected

into load and class groupings in isolation, and load and class groupings at the same time. The

results presented in figures suggest similar conclusions like for the environment where network

capabilities of users differ, except LUCS approach manifests even better performance as can be

expected (see Section 7.3.1).

It should be noted that similar or better results in favor of LUCS are obtained if MAE values

are analyzed.

130



7. EVALUATION

æ æ æ æ æ æ æ æ æ æ æ

à à à à à à à à à à à

ì ì ì ì ì ì ì ì ì ì ì

ò
ò

ò
ò

ò
ò

ò
ò

ò
ò ò

ô ô ô ô ô ô ô ô ô ô ô

ç

ç
ç

ç
ç

ç ç
ç

ç
ç

ç

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Faults injected � %

0.05

0.10

0.15

0.20

RMSE

ç c & l faults

ô l faults

ò c faults

ì Hybrid

à LUCS

æ CLUS

(a) data density 5%

æ æ æ æ æ æ æ æ æ æ æ
à à à à à à à à à à à

ì ì ì ì ì ì ì ì ì ì ì

ò

ò

ò

ò

ò
ò

ò
ò

ò

ò
ò

ô ô ô ô ô ô ô ô ô ô ô

ç

ç

ç

ç

ç

ç

ç
ç

ç
ç

ç

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Faults injected � %

0.05

0.10

0.15

RMSE

ç c & l faults

ô l faults

ò c faults

ì Hybrid

à LUCS

æ CLUS

(b) data density 25%

Figure 7.18: The sensitivity of LUCS groupings in the environment where users have different
network capabilities

131



7. EVALUATION

æ æ æ æ æ æ æ æ æ æ æ

à à à à à à à à à à à

ì ì ì ì ì ì ì ì ì ì ì

ò

ò

ò

ò
ò

ò
ò

ò
ò

ò
ò

ô ô ô ô ô ô ô ô ô ô ô

ç

ç

ç

ç

ç

ç

ç
ç

ç
ç

ç

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Faults injected � %

0.05

0.10

0.15

0.20

RMSE

ç c & l faults

ô l faults

ò c faults

ì Hybrid

à LUCS

æ CLUS

(a) data density 5%

æ æ æ æ æ æ æ æ æ æ æ

à à à à à à à à à à à

ì ì ì ì ì ì ì ì ì ì ì

ò

ò

ò

ò

ò

ò

ò
ò

ò
ò

ò

ô
ô

ô
ô

ô
ô

ô ô
ô ô ô

ç

ç

ç

ç

ç

ç

ç

ç

ç ç

ç

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Faults injected � %

0.05

0.10

0.15

RMSE

ç c & l faults

ô l faults

ò c faults

ì Hybrid

à LUCS

æ CLUS

(b) data density 25%

Figure 7.19: The sensitivity of LUCS groupings in the environment where users have different
network capabilities

132



7. EVALUATION

7.7 The Heuristics for LUCS Model’s Parameters α, β and γ

The LUCS model utilizes Equation 5.32 to predict reliability based on the different param-

eters. The evaluations so far presented utilized the equal value of 0.25 for each coefficient α, β

and γ. While these values were sufficient to demonstrate the different aspects and the advan-

tages of LUCS in terms of its accuracy, these values are not optimal for the given environment.

To achieve better performance, fine tunning of the coefficients α, β and γ must be performed

for each quadrupleD[u, l, s, c]. To calculate better coefficient values and improve the prediction

accuracy, the prediction accuracy should be analyzed for each LUCS parameter pu, ps, pl, pc in

the Equation 5.32. Below, a heuristic for calculating better coefficient values is proposed.

Let us assume a quadruple D[u, l, s, c] and α[u, l, s, c], β[u, l, s, c] and γ[u, l, s, c] need to be

calculated. First, each parameter’s mean RMSE for the past invocations is calculated as follows:

RU [u, s, l, c] = RMSE(rmseUu , rmseUs , rmseUl
, rmseUc) (7.3)

RS[u, s, l, c] = RMSE(rmseSu , rmseSs , rmseSl
, rmseSc) (7.4)

RL[u, s, l, c] = RMSE(rmseLu , rmseLs , rmseLl
, rmseLc) (7.5)

RC [u, s, l, c] = RMSE(rmseCu , rmseCs , rmseSl
, rmseCc) (7.6)

where each rmseij represents RMSE of the impact i ∈ {U, S, L, C} at the specific j ∈ {u, s, l, c}.

The goal is to assign the parameters with smaller aggregated RMSE a higher degree of influ-

ence when calculating the final prediction. Thus, the coefficients of the linear combination are

defined as follows:

α[u, l, s, c] =
RU [u, s, l, c]

−1∑
I∈{U,S,L,C}

RI [u, s, l, c]
−1 (7.7)

β[u, l, s, c] =
RS[u, s, l, c]

−1∑
I∈{U,S,L,C}

RI [u, s, l, c]
−1 (7.8)

133



7. EVALUATION

γ[u, l, s, c] =
RL[u, s, l, c]

−1∑
I∈{U,S,L,C}

RI [u, s, l, c]
−1 (7.9)

To test the proposed heuristic, the prediction algorithm is run and compared to the prediction

accuracy for the raw LUCS model with fixed parameters (α = β = γ = 0.25) and the tuned

LUCS model with parameter values calculated using the proposed heuristic.

The Figures 7.20a and 7.20b depict the MAE and RMSE values of the basic and the heuristics

tuned LUCS models with predictions made based on the whole spaceD varying the data density

from 2% to 20% with a step value of 2. The results show that the fine tunning of the model

parameters and the adjustment of parameters to the specific environment further improved the

model’s performance, specially for the sparser data density.

7.8 The Impact of CLUS’s Number of Clusters

As described in Section 6.2, CLUS supports an arbitrary number of user, service and envi-

ronment conditions clusters. The number of clusters is a model parameter which can be adjusted

to a specific environment. This section studies how this number of clusters impacts different as-

pects of the prediction performance. The reader should note that the same analysis is conducted

for data densities of 20% and 50% and that two different cases are considered:

1. Environment where users have different network capabilities, and

2. Environment where users have similar network capabilities.

Similarly like with the density impact evaluation, all the collected data is included in the

testing set for evaluation. In the evaluation process, the number of user and service clusters

is varied keeping the number of environment conditions clusters constant at value of a 7. The

initial value of 2 is chosen for the number of user and service clusters. Then, the reliability

predictions and prediction performance measures are calculated. In the next step, the number

of clusters is increased for the step value of 1 and the predictions and measures are recalculated.

The procedure is repeated until the number of clusters reaches the value of 9.

7.8.1 Prediction Accuracy

The evaluation results capturing the impact of cluster number on prediction accuracy in the

environment where users obtain different network capabilities are shown in Figures 7.21 and

134



7. EVALUATION

æ

æ

æ

æ
æ

æ æ æ æ æ

à

à

à

à
à

à à à à à

2% 4% 6% 8% 10% 12% 14$ 16% 18% 20%

Density � %

0.01

0.02

0.03

0.04

0.05

0.06

0.07
MAE

à LUCS Tuned

æ LUCS Basic

(a) MAE

æ

æ

æ

æ
æ

æ æ æ æ æ

à

à

à

à
à

à à à à à

2% 4% 6% 8% 10% 12% 14$ 16% 18% 20%

Density � %

0.01

0.02

0.03

0.04

0.05

0.06

0.07
MAE

à LUCS Tuned

æ LUCS Basic

(b) RMSE

Figure 7.20: Comparison of the basic and heuristics tuned LUCS

135



7. EVALUATION

æ æ æ æ æ æ æ æ

à

à

à

à
à

à à à

ì ì ì ì ì ì ì ì

2 3 4 5 6 7 8 9
Number of clusters

0.02

0.04

0.06

0.08
MAE

ì Hybrid

à CLUS

æ LUCS

(a) MAE

æ æ æ æ æ æ æ æ

à

à
à

à à

à à à

ì ì ì ì ì ì ì ì

2 3 4 5 6 7 8 9
Number of clusters

0.02

0.04

0.06

0.08

0.10

RMSE

ì Hybrid

à CLUS

æ LUCS

(b) RMSE

Figure 7.21: The impact of number of clusters on prediction accuracy with users having differ-
ent network capabilities for the data density of 20%

136



7. EVALUATION

æ æ æ æ æ æ æ æ

à

à

à
à

à
à à à

ì ì ì ì ì ì ì ì

2 3 4 5 6 7 8 9
Number of clusters

0.01

0.02

0.03

0.04

0.05

0.06

0.07
MAE

ì Hybrid

à CLUS

æ LUCS

(a) MAE

æ æ æ æ æ æ æ æ

à

à

à

à
à

à à à

ì ì ì ì ì ì ì ì

2 3 4 5 6 7 8 9
Number of clusters

0.02

0.04

0.06

0.08

0.10
RMSE

ì Hybrid

à CLUS

æ LUCS

(b) RMSE

Figure 7.22: The impact of number of clusters on prediction accuracy with users having differ-
ent network capabilities for the data density of 50%

137



7. EVALUATION

7.22.

The Figures 7.21a and 7.21b depict respected MAE and RMSE values for LUCS, CLUS

and the collaborative filtering representative - the Hybrid approach (labels as CF predictions in

picture) for the data density of 20%. The performance of the LUCS and Hybrid approach is

not influenced by altering the number of clusters. The LUCS approach achieves constant MAE

value of 0.042 and RMSE value of 0.060, while Hybrid approach achieves constant MAE value

of 0.072 and RMSE value of 0.093. As can be expected, the prediction accuracy of the CLUS is

increased as the number of clusters grows (the RMSE value of 0.105 for 2 clusters and the RMSE

of 0.060 for 7 clusters). In fact, the greater number of clusters means less aggregation which

improves the prediction accuracy. Note that further increase in the number of clusters after the

value of 7 does not improve accuracy. This behavior can be explained by the experimental setup

with 7 highly distinct service classes.

The Figures 7.22a and 7.22b depict respected MAE and RMSE values for LUCS, CLUS and

the Hybrid approach (labels as CF predictions in picture) for the data density of 50%. The LUCS

approach achieves constant MAE value of 0.026 and RMSE value of 0.047, while the Hybrid

approach achieves constant MAE value of 0.068 and RMSE value of 0.089. Similarly, like for

the density of 50%, the prediction accuracy of CLUS approach is increased as the number of

clusters grows (the RMSE value of 0.083 for 2 clusters and the RMSE of 0.037 for 9 clusters).

The evaluation results capturing the impact of clusters number on prediction accuracy in

the environment where users obtain similar network capabilities are shown in Figures 7.23 and

7.24.

Figures 7.23a and 7.23b depict respected MAE and RMSE values for LUCS, CLUS and

the collaborative filtering representative - the Hybrid approach (labels as CF predictions in the

picture) for the data density of 20%. The performance of the LUCS and Hybrid approach is

not influenced by altering the number of clusters. The LUCS approach achieves constant MAE

value of 0.010 and RMSE value of 0.019, while Hybrid approach achieves constant MAE value

of 0.073 and RMSE value of 0.094. The prediction accuracy of CLUS approach is increased

as the number of clusters grows (RMSE value of 0.099 for 2 clusters and RMSE of 0.053 for

7 clusters) and CLUS approach outperforms Hybrid approach even for the clusters number

value of 3 . Similarly like for the case of an environment with users having different network

capabilities, further increase in the number of clusters after the value of 7 does not improve

accuracy, which is related to the experimental setup. Note, however, that in the case of an

138



7. EVALUATION

æ æ æ æ æ æ æ æ

à

à à

à
à

à à à

ì ì ì ì ì ì ì ì

2 3 4 5 6 7 8 9
Number of clusters

0.02

0.04

0.06

0.08
MAE

ì Hybrid

à CLUS

æ LUCS

(a) MAE

æ æ æ æ æ æ æ æ

à

à
à

à
à

à à à

ì ì ì ì ì ì ì ì

2 3 4 5 6 7 8 9
Number of clusters

0.02

0.04

0.06

0.08

0.10

RMSE

ì Hybrid

à CLUS

æ LUCS

(b) RMSE

Figure 7.23: The impact of number of clusters on prediction accuracy with users having similar
network capabilities for the data density of 20%

139



7. EVALUATION

æ æ æ æ æ æ æ æ

à

à

à

à
à

à à à

ì ì ì ì ì ì ì ì

2 3 4 5 6 7 8 9
Number of clusters

0.02

0.04

0.06

0.08
MAE

ì Hybrid

à CLUS

æ LUCS

(a) MAE

æ æ æ æ æ æ æ æ

à

à

à

à

à

à à à

ì ì ì ì ì ì ì ì

2 3 4 5 6 7 8 9
Number of clusters

0.02

0.04

0.06

0.08

0.10
RMSE

ì Hybrid

à CLUS

æ LUCS

(b) RMSE

Figure 7.24: The impact of number of clusters on prediction accuracy with users having similar
network capabilities for the data density of 50%

140



7. EVALUATION

environment with users having similar network capabilities LUCS approach provides better

accuracy than CLUS approach which is expected and explained (see details in Section 7.3.1).

The Figures 7.24a and 7.24b depict respective MAE and RMSE values for LUCS, CLUS

and the Hybrid approach (labels as CF predictions in picture) for the data density of 50%. The

LUCS approach achieves constant MAE value of 0.004 and RMSE value of 0.012, while the

Hybrid approach achieves constant MAE value of 0.070 and RMSE value of 0.090. Similarly,

like for the density of 50%, the prediction accuracy of the CLUS approach is increased as the

number of clusters grows (the RMSE value of 0.079 for 2 clusters and the RMSE of 0.035 for 9

clusters). However, the CLUS approach can not achieve the LUCS approach performance in the

environment with users having similar network capabilities.

7.8.2 Computational Performance

The impact of cluster number on computational performance of the prediction is presented

in Figure 7.25. Each figure depicts prediction time aggregated on the whole testing set for both

CLUS approach and collaborative filtering representative - the Hybrid approach. The results are

shown in the logarithmic scale. Note that figures separately capture clustering and prediction

time for each phase of the CLUS approach. Figure 7.25a depicts prediction time for the density

of 20% in relation to the number of clusters. The LUCS and Hybrid approach performance is not

influenced by the number of clusters. The LUCS achieves the prediction time of 3729, while

it takes 4367 ms for the Hybrid approach to calculate the predictions. The CLUS prediction

time is relatively stable and ti is not influenced by altering the number of clusters. On the other

hand, the clustering time increases as the number of clusters grows (from 14 ms for 2 clusters

to 65 ms for 9 clusters). Knowing the computational complexity of the K-means clustering (see

Section 7.9), this behavior is quite expected.

The Figure 7.25b shows prediction time for the density of 50% in relation to the number

of clusters. The prediction time of 72 ms for the LUCS approach is significantly improved

when compared to the prediction time for the density of 20%. Also, the collaborative filtering

approach achieves slightly better performance with the prediction time of 3928 when compared

to prediction time for the density of 20%. Note, however, that these results are expected and

already explained (see Section 7.3.2 for explanation).

141



7. EVALUATION

æ æ æ æ æ æ æ æ

à

à
à à à à à à

ì ì ì ì ì ì ì ì

ò ò ò ò ò ò ò ò

2 3 4 5 6 7 8 9
Number of clusters

101

102

103

104
Time � ms ò CF predictions

ì CLUS predictions
à Clustering time
æ LUCS predictions

(a) Prediction time, density of 20%

æ æ æ æ æ æ æ æ

à

à
à à à à à à

ì ì ì ì ì ì ì ì

ò ò ò ò ò ò ò ò

2 3 4 5 6 7 8 9
Number of clusters

101

102

103

104
Time � ms ò CF predictions

ì CLUS predictions
à Clustering time
æ LUCS predictions

(b) Prediction time, density of 50%

Figure 7.25: The impact of number of clusters on prediction performance

142



7. EVALUATION

7.9 Complexity Analysis

To reiterate, the two main aims of proposed approaches, LUCS and CLUS, are (1) to im-

prove the accuracy of reliability predictions for web services and (2) to improve the scalability

of the prediction. The evaluation results presented in previous sections confirm that proposed

approaches achieves both of the goals. This section provides analytic evidence, in terms of com-

putational complexity analysis, in support of the claim that proposed approaches achieve their

second aim—i.e., improved scalability over other competing collaborative filtering approaches.

The complexity of the proposed approaches is compared with the complexities of the state-

of-the-art prediction models IPCC, UPCC, and Hybrid. Note that these complexities represent

different parameterizations of the general complexity of collaborative filtering [18]. The com-

plexity of the computations required in the IPCC model is:

O(n2 ×m), (7.10)

where n is the number of services and m is the number of users. Similarly, the complexity of

the UPCC computations is:

O(m2 × n). (7.11)

Hence, the complexity of the Hybrid approach is:

O(n2 ×m+m2 × n). (7.12)

It is important to note that real-world service based systems can have millions of users and

thousands of services and thus these approaches suffer from data sparsity as well as scalability

issues1.

To address these scalability and data sparsity issues in the LUCS model, the aggregation

principle is applied by grouping services based on their computational demands, request loads,

and locations, and by grouping users based on their location. The complexity of the LUCS

approach is:

O(nu × nl × nc × ns × (nu + nl + nc + ns)), (7.13)

1Note that user-item matrix is extremely sparse for the majority of collaborative filtering tasks which makes
these algorithms efficient even with such heavy computational complexities.

143



7. EVALUATION

where nu is the number of user locations, nl is the number of loads, nc is the number of ser-

vice classes, and ns is the number of service locations. While LUCS has a greater theoretical

complexity compared to the collaborative filtering approaches, the complexity in practice will

be significantly lower because the expected number of groups is significantly smaller then the

number of individual users and services (nu, nl, nc, ns � n,m). In fact, as long as the num-

ber of groups is lower than the square root of the number of users, the LUCS complexity is

lower, while further lowering the number of groups additionally improves scalability. In addi-

tion, since every LUCS group will include multiple data points, the LUCS matrix will be denser,

which, in turn, leads to better quality predictions.

Regarding the computational complexity required in the CLUS appraoch, in general, the

computational complexity required for K-means clustering is:

O(i× c× d× n), (7.14)

where i is the number of iterations performed by the procedure, c is the number of clusters, n is

the number of vectors to be clustered and d is the dimensionality of vectors [26, 27]. Although

the theoretical worst case may take exponential time for the algorithm to converge [207], in

practical cases with data points representing service reliabilities, the algorithm converges very

quickly. However, in the K-means clustering implementation used in the evaluation process,

the number of iterations is limited to the value of 10.

In the data clustering phase of the CLUS approach K-means clustering procedure is per-

formed three times. First, different time windows are clustered, which requires the computa-

tional complexity of:

O(i× |E| × |W | × 1), (7.15)

where i is the number of iterations, |E| is the number of environment conditions clusters and

|W | is the number of time windows the day is divided to. Note that the dimension of the

vectors representing time windows is 1. Then, users and services are separately clustered. The

computational complexity required in user clustering is:

O(i× |U | × |E| ×m), (7.16)

where |U | is the number of user clusters, and m is the number of users.

144



7. EVALUATION

Similarly, the computational complexity of services clustering takes:

O(i× |S| × |E| × n), (7.17)

where |S| is the number of service clusters and n is the number of services.

The values i, |W | and |E| are constant and do not impact computational complexity. The

model assumes that the number of clusters is relatively small when compared to the number of

users and services (|U |, |S| << n,m). Hence, the practical case computational complexity in

the CLUS approach requires:

O(m+ n). (7.18)

The presented analysis of complexity strongly supports claims in favor of the proposed

approaches better scalability.

7.10 Evaluation Summary

This section aims to summarize all the experiments and evaluation results in one place

because of the very detailed and exhaustive evaluation chapter. The following paragraphs briefly

overview different evaluation aspects of the proposed models that were analyzed in the previous

sections.

Prediction accuracy at the density of 25%

Section 7.2 studies the prediction accuracy for each competing approach having a constant

data density of 25%. Also, two different environments are considered, the one where users

obtain similar network performance and the one where network capabilities differ. For the

environment where users obtain similar network capabilities, the LUCS approach provides best

prediction accuracy, having at least 81% lower RMSE value and at least 88% lower MAE value

than the collaborative filtering based Hybrid approach (see details in Table 7.3). In the case of

the environment where users have different network performance, the CLUS approach achieves

the best prediction accuracy, having at least 44% lower MAE and at least 37% lower MAE value

than the Hybrid approach (for details see Table 7.4). In addition, Figures 7.1–7.5 reveal the

primary cause of variance in predictions produced by different prediction approaches.

145



7. EVALUATION

The impact of data density

Section 7.3 analyses the impact of the data density on both prediction accuracy and com-

putational performance. In general, the evaluation results suggest that the data density highly

impacts prediction accuracy and performance.

While analyzing the impact on prediction accuracy, three different environments are consid-

ered: a dynamic environment (meaning the fluctuations in the service load are present) where

users have similar network capabilities, a dynamic environment where users have different net-

work capabilities, and a static environment (without service load intensity) where users have

similar network capabilities. In a dynamic environment with users having similar network per-

formance, the LUCS approach provides the best prediction accuracy (see details in Figures 7.6a–

7.6b). In a dynamic environment where users have different network performance, the CLUS

approach produces the best prediction accuracy (see details in Figures 7.7a–7.7b). In a static

environment, expectedly, collaborative filtering based approaches provide better prediction ac-

curacy for high data density, while LUCS and CLUS approaches provide better prediction for

low data density (for details see Figures 7.8a–7.8b).

Regarding computational performance of the prediction, the CLUS approach provides the

shortest and the most stable prediction time, almost independent of the data density. On the other

hand, LUCS approach prediction time decreases as the data density increases, and it provides

better prediction time when compared to the collaborative filtering based approaches on average

(see details in Figures 7.9a–7.9b).

The significance of service load and service class

Section 7.4 studies the distribution of prediction RMSE error over different service loads and

classes for each competing approach. The analyses is separately conducted for the dynamic en-

vironments with similar and different users network capabilities and for different data densities,

density of 20% and 50%.

Regarding the RMSE distribution over different service loads, for both environments and

both densities, LUCS and CLUS approaches obtain relatively stable prediction error. On the

contrary, the collaborative filtering based approaches produce best predictions at average loads,

as the load increases or decreases, the prediction error is drastically increased. The RMSE

distributions over different loads for different environments and data densities can be seen in

Figures 7.10a, 7.10b, 7.11a and 7.11b.

146



7. EVALUATION

Regarding the RMSE distribution over different service classes, for both considered envi-

ronments and densities, all competing approaches achieve better prediction accuracy for heavier

service classes, while the prediction error is highly increased for classes Class 6 and Class 7,

which are considered to be gray sheep. However, LUCS and CLUS approaches significantly

outperform collaborative filtering approaches with lower prediction error for each service class

as can be seen in Figures 7.12a, 7.12b, 7.13a and 7.13b.

The importance of each individual LUCS’s input parameter

Section 7.5 asses the importance of each individual LUCS’s input parameter on prediction

accuracy. The importance is analyzed in two different tests. In the first test, the impact of

each individual parameter available on LUCS’s prediction accuracy is studied. The second test

assesses how lack of each individual parameter influences LUCS’s prediction accuracy. The

amount of records that have a single parameter, either available for the first test, or missing for

the second test, is varied from 0% to 100% of records. Each test is separately conducted for the

dynamic environments with similar and different users network capabilities and for different

data densities, density of 5% and 25%.

The results for the first test, where a single parameter is available for variable percentage of

records show that parameter c, service class, is very important for prediction. In the case even

only a 40% of records from the sample have parameter c available (and all others missing), such

a limited LUCS approach outperforms collaborative filtering for lower data density. However,

for higher data densities, this is not possible. Any other parameter in isolation can not be used

to predict the reliability better than the collaborative filtering based approaches. The details can

be seen in Figures 7.14a, 7.14b, 7.15a and 7.15b.

In the second test, where a single parameter is missing for variable percentage of records,

the parameter service class c also proves to be the most important for the LUCS approach pre-

diction accuracy. The model can tolerate up to 50% of records missing this parameter for lower

densities and up to 10% of records missing it for higher densities. The lack of parameter ser-

vice load l significantly degrades prediction accuracy. However, the LUCS approach manifests

considerable tolerance to lack of u and s parameters. The details can be seen in Figures 7.16a,

7.16b, 7.17a and 7.17b.

147



7. EVALUATION

The sensitivity of LUCS’s groupings

Section 7.6 studies the impact of false service invocations groupings on LUCS approach

prediction accuracy. In order to asses LUCS’s sensitivity on false groupings, the fault injection

technique is used. Hence, it is allowed for the service to be incorrectly grouped into the neigh-

borhood class. For instance, the service belonging to the class 4 can be incorrectly placed into

the class 3 or class 5. Similarly, the service load can be falsely classified into the neighbor-

hood load, while parameters user location and service location are considered to be resilient to

false groupings. The impact of false groupings is analyzed by computing RMSE varying the

percentage of incorrectly classified service invocations from 0% to 100%. The same analyses

is separately conducted for the dynamic environments with similar and different users network

capabilities and for different data densities, density of 5% and 25%. The evaluation results

show that LUCS tolerates false groupings for the lower densities for even high percentage of

incorrectly grouped records. For the higher densities, LUCS can tolerate up to 30% incorrectly

grouped records. The details can be seen in Figures 7.18a, 7.18b, 7.19a and 7.19b.

The heuristics for LUCS model’s parameters α, β and γ

Section 7.7 provides the heuristics for LUCS model’s parameters adjustment to the specific

environment. The evaluation results presented so far have used an equal value of 0.25 for

each parameter α, β and γ. These parameters are used in the Equation 5.32 to determine the

impacts of different sets of similar entities. However, these values are not optimal for the given

environment. In order to determine better coefficient values, heuristics analyzes the RMSE

of each impact for each specific record in the sample, and determines the coefficients so the

impacts with higher error contribute less and impacts with lower error contribute more. To

evaluate the heuristics, the heuristics-tunned LUCS predictions are compared to the raw LUCS

predictions (α = β = γ = 0.25). The results show that the heuristics further improved the

prediction model, specially for the lower data densities (see details in Figures 7.20a and 7.20b).

The impact of CLUS’s number of clusters

Section 7.8 assess how CLUS’s number of clusters effects both prediction accuracy and

computational performance. To inspect the effect of the number of clusters, the prediction error

and time it takes to produce the predictions are computed while varying the number of user and

service clusters from the value of 2 to the value of 9, and keeping the number of environment

148



7. EVALUATION

conditions clusters constant at the value of 7.

Regarding prediction accuracy, the assessment is separately conducted for the dynamic en-

vironments with similar and different users network capabilities and different data densities,

density of 20% and 50%. The evaluation results for the environment with users with different

network performance show that even with the small number of clusters the CLUS approach out-

performs collaborative filtering based approaches. In fact, the CLUS with the higher number of

clusters outperforms the LUCS approach as well (see details in Figures 7.21a, 7.21b, 7.22a and

7.22b). In the environment where users have similar network capabilities, the CLUS approach

also outperforms collaborative filtering based approaches. However, in this environment it can

not provide better predictions than LUCS approach (see details in Figures 7.23a, 7.23b, 7.24a

and 7.24b).

Regarding computational performance of the prediction, both clustering and prediction time

of the CLUS approach increase as the number of clusters grows as can be seen in Figures 7.25a

and 7.25b. Knowing the complexity of the K-means clustering, obtained results are quite ex-

pected.

Complexity analysis

Section 7.9 provides the analytical proof, as the computational complexity analysis for

each competing approach, to argument the claims of better scalability of LUCS and CLUS

approaches. Hence, the complexity required in the collaborative filtering representative – the

Hybrid approach is:

O(n2 ×m+m2 × n), (7.19)

where n is the number of services while m is the number of users. The complexity required in

LUCS approach is:

O(nu × nl × nc × ns × (nu + nl + nc + ns)), (7.20)

where nu is the number of user locations, nl is the number of loads, nc is the number of service

classes, and ns is the number of service locations. Note, however, that the number of groups is

considerably smaller than the number of individual users and services (nu, nl, nc, ns � n,m).

The practical case computational complexity in the CLUS approach requires:

O(m+ n), (7.21)

149



7. EVALUATION

where n is the number of services while m is the number of users.

It is obvious from the presented complexity analysis that the proposed approaches provide

better scalability when compared to the collaborative filtering state-of-the-art.

150



Chapter 8

Conclusion

This dissertation is focused on reliability modeling of consumer applications in Consumer

Computing. Consumer applications are component based applications created by consumers

out of existing applications as basic building blocks. Consumers compose the existing appli-

cations into a more complex composite applications to support the additional functionality. In

order to assess the reliability of the component-based system, the reliability of each comprising

component needs to be known. Although consumer applications provide functionality through a

simple consumer intuitive GUI interface, they often contain the dynamic part of the code which

requires information retrieval or data processing over the Internet. Based on such dynamic

characteristics, consumer applications can be considered as a dynamic software artifacts that

provide their functionality over the Internet such as services. However, modeling a reliability

of services proves to be a very difficult task due to perceived reliability fluctuations caused by

the variability of service invocation context parameters.

The service reliability can be defined as a probability that the service invocation will be com-

pleted successfully, meaning that the invocation response is retrieved successfully. According

to the adopted definition, the service reliability can be computed from the past invocations data

sample as the ratio of number of successful service invocations against the number of total per-

formed invocations. The service reliability value computed in this manner is highly dependent

on the quality and the quantity of the past invocations sample. However, gaining a comprehen-

sive past invocations sample appears to be a very difficult task in practice. The insight into the

solution of this problem is to collect as much as possible feedback from consumers and service

providers, and to utilize prediction methods in order to estimate the reliability for the invocation

contexts that are lack of a sufficient number of records in the past invocations sample.

151



8. CONCLUSION

The most successful existing approaches for prediction of services reliability are based on

collaborative filtering technique which is commonly used in contemporary recommendation

systems on the Internet. Although the existing state-of-art approaches achieve promising pre-

diction accuracy and performance, they demonstrate some potentially serious disadvantages

regarding scalability and accuracy in dynamic environments. First, having a significantly large

number of services (underlying consumer applications) and millions of consumers in Consumer

Computing, collaborative filtering approaches do not scale and the real-time prediction perfor-

mance is questionable. Second, the collaborative filtering produces accurate predictions in static

environments in which the collected data records stay up to date for a reasonable long period of

time such as movie ratings or product recommendations. However, services are deployed on the

Internet which a highly dynamic environment that considerably changes on a daily basis. For

instance, the same consumer might experience quite different reliability properties while using

the same service at different periods of the same day.

In order to address the main disadvantages of existing state-of-the-art approaches, new pre-

diction models are proposed as part of this dissertation. The first proposed approach, LUCS,

estimates the reliability for an ongoing request using the past invocations data sample. The

model produces predictions based on following parameters values at the time of the invocation:

user’s location, service’s location, service load and service class (describing service internals

regarding its computational complexity). The LUCS approach improves the existing collabo-

rative filtering approaches by extending the model with parameters service load and class and

grouping the service invocations records according to the model parameters, and performing

collaborative filtering by discovering similar entities regarding each model parameter. The final

prediction is computed as a linear combination of different parameters impacts.

The LUCS approach manifests considerable dependence on the explicit availability of model

parameters and produces significantly less accurate predictions without correct input parame-

ters values. In order to address this drawback, a more flexible CLUS approach is proposed.

The CLUS approach also uses the past invocations sample to estimate the reliability for an

ongoing request. To improve the accuracy of the prediction, the CLUS approach introduces

environment–specific parameters that describe current load conditions in the system. On the

other hand, to improve the scalability, the CLUS approach reduces the redundant data by group-

ing users and services into respected user and service clusters according to their reliability

performance using K-means clustering algorithm.

152



8. CONCLUSION

In order to evaluate the proposed models, series of experiments were conducted on services

deployed in different regions of the Amazon EC2 Cloud. During experiments, different users

were simulated by placing instances of loadUI tool running as distributed agents in different

regions of the Amazon EC2 Cloud, waiting for the tasks to be delivered and executed. Different

environment–specific parameters were introduced by creating different load generators which

are also supported by the loadUI tool. Also, a special environment comprising users with

different network capabilities was simulated by using special tool which supports limitation of

network adapter’s performance. The reliability data collected during the experiments was used

to compare the prediction accuracy and performance of the proposed models to the state-of-

the-art approaches: UPCC, IPCC and the Hybrid approach. The evaluation results strongly

supports claims of better prediction accuracy and performance of the proposed models when

compared to the state-of-the-art.

Regarding prediction accuracy, in a dynamic environment where users obtain similar net-

work capabilities, the LUCS approach achieves the best prediction accuracy with at least 81%

lower RMSE value compared to the collaborative filtering based Hybrid approach. In addition,

in this environment, the CLUS approach also outperforms collaborative filtering approaches

having at least 48% lower RMSE value than the Hybrid approach. The evaluation results for

the environment where users obtain different network capabilities show that CLUS approach

provides the best accuracy among the competing approaches having at least 44% lower RMSE

value compared to the Hybrid approach. This results is quite expected since LUCS approach

considers only user’s location as a user–specific parameter. Expectedly, the user location is not

a significant parameter while determining service reliability on the broadband Internet. Still,

LUCS approach outperforms collaborative filtering based approaches in this environment too,

with at least 37% lower RMSE value than the Hybrid approach.

From the aspect of the prediction computational performance which is closely related to the

scalability, the evaluation results confirm the analytical proofs, which are presented through the

analyses of complexity for each competing approach, in favor of better scalability of the pro-

posed approaches. According to the obtained results, the CLUS approach provides the quickest

and most stable prediction time almost independent of the data density. More specifically, the

CLUS approach reduces the prediction time for at least two orders of magnitude compared to

the collaborative filtering representative - the Hybrid approach. The time that takes for LUCS

approach to produce the predictions is constantly decreasing as the data density increases and it

153



8. CONCLUSION

produces predictions more quickly than the Hybrid approach on average.

According to the presented evaluation results and brought analyses of complexity, the pro-

posed approaches successfully implement the main goals of this dissertation which are the ad-

dressing the drawbacks and improving the existing state-of-the-art collaborative filtering based

approaches regarding prediction accuracy and scalability. In fact, the proposed approaches of-

fer the additional benefit in their flexibility which is clearly reflected in a balanced trade-off

between accuracy and scalability. For instance, when considering LUCS model, by increasing

the number of classes and loads groups, more accurate predictions are produced. By contrast,

by decreasing the number of classes and loads groups, more scalable approach is achieved.

Similarly, the increase of number of clusters in the CLUS approach results in a better predic-

tion accuracy. On the other hand, by reducing the number of clusters, more scalable prediction

approach is produced. With such characteristics, these flexible approaches can be applied in

different service-oriented environments.

The main motivation for the design of prediction models presented in this dissertation is

their appliance and need in Consumer Computing for predicting the reliability of consumer

applications. Hence, as part of this dissertations, the architecture of the reliability prediction

system in Consumer Computing is designed. The architecture of the reliability prediction sys-

tem integrates the proposed prediction methods in the Consumer Computing environment. As

part of the proposed architecture, the consumer intuitive mechanism is designed as a dedicated

consumer assistant application called Geppeto ReliabilityOptimizeMe. The role of the Gep-

peto ReliabilityOptimizeMe widget is to provide consumers help and offer assistance about the

reliability of potential selection candidates while creating their consumer applications.

154



Bibliography

[1] CCL, “Consumer computing lab.” http://ccl.fer.hr/, 2013.

[2] T. Berners-Lee, “Programming ability is the new digital divide.” http:

//www.computerworld.co.nz/article/452521/programming_

ability_new_digital_divide_berners-lee/, 2013.

[3] M. R. Lyu, ed., Handbook of software reliability engineering. Hightstown, NJ, USA:

McGraw-Hill, Inc., 1996.

[4] J. D. Musa, A. Iannino, and K. Okumoto, Software reliability: measurement, prediction,

application (professional ed.). New York, NY, USA: McGraw-Hill, Inc., 1990.

[5] Z. Jelinski and P. Moranda., “Software reliability research.,” in Proc. of the Statistical

Methods for the Evaluation of Computer System Performance, 1972.

[6] M. R. Lyu, “Software reliability engineering: A roadmap,” in 2007 Future of Software

Engineering, (Washington, DC, USA), IEEE Computer Society, 2007.

[7] L. H. Putnam and W. Myers, Measures for Excellence: Reliable Software on Time, within

Budget. Prentice Hall Professional Technical Reference, 1991.

[8] M. Friedman and P. Tran, “Reliability techniques for combined hardware/software sys-

tems,” in Reliability and Maintainability Symposium, 1992. Proceedings., Annual, 1992.

[9] A. A. Abdel-Ghaly, P. Y. Chan, and B. Littlewood, “Evaluation of competing software

reliability predictions,” IEEE Trans. Softw. Eng., 1986.

[10] L. Cheung, R. Roshandel, N. Medvidovic, and L. Golubchik, “Early prediction of soft-

ware component reliability,” in Proceedings of the 30th international conference on Soft-

ware engineering, 2008.

155

http://ccl.fer.hr/
http://www.computerworld.co.nz/article/452521/programming_ability_new_digital_divide_berners-lee/
http://www.computerworld.co.nz/article/452521/programming_ability_new_digital_divide_berners-lee/
http://www.computerworld.co.nz/article/452521/programming_ability_new_digital_divide_berners-lee/


BIBLIOGRAPHY

[11] L. Cheung, I. Krka, L. Golubchik, and N. Medvidovic, “Architecture-level reliability

prediction of concurrent systems,” in Proceedings of the third joint WOSP/SIPEW inter-

national conference on Performance Engineering, 2012.

[12] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang, “Qos-

aware middleware for web services composition,” Software Engineering, IEEE Transac-

tions on, vol. 30, no. 5, pp. 311–327, 2004.

[13] L. Cheung, L. Golubchik, and F. Sha, “A study of web services performance prediction:

A client’s perspective,” in Modeling, Analysis & Simulation of Computer and Telecom-

munication Systems (MASCOTS), 2011 IEEE 19th International Symposium on, 2011.

[14] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of predictive algorithms

for collaborative filtering,” in Proceedings of the Fourteenth conference on Uncertainty in

artificial intelligence, UAI’98, (San Francisco, CA, USA), pp. 43–52, Morgan Kaufmann

Publishers Inc., 1998.

[15] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collaborative filtering rec-

ommendation algorithms,” in Proceedings of the 10th international conference on World

Wide Web, (New York, NY, USA), ACM, 2001.

[16] Z. Zheng and M. R. Lyu, “Collaborative reliability prediction of service-oriented sys-

tems,” in Proceedings of the 32nd ACM/IEEE International Conference on Software En-

gineering - Volume 1, (New York, NY, USA), ACM, 2010.

[17] Z. Zheng, H. Ma, M. R. Lyu, and I. King, “Qos-aware web service recommendation by

collaborative filtering,” IEEE Transactions on Services Computing, 2011.

[18] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering techniques,” Adv. in

Artif. Intell., vol. 2009.

[19] A. S. Das, M. Datar, A. Garg, and S. Rajaram, “Google news personalization: scalable

online collaborative filtering,” in Proceedings of the 16th international conference on

World Wide Web, WWW ’07, (New York, NY, USA), pp. 271–280, ACM, 2007.

[20] R. Burke, “Hybrid recommender systems: Survey and experiments,” User Modeling and

User-Adapted Interaction, vol. 12, pp. 331–370, Nov. 2002.

156



BIBLIOGRAPHY

[21] H. Ma, I. King, and M. R. Lyu, “Effective missing data prediction for collaborative fil-

tering,” in Proceedings of the 30th annual international ACM SIGIR conference on Re-

search and development in information retrieval, (New York, NY, USA), ACM, 2007.

[22] H. Guan, H. Li, and M. Guo, “Semi-sparse algorithm based on multi-layer optimization

for recommendation system,” in Proceedings of the 2012 International Workshop on

Programming Models and Applications for Multicores and Manycores, (New York, NY,

USA), ACM, 2012.

[23] C. Wei, W. Hsu, and M. L. Lee, “A unified framework for recommendations based on

quaternary semantic analysis,” in Proceedings of the 34th international ACM SIGIR con-

ference on Research and development in Information Retrieval, (New York, NY, USA),

ACM, 2011.

[24] M. Silic, G. Delac, I. Krka, and S. Srbljic, “Scalable and accurate prediction of avail-

ability of atomic web services,” IEEE Transactions on Services Computing, vol. 99,

no. PrePrints, p. 1, 2013.

[25] M. Silic, G. Delac, and S. Srbljic, “Prediction of atomic web services reliability based

on k-means clustering,” in Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, (New York, NY, USA), pp. 70–80, ACM, 2013.

[26] J. B. MacQueen, “Some methods for classification and analysis of multivariate observa-

tions,” in Proc. of the fifth Berkeley Symposium on Mathematical Statistics and Proba-

bility (L. M. L. Cam and J. Neyman, eds.), vol. 1, pp. 281–297, University of California

Press, 1967.

[27] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and

Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.

[28] D. Skvorc, Consumer programming. PhD thesis, Faculty of Electrical Engineering and

Computing, University of Zagreb, 2010.

[29] M. Popovic, Consumer program synchronization. PhD thesis, Faculty of Electrical En-

gineering and Computing, University of Zagreb, 2011.

157



BIBLIOGRAPHY

[30] I. Budiselic, Component recommendation for development of composite consumer ap-

plications. PhD thesis, Faculty of Electrical Engineering and Computing, University of

Zagreb, 2014.

[31] K. Vladimir, Peer tutoring in consumer computing. PhD thesis, Faculty of Electrical

Engineering and Computing, University of Zagreb, 2013.

[32] G. Delac, Reliability management of composite consumer applications. PhD thesis, Fac-

ulty of Electrical Engineering and Computing, University of Zagreb, 2014.

[33] C. C. Lab, “Geppeto.” http://161.53.65.222:8080/geppeto/index.

html, 2013.

[34] Wikipedia, “Google play.” http://en.wikipedia.org/wiki/Google_

Play/, 2012.

[35] Wikipedia, “App store (ios).” https://en.wikipedia.org/wiki/App_

Store_(iOS)/, 2012.

[36] Nielsen, “Average number of apps per smartphone now 41.”

http://internet2go.net/news/mobile-platforms/

nielsen-average-number-apps-smartphone-now-41/, 2012.

[37] C. B. Lockard and M. Wolf, “Occupational employment projections to 2020,” Monthly

Lab. Rev., vol. 135, p. 84, 2012.

[38] G. Inc., “Google glass.” http://www.google.com/glass/start/, 2013.

[39] N. Milanovic and M. Malek, “Current solutions for web service composition,” Internet

Computing, IEEE, vol. 8, no. 6, pp. 51–59, 2004.

[40] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements of reusable

object-oriented software. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,

Inc., 1995.

[41] W3C, “Html: The markup language.” http://www.w3.org/TR/html-markup/,

May 2013.

158

http://161.53.65.222:8080/geppeto/index.html
http://161.53.65.222:8080/geppeto/index.html
http://en.wikipedia.org/wiki/Google_Play/
http://en.wikipedia.org/wiki/Google_Play/
https://en.wikipedia.org/wiki/App_Store_(iOS)/
https://en.wikipedia.org/wiki/App_Store_(iOS)/
http://internet2go.net/news/mobile-platforms/nielsen-average-number-apps-smartphone-now-41/
http://internet2go.net/news/mobile-platforms/nielsen-average-number-apps-smartphone-now-41/
http://www.google.com/glass/start/
http://www.w3.org/TR/html-markup/


BIBLIOGRAPHY

[42] A. Cypher, D. C. Halbert, D. Kurlander, H. Lieberman, D. Maulsby, B. A. Myers, and

A. Turransky, eds., Watch what I do: programming by demonstration. Cambridge, MA,

USA: MIT Press, 1993.

[43] D. C. Halbert, Programming by example. PhD thesis, University of California, Berkeley,

1984.

[44] S. Bragg and C. Driskill, “Diagrammatic-graphical programming languages and dod-std-

2167a,” in AUTOTESTCON ’94. IEEE Systems Readiness Technology Conference. ’Cost

Effective Support Into the Next Century’, Conference Proceedings., pp. 211–220, 1994.

[45] R. Wieringa, “A survey of structured and object-oriented software specification methods

and techniques,” ACM Comput. Surv., vol. 30, pp. 459–527, Dec. 1998.

[46] L. Bass, P. Clements, and R. Kazman, Software architecture in practice. Boston, MA,

USA: Addison-Wesley Longman Publishing Co., Inc., 1998.

[47] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA: Service-Oriented Architecture Best

Practices (The Coad Series). Prentice Hall PTR, 2004.

[48] T. Velte, A. Velte, and R. Elsenpeter, Cloud computing, a practical approach. McGraw-

Hill, Inc., 2009.

[49] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and taxon-

omy of dependable and secure computing,” Dependable and Secure Computing, IEEE

Transactions on, vol. 1, no. 1, pp. 11–33, 2004.

[50] K. Goševa-Popstojanova and K. S. Trivedi, “Architecture-based approach to reliability

assessment of software systems,” Performance Evaluation, vol. 45, no. 2, pp. 179–204,

2001.

[51] V. Cortellessa and V. Grassi, “Reliability modeling and analysis of service-oriented ar-

chitectures,” in Test and Analysis of Web Services, pp. 339–362, Springer, 2007.

[52] W3C, “Web services description language 1.1.” http://www.w3.org/TR/wsdl/,

March 2001.

[53] OASIS, “Web services business process execution language version 2.0,” 2007. OASIS

Standard.

159

http://www.w3.org/TR/wsdl/


BIBLIOGRAPHY

[54] D. Skrobo, A. Milanovic, and S. Srbljic, “Performance evaluation of program transla-

tion in service-oriented architectures,” in Proceedings of the International conference on

Networking and Services, (Washington, DC, USA), IEEE Computer Society, 2006.

[55] S. Sinisa, S. Dejan, and S. Daniel, “Programming language design for event-driven ser-

vice composition.,” AUTOMATIKA, 2011.

[56] W.-L. Wang, D. Pan, and M.-H. Chen, “Architecture-based software reliability model-

ing,” J. Syst. Softw., 2006.

[57] B. Zhou, K. Yin, S. Zhang, H. Jiang, and A. J. Kavs, “A tree-based reliability model for

composite web service with common-cause failures,” in Proceedings of the 5th interna-

tional conference on Advances in Grid and Pervasive Computing, (Berlin, Heidelberg),

Springer-Verlag, 2010.

[58] V. Grassi and S. Patella, “Reliability prediction for service-oriented computing environ-

ments,” IEEE Internet Computing, 2006.

[59] W. T. Tsai, D. Zhang, Y. Chen, H. Huang, R. Paul, and N. Liao, “A software reliabil-

ity model for web services,” in The 8th IASTED International Conference on Software

Engineering and Applications, 2004.

[60] J. Ma and H.-p. Chen, “A reliability evaluation framework on composite web service,”

in Proceedings of the 2008 IEEE International Symposium on Service-Oriented System

Engineering, (Washington, DC, USA), IEEE Computer Society, 2008.

[61] F. Mahdian, V. Rafe, R. Rafeh, and A. T. Rahmani, “Modeling fault tolerant services

in service-oriented architecture,” in Third IEEE International Symposium on Theoret-

ical Aspects of Software Engineering 2009, (Washington, DC, USA), IEEE Computer

Society, 2009.

[62] B. Li, X. Fan, Y. Zhou, and Z. Su, “Evaluating the reliability of web services based on

bpel code structure analysis and run-time information capture,” in Asia Pacific Software

Engineering Conference 2010, (Washington, DC, USA), IEEE Computer Society, 2010.

[63] L. Coppolino, L. Romano, and V. Vianello, “Security engineering of soa applications via

reliability patterns.,” JSEA, 2011.

160



BIBLIOGRAPHY

[64] G. Candea and A. Fox, “Crash-only software,” in Proceedings of the 9th conference on

Hot Topics in Operating Systems - Volume 9, HOTOS’03, (Berkeley, CA, USA), pp. 12–

12, USENIX Association, 2003.

[65] Y. Baryshnikov, E. Coffman, G. Pierre, D. Rubenstein, M. Squillante, and T. Yimwad-

sana, “Predictability of web-server traffic congestion,” Web Content Caching and Distri-

bution, International Workshop on, 2005.

[66] M. Andreolini and S. Casolari, “Load prediction models in web-based systems,” in In-

ternational conference on Performance evaluation methodolgies and tools, (New York,

NY, USA), ACM, 2006.

[67] Y. Wang, W. M. Lively, and D. B. Simmons, “Web software traffic characteristics and

failure prediction model selection,” J. Comp. Methods in Sci. and Eng., vol. 9, pp. 23–

33, Apr. 2009.

[68] A. Klein, F. Ishikawa, and S. Honiden, “Towards network-aware service composition

in the cloud,” in Proceedings of the 21st international conference on World Wide Web,

WWW ’12, (New York, NY, USA), pp. 959–968, ACM, 2012.

[69] N. B. Mabrouk, S. Beauche, E. Kuznetsova, N. Georgantas, and V. Issarny, “Qos-

aware service composition in dynamic service oriented environments,” in Proceedings

of the 10th ACM/IFIP/USENIX International Conference on Middleware, Middleware

’09, (New York, NY, USA), pp. 7:1–7:20, Springer-Verlag New York, Inc., 2009.

[70] H. Ghanbari, C. Barna, M. Litoiu, M. Woodside, T. Zheng, J. Wong, and G. Iszlai,

“Tracking adaptive performance models using dynamic clustering of user classes,” in

Proceedings of the 2nd ACM/SPEC International Conference on Performance engineer-

ing, ICPE ’11, (New York, NY, USA), pp. 179–188, ACM, 2011.

[71] A. Bertolino, E. Marchetti, and A. Morichetta, “Adequate monitoring of service com-

positions,” in Proceedings of the 2013 9th Joint Meeting on Foundations of Software

Engineering, ESEC/FSE 2013, (New York, NY, USA), pp. 59–69, ACM, 2013.

[72] L. Baresi, S. Guinea, O. Nano, and G. Spanoudakis, “Comprehensive monitoring of bpel

processes,” IEEE Internet Computing, vol. 14, pp. 50–57, May 2010.

161



BIBLIOGRAPHY

[73] C. Ghezzi and S. Guinea, “Run-time monitoring in service-oriented architectures,” in

Test and analysis of web services, pp. 237–264, Springer, 2007.

[74] A. Metzger, O. Sammodi, K. Pohl, and M. Rzepka, “Towards pro-active adaptation with

confidence: augmenting service monitoring with online testing,” in Proceedings of the

2010 ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems,

SEAMS ’10, (New York, NY, USA), pp. 20–28, ACM, 2010.

[75] C. Bartolini, A. Bertolino, G. D. Angelis, A. Ciancone, and R. Mirandola, “Apprehensive

qos monitoring of service choreographies,” in SAC, pp. 1893–1899, 2013.

[76] A. Bertolino, A. Calabrò, and G. D. Angelis, “A generative approach for the adaptive

monitoring of sla in service choreographies,” in ICWE, pp. 408–415, 2013.

[77] X. Amatriain, J. M. Pujol, and N. Oliver, “I like it... i like it not: Evaluating user ratings

noise in recommender systems,” in Proceedings of the 17th International Conference on

User Modeling, Adaptation, and Personalization: formerly UM and AH, UMAP ’09,

(Berlin, Heidelberg), pp. 247–258, Springer-Verlag, 2009.

[78] X. Amatriain, J. M. Pujol, N. Tintarev, and N. Oliver, “Rate it again: increasing recom-

mendation accuracy by user re-rating,” in Proceedings of the third ACM conference on

Recommender systems, RecSys ’09, (New York, NY, USA), pp. 173–180, ACM, 2009.

[79] D. Cosley, S. K. Lam, I. Albert, J. A. Konstan, and J. Riedl, “Is seeing believing?: how

recommender system interfaces affect users’ opinions,” in Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI ’03, (New York, NY, USA),

pp. 585–592, ACM, 2003.

[80] E. I. Sparling and S. Sen, “Rating: how difficult is it?,” in Proceedings of the fifth ACM

conference on Recommender systems, RecSys ’11, (New York, NY, USA), pp. 149–156,

ACM, 2011.

[81] D. Kluver, T. T. Nguyen, M. Ekstrand, S. Sen, and J. Riedl, “How many bits per rating?,”

in Proceedings of the sixth ACM conference on Recommender systems, RecSys ’12, (New

York, NY, USA), pp. 99–106, ACM, 2012.

[82] S. Nobarany, L. Oram, V. K. Rajendran, C.-H. Chen, J. McGrenere, and T. Munzner,

“The design space of opinion measurement interfaces: exploring recall support for rating

162



BIBLIOGRAPHY

and ranking,” in Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, CHI ’12, (New York, NY, USA), pp. 2035–2044, ACM, 2012.

[83] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen, “The adaptive web,” ch. Collabo-

rative filtering recommender systems, pp. 291–324, Berlin, Heidelberg: Springer-Verlag,

2007.

[84] M. Montaner, B. López, and J. L. De La Rosa, “A taxonomy of recommender agents on

theinternet,” Artif. Intell. Rev., vol. 19, pp. 285–330, June 2003.

[85] L. Shao, J. Zhao, T. Xie, L. Zhang, B. Xie, and H. Mei, “User-perceived service avail-

ability: A metric and an estimation approach,” in Web Services, 2009. ICWS 2009. IEEE

International Conference on, pp. 647–654, IEEE, 2009.

[86] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, “Grouplens: an open

architecture for collaborative filtering of netnews,” in Proceedings of the 1994 ACM con-

ference on Computer supported cooperative work, CSCW ’94, (New York, NY, USA),

pp. 175–186, ACM, 1994.

[87] M. R. McLaughlin and J. L. Herlocker, “A collaborative filtering algorithm and evalua-

tion metric that accurately model the user experience,” in Proceedings of the 27th annual

international ACM SIGIR conference on Research and development in information re-

trieval, SIGIR ’04, (New York, NY, USA), pp. 329–336, ACM, 2004.

[88] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins, “Eigentaste: A constant time collab-

orative filtering algorithm,” Inf. Retr., vol. 4, pp. 133–151, July 2001.

[89] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl, “Evaluating collaborative

filtering recommender systems,” ACM Trans. Inf. Syst., vol. 22, pp. 5–53, Jan. 2004.

[90] G. Salton and M. J. McGill, Introduction to Modern Information Retrieval. New York,

NY, USA: McGraw-Hill, Inc., 1986.

[91] G. Karypis, “Evaluation of item-based top-n recommendation algorithms,” in Proceed-

ings of the tenth international conference on Information and knowledge management,

CIKM ’01, (New York, NY, USA), pp. 247–254, ACM, 2001.

163



BIBLIOGRAPHY

[92] M. Deshpande and G. Karypis, “Item-based top-n recommendation algorithms,” ACM

Trans. Inf. Syst., vol. 22, pp. 143–177, Jan. 2004.

[93] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl, “An algorithmic framework

for performing collaborative filtering,” in Proceedings of the 22nd annual international

ACM SIGIR conference on Research and development in information retrieval, SIGIR

’99, (New York, NY, USA), pp. 230–237, ACM, 1999.

[94] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Analysis of recommendation algorithms

for e-commerce,” in Proceedings of the 2nd ACM conference on Electronic commerce,

EC ’00, (New York, NY, USA), pp. 158–167, ACM, 2000.

[95] S. H. S. Chee, J. Han, and K. Wang, “Rectree: An efficient collaborative filtering

method,” in Proceedings of the Third International Conference on Data Warehousing and

Knowledge Discovery, DaWaK ’01, (London, UK, UK), pp. 141–151, Springer-Verlag,

2001.

[96] D. Lemire, “Scale and translation invariant collaborative filtering systems,” Inf. Retr.,

vol. 8, pp. 129–150, Jan. 2005.

[97] X. Su, T. M. Khoshgoftaar, and R. Greiner, “A mixture imputation-boosted collaborative

filter,” in Proceedings of the Twenty-First International Florida Artificial Intelligence

Research Society Conference, May 15-17, 2008, Coconut Grove, Florida, USA, FLAIRS

’08, pp. 312–316, 2008.

[98] X. Su, T. M. Khoshgoftaar, X. Zhu, and R. Greiner, “Imputation-boosted collaborative

filtering using machine learning classifiers,” in Proceedings of the 2008 ACM symposium

on Applied computing, SAC ’08, (New York, NY, USA), pp. 949–950, ACM, 2008.

[99] R. J. A. Little, “Missing-Data Adjustments in Large Surveys,” Journal of Business &

Economic Statistics, vol. 6, pp. 287–296, 1988.

[100] H. Toutenburg, “Rubin, d.b.: Multiple imputation for nonresponse in surveys,” Statistical

Papers, vol. 31, no. 1, pp. 180–180, 1990.

[101] S. Goldman and M. Warmuth, “Learning binary relations using weighted majority vot-

ing,” Machine Learning, vol. 20, no. 3, pp. 245–271, 1995.

164



BIBLIOGRAPHY

[102] A. Nakamura and N. Abe, “Collaborative filtering using weighted majority prediction al-

gorithms,” in Proceedings of the Fifteenth International Conference on Machine Learn-

ing, ICML ’98, (San Francisco, CA, USA), pp. 395–403, Morgan Kaufmann Publishers

Inc., 1998.

[103] C. Basu, H. Hirsh, and W. Cohen, “Recommendation as classification: using social and

content-based information in recommendation,” in Proceedings of the fifteenth nation-

al/tenth conference on Artificial intelligence/Innovative applications of artificial intelli-

gence, AAAI ’98/IAAI ’98, (Menlo Park, CA, USA), pp. 714–720, American Associa-

tion for Artificial Intelligence, 1998.

[104] J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible inference.

San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1988.

[105] K. Miyahara and M. J. Pazzani, “Improvement of collaborative filtering with the simple

bayesian classifier.,” Transactions of Information Processing Society of Japan, vol. 43.

[106] K. Miyahara and M. J. Pazzani, “Collaborative filtering with the simple bayesian classi-

fier,” in Proceedings of the 6th Pacific Rim international conference on Artificial intelli-

gence, PRICAI’00, (Berlin, Heidelberg), pp. 679–689, Springer-Verlag, 2000.

[107] X. Su and T. Khoshgoftaar, “Collaborative filtering for multi-class data using belief nets

algorithms,” in Tools with Artificial Intelligence, 2006. ICTAI ’06. 18th IEEE Interna-

tional Conference on, pp. 497–504, 2006.

[108] R. Greiner, X. Su, B. Shen, and W. Zhou, “Structural extension to logistic regression:

Discriminative parameter learning of belief net classifiers,” Machine Learning, vol. 59,

no. 3, pp. 297–322, 2005.

[109] B. Shen, X. Su, R. Greiner, P. Musilek, and C. Cheng, “Discriminative parameter learning

of general bayesian network classifiers,” in Proceedings of the 15th IEEE International

Conference on Tools with Artificial Intelligence, ICTAI ’03, (Washington, DC, USA),

pp. 296–, IEEE Computer Society, 2003.

[110] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network classifiers,” Mach.

Learn., vol. 29, pp. 131–163, Nov. 1997.

165



BIBLIOGRAPHY

[111] D. Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite, and C. Kadie, “Dependency

networks for inference, collaborative filtering, and data visualization,” J. Mach. Learn.

Res., vol. 1, pp. 49–75, Sept. 2001.

[112] J. Han, Data Mining: Concepts and Techniques. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 2005.

[113] X. Su, M. Kubat, M. A. Tapia, and C. Hu, “Query size estimation using clustering tech-

niques,” in Proceedings of the 17th IEEE International Conference on Tools with Arti-

ficial Intelligence, ICTAI ’05, (Washington, DC, USA), pp. 185–189, IEEE Computer

Society, 2005.

[114] M. Ester, H. peter Kriegel, J. S, and X. Xu, “A density-based algorithm for discovering

clusters in large spatial databases with noise,” pp. 226–231, AAAI Press, 1996.

[115] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “Optics: ordering points to

identify the clustering structure,” in Proceedings of the 1999 ACM SIGMOD interna-

tional conference on Management of data, SIGMOD ’99, (New York, NY, USA), pp. 49–

60, ACM, 1999.

[116] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: an efficient data clustering method

for very large databases,” in Proceedings of the 1996 ACM SIGMOD international con-

ference on Management of data, SIGMOD ’96, (New York, NY, USA), pp. 103–114,

ACM, 1996.

[117] M. Connor and J. Herlocker, “Clustering items for collaborative filtering,” in Proceedings

of the ACM SIGIR Workshop on Recommender Systems, SIGIR ’99, 1999.

[118] B. M. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Recommender systems for large-

scale e-commerce: Scalable neighborhood formation using clustering,” in Proceedings

of the fifth international conference on computer and information technology, ICCIT ’02,

December 2002.

[119] L. H. Ungar and D. P. Foster, “Clustering methods for collaborative filtering,” in Pro-

ceedings of the AAAI Workshop on Recommendation Systems, no. 1, AAAI Press, 1998.

[120] L. Si and R. Jin, “Flexible mixture model for collaborative filtering,” in Machine Learn-

ing, Proceedings of the Twentieth International Conference (ICML 2003), August 21-24,

166



BIBLIOGRAPHY

2003, Washington, DC, USA (T. Fawcett and N. Mishra, eds.), pp. 704–711, AAAI Press,

2003.

[121] T. Hofmann and J. Puzicha, “Latent class models for collaborative filtering,” in Proceed-

ings of the Sixteenth International Joint Conference on Artificial Intelligence, IJCAI ’99,

(San Francisco, CA, USA), pp. 688–693, Morgan Kaufmann Publishers Inc., 1999.

[122] G.-R. Xue, C. Lin, Q. Yang, W. Xi, H.-J. Zeng, Y. Yu, and Z. Chen, “Scalable collabo-

rative filtering using cluster-based smoothing,” in Proceedings of the 28th annual inter-

national ACM SIGIR conference on Research and development in information retrieval,

SIGIR ’05, (New York, NY, USA), pp. 114–121, ACM, 2005.

[123] A. Y. Ng and M. Jordan, “Pegasus: a policy search method for large mdps and pomdps,”

in Proceedings of the Sixteenth conference on Uncertainty in artificial intelligence,

UAI’00, (San Francisco, CA, USA), pp. 406–415, Morgan Kaufmann Publishers Inc.,

2000.

[124] G. Linden, B. Smith, and J. York, “Amazon.com recommendations: Item-to-item collab-

orative filtering,” IEEE Internet Computing, vol. 7, pp. 76–80, Jan. 2003.

[125] J. Canny, “Collaborative filtering with privacy via factor analysis,” in Proceedings of

the 25th annual international ACM SIGIR conference on Research and development in

information retrieval, SIGIR ’02, (New York, NY, USA), pp. 238–245, ACM, 2002.

[126] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete

data via the em algorithm,” JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SE-

RIES B, vol. 39, no. 1, pp. 1–38, 1977.

[127] D. M. Pennock, E. Horvitz, S. Lawrence, and C. L. Giles, “Collaborative filtering by

personality diagnosis: A hybrid memory and model-based approach,” in Proceedings of

the 16th Conference on Uncertainty in Artificial Intelligence, UAI ’00, (San Francisco,

CA, USA), pp. 473–480, Morgan Kaufmann Publishers Inc., 2000.

[128] D. Billsus and M. J. Pazzani, “Learning collaborative information filters,” in Proceed-

ings of the Fifteenth International Conference on Machine Learning, ICML ’98, (San

Francisco, CA, USA), pp. 46–54, Morgan Kaufmann Publishers Inc., 1998.

167



BIBLIOGRAPHY

[129] S. Vucetic and Z. Obradovic, “Collaborative filtering using a regression-based approach,”

Knowl. Inf. Syst., vol. 7, pp. 1–22, Jan. 2005.

[130] D. Lemire and A. Maclachlan, “Slope one predictors for online rating-based collaborative

filtering,” Society for Industrial Mathematics, vol. 5, pp. 471–480, 2005.

[131] R. Bellman, “A markovian decision process,” Indiana University Mathematics Journal,

vol. 6, pp. 679–684, 1957.

[132] R. Howard, Dynamic Programming and Markov Processes. Published jointly by the

Technology Press of the Massachusetts Institute of Technology and, 1960.

[133] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction, vol. 1. Mas-

sachusetts, USA: MIT Press, Cambridge University Press, 1998.

[134] G. Shani, D. Heckerman, and R. I. Brafman, “An mdp-based recommender system,” J.

Mach. Learn. Res., vol. 6, pp. 1265–1295, Dec. 2005.

[135] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting in partially

observable stochastic domains,” Artificial Intelligence, vol. 101, no. 1–2, pp. 99 – 134,

1998.

[136] M. Hauskrecht, “Incremental methods for computing bounds in partially observable

markov decision processes,” in Proceedings of the fourteenth national conference on

artificial intelligence and ninth conference on Innovative applications of artificial intel-

ligence, AAAI’97/IAAI’97, pp. 734–739, AAAI Press, 1997.

[137] P. Poupart and C. Boutilier, “Vdcbpi: an approximate scalable algorithm for large

pomdps,” in Proceedings of the 18th Annual Conference on Neural Information Pro-

cessing Systems, NIPS’04, 2004.

[138] M. Kearns, Y. Mansour, and A. Y. Ng, “A sparse sampling algorithm for near-optimal

planning in large markov decision processes,” Mach. Learn., vol. 49, pp. 193–208, Nov.

2002.

[139] T. Hofmann, “Latent semantic models for collaborative filtering,” ACM Trans. Inf. Syst.,

vol. 22, pp. 89–115, Jan. 2004.

168



BIBLIOGRAPHY

[140] T. Hofmann, “Unsupervised learning by probabilistic latent semantic analysis,” Mach.

Learn., vol. 42, pp. 177–196, Jan. 2001.

[141] H. Research, “Eachmovie dataset.” http://www.grouplens.org/node/76.

[142] B. M. Marlin, “Modeling user rating profiles for collaborative filtering,” in Advances

in Neural Information Processing Systems 16 [Neural Information Processing Systems,

NIPS 2003, December 8-13, 2003, Vancouver and Whistler, British Columbia, Canada].

[143] B. Marlin, Collaborative filtering: A machine learning perspective. PhD thesis, Univer-

sity of Toronto, 2004.

[144] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” J. Mach. Learn.

Res., vol. 3, pp. 993–1022, Mar. 2003.

[145] W. W. Cohen, R. E. Schapire, and Y. Singer, “Learning to order things,” J. Artif. Int. Res.,

vol. 10, pp. 243–270, May 1999.

[146] X. Fu, J. Budzik, and K. J. Hammond, “Mining navigation history for recommendation,”

in Proceedings of the 5th international conference on Intelligent user interfaces, IUI ’00,

(New York, NY, USA), pp. 106–112, ACM, 2000.

[147] C. W.-k. Leung, S. C.-f. Chan, and F.-l. Chung, “A collaborative filtering framework

based on fuzzy association rules and multiple-level similarity,” Knowl. Inf. Syst., vol. 10,

pp. 357–381, Oct. 2006.

[148] D. Y. Pavlov and D. M. Pennock, “A maximum entropy approach to collaborative filter-

ing in dynamic, sparse, high-dimensional domains,” in Advances in Neural Information

Processing Systems, pp. 1441–1448, 2002.

[149] D. Nikovski and V. Kulev, “Induction of compact decision trees for personalized recom-

mendation,” in Proceedings of the 2006 ACM symposium on Applied computing, SAC

’06, (New York, NY, USA), pp. 575–581, ACM, 2006.

[150] C. C. Aggarwal, J. L. Wolf, K.-L. Wu, and P. S. Yu, “Horting hatches an egg: a new

graph-theoretic approach to collaborative filtering,” in Proceedings of the fifth ACM

SIGKDD international conference on Knowledge discovery and data mining, KDD ’99,

(New York, NY, USA), pp. 201–212, ACM, 1999.

169

http://www.grouplens.org/node/76


BIBLIOGRAPHY

[151] B. Marlin and R. S. Zemel, “The multiple multiplicative factor model for collaborative

filtering,” in Proceedings of the twenty-first international conference on Machine learn-

ing, ICML ’04, (New York, NY, USA), pp. 73–, ACM, 2004.

[152] M. E. Tipping and C. M. Bishop, “Probabilistic principal component analysis,” Journal of

the Royal Statistical Society: Series B (Statistical Methodology), vol. 61, no. 3, pp. 611–

622, 1999.

[153] N. Srebro, J. Rennie, and T. S. Jaakkola, “Maximum-margin matrix factorization,” in

Advances in neural information processing systems, pp. 1329–1336, 2004.

[154] J. D. M. Rennie and N. Srebro, “Fast maximum margin matrix factorization for col-

laborative prediction,” in Proceedings of the 22nd international conference on Machine

learning, ICML ’05, (New York, NY, USA), pp. 713–719, ACM, 2005.

[155] G. Takács, I. Pilászy, B. Németh, and D. Tikk, “Investigation of various matrix factoriza-

tion methods for large recommender systems,” in Proceedings of the 2nd KDD Workshop

on Large-Scale Recommender Systems and the Netflix Prize Competition, NETFLIX ’08,

(New York, NY, USA), pp. 6:1–6:8, ACM, 2008.

[156] J. Wang, S. Robertson, A. P. Vries, and M. J. Reinders, “Probabilistic relevance ranking

for collaborative filtering,” Inf. Retr., vol. 11, pp. 477–497, Dec. 2008.

[157] J. Wang, A. P. de Vries, and M. J. T. Reinders, “Unified relevance models for rating

prediction in collaborative filtering,” ACM Trans. Inf. Syst., vol. 26, pp. 16:1–16:42, June

2008.

[158] M. J. Pazzani, “A framework for collaborative, content-based and demographic filtering,”

Artif. Intell. Rev., vol. 13, pp. 393–408, Dec. 1999.

[159] T. Zhu, R. Greiner, and G. Häubl, “Learning a model of a web user’s interests,” in Pro-

ceedings of the 9th international conference on User modeling, UM’03, (Berlin, Heidel-

berg), pp. 65–75, Springer-Verlag, 2003.

[160] M. Pazzani and D. Billsus, “Learning and revising user profiles: The identification ofin-

teresting web sites,” Mach. Learn., vol. 27, pp. 313–331, June 1997.

170



BIBLIOGRAPHY

[161] G. Adomavicius and A. Tuzhilin, “Toward the next generation of recommender systems:

A survey of the state-of-the-art and possible extensions,” IEEE Trans. on Knowl. and

Data Eng., vol. 17, pp. 734–749, June 2005.

[162] M. K. Condliff, D. D. Lewis, and D. Madigan, “Bayesian mixed-effects models for rec-

ommender systems,” in In ACM SIGIR ’99 Workshop on Recommender Systems: Algo-

rithms and Evaluation, 1999.

[163] B. Krulwich, “Lifestyle finder: Intelligent user profiling using large-scale demographic

data,” AI Magazine, pp. 37–45, 1997.

[164] R. H. Guttman, Merchant differentiation through integrative negotiation in agent-

mediated electronic commerce. PhD thesis, Citeseer, 1998.

[165] M. Balabanović and Y. Shoham, “Fab: content-based, collaborative recommendation,”

Commun. ACM, vol. 40, pp. 66–72, Mar. 1997.

[166] P. Melville, R. J. Mooney, and R. Nagarajan, “Content-boosted collaborative filtering

for improved recommendations,” in Eighteenth national conference on Artificial intelli-

gence, (Menlo Park, CA, USA), pp. 187–192, American Association for Artificial Intel-

ligence, 2002.

[167] A. Ansari, S. Essegaier, and R. Kohli, “Internet recommendation systems,” Journal of

Marketing research, vol. 37, no. 3, pp. 363–375, 2000.

[168] A. E. Gelfand and A. F. Smith, “Sampling-based approaches to calculating marginal

densities,” Journal of the American statistical association, vol. 85, no. 410, pp. 398–409,

1990.

[169] B. M. Sarwar, J. A. Konstan, A. Borchers, J. Herlocker, B. Miller, and J. Riedl, “Us-

ing filtering agents to improve prediction quality in the grouplens research collaborative

filtering system,” in Proceedings of the 1998 ACM conference on Computer supported

cooperative work, CSCW ’98, (New York, NY, USA), pp. 345–354, ACM, 1998.

[170] R. J. Mooney and L. Roy, “Content-based book recommending using learning for text

categorization,” in Proceedings of the fifth ACM conference on Digital libraries, DL ’00,

(New York, NY, USA), pp. 195–204, ACM, 2000.

171



BIBLIOGRAPHY

[171] M. Claypool, A. Gokhale, T. Miranda, P. Murnikov, D. Netes, and M. Sartin, “Combin-

ing content-based and collaborative filters in an online newspaper,” in Proceedings of

the ACM SIGIR ’99 Workshop on Recommender Systems: Algorithms and Evaluation,

(Berkeley, California), ACM, 1999.

[172] J. A. Delgado, Agent-based information filtering and recommender systems on the Inter-

net. PhD thesis, February 2000.

[173] X. Su, R. Greiner, T. Khoshgoftaar, and X. Zhu, “Hybrid collaborative filtering algo-

rithms using a mixture of experts,” in Web Intelligence, IEEE/WIC/ACM International

Conference on, pp. 645–649, 2007.

[174] R. E. Schapire, “A brief introduction to boosting,” in Proceedings of the 16th interna-

tional joint conference on Artificial intelligence - Volume 2, IJCAI’99, (San Francisco,

CA, USA), pp. 1401–1406, Morgan Kaufmann Publishers Inc., 1999.

[175] B. Smyth and P. Cotter, “A personalised tv listings service for the digital tv age,” Knowl.-

Based Syst., vol. 13, no. 2-3, pp. 53–59, 2000.

[176] M. Balabanović, “Exploring versus exploiting when learning user models for text rec-

ommendation,” User Modeling and User-Adapted Interaction, vol. 8, pp. 71–102, Jan.

1998.

[177] A. Popescul, L. H. Ungar, D. M. Pennock, and S. Lawrence, “Probabilistic models for

unified collaborative and content-based recommendation in sparse-data environments,”

in Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence, UAI ’01,

(San Francisco, CA, USA), pp. 437–444, Morgan Kaufmann Publishers Inc., 2001.

[178] K. Yu, A. Schwaighofer, V. Tresp, X. Xu, and H.-P. Kriegel, “Probabilistic memory-

based collaborative filtering,” IEEE Trans. on Knowl. and Data Eng., vol. 16, pp. 56–69,

Jan. 2004.

[179] C. ResearchIndex, “digital library of computer science research papers.” http://

citeseer.ist.psu.edu/.

[180] T. K. Landauer and M. L. Littman, “Computerized cross-language document retrieval

using latent semantic indexing,” Apr. 5 1994. US Patent 5,301,109.

172

http://citeseer.ist.psu.edu/
http://citeseer.ist.psu.edu/


BIBLIOGRAPHY

[181] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. Harshman,

“Indexing by latent semantic analysis,” JASIS, vol. 41, no. 6, pp. 391–407, 1990.

[182] K. Pearson, “Liii. on lines and planes of closest fit to systems of points in space,” The

London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 2,

no. 11, pp. 559–572, 1901.

[183] C.-N. Ziegler, G. Lausen, and L. Schmidt-Thieme, “Taxonomy-driven computation of

product recommendations,” in Proceedings of the thirteenth ACM international confer-

ence on Information and knowledge management, CIKM ’04, (New York, NY, USA),

pp. 406–415, ACM, 2004.

[184] A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock, “Methods and metrics for

cold-start recommendations,” in Proceedings of the 25th annual international ACM SI-

GIR conference on Research and development in information retrieval, SIGIR ’02, (New

York, NY, USA), pp. 253–260, ACM, 2002.

[185] B. M. Kim and Q. Li, “Probabilistic model estimation for collaborative filtering based on

items attributes,” in Proceedings of the 2004 IEEE/WIC/ACM International Conference

on Web Intelligence, WI ’04, (Washington, DC, USA), pp. 185–191, IEEE Computer

Society, 2004.

[186] Z. Huang, H. Chen, and D. Zeng, “Applying associative retrieval techniques to alleviate

the sparsity problem in collaborative filtering,” ACM Trans. Inf. Syst., vol. 22, pp. 116–

142, Jan. 2004.

[187] D. DeCoste, “Collaborative prediction using ensembles of maximum margin matrix fac-

torizations,” in Proceedings of the 23rd international conference on Machine learning,

ICML ’06, (New York, NY, USA), pp. 249–256, ACM, 2006.

[188] H. Noh, M. Kwak, and I. Han, “Improving the prediction performance of customer be-

havior through multiple imputation,” Intell. Data Anal., vol. 8, pp. 563–577, Dec. 2004.

[189] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Incremental singular value decom-

position algorithms for highly scalable recommender systems,” in Fifth International

Conference on Computer and Information Science, pp. 27–28, Citeseer, 2002.

173



BIBLIOGRAPHY

[190] M. W. Berry, S. T. Dumais, and G. W. O’Brien, “Using linear algebra for intelligent

information retrieval,” SIAM Rev., vol. 37, pp. 573–595, Dec. 1995.

[191] K. Sparck Jones, “Document retrieval systems,” ch. A statistical interpretation of term

specificity and its application in retrieval, pp. 132–142, London, UK, UK: Taylor Graham

Publishing, 1988.

[192] J. McCrae, A. Piatek, and A. Langley, “Collaborative filtering,” http:// www. imperialvi-

olet. org, 2004.

[193] P. Resnick and H. R. Varian, “Recommender systems,” Commun. ACM, vol. 40, pp. 56–

58, Mar. 1997.

[194] S. K. Lam and J. Riedl, “Shilling recommender systems for fun and profit,” in Proceed-

ings of the 13th international conference on World Wide Web, WWW ’04, (New York,

NY, USA), pp. 393–402, ACM, 2004.

[195] B. Mobasher, R. Burke, R. Bhaumik, and C. Williams, “Effective attack models for

shilling item-based collaborative filtering systems,” in Proceedings of the 2005 WebKDD

Workshop, held in conjuction with ACM SIGKDD’2005, 2005.

[196] M. O’Mahony, N. Hurley, N. Kushmerick, and G. Silvestre, “Collaborative recommen-

dation: A robustness analysis,” ACM Trans. Internet Technol., vol. 4, pp. 344–377, Nov.

2004.

[197] R. M. Bell and Y. Koren, “Improved neighborhood-based collaborative filtering,” in KDD

Cup and Workshop at the 13th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, sn, 2007.

[198] B. N. Miller, J. A. Konstan, and J. Riedl, “Pocketlens: Toward a personal recommender

system,” ACM Trans. Inf. Syst., vol. 22, pp. 437–476, July 2004.

[199] K. Yu, X. Xu, J. Tao, M. Ester, and H.-P. Kriegel, “Instance selection techniques for

memory-based collaborative filtering.,” in SDM, vol. 2, p. 16, 2002.

[200] G. Shafer, A mathematical theory of evidence, vol. 1. Princeton university press Prince-

ton, 1976.

174



BIBLIOGRAPHY

[201] D. Cai, M. F. McTear, and S. I. McClean, “Knowledge discovery in distributed databases

using evidence theory,” International Journal of intelligent systems, vol. 15, no. 8,

pp. 745–761, 2000.

[202] T. M. Khoshgoftaar and J. Hulse, “Imputation techniques for multivariate missingness in

software measurement data,” Software Quality Control, vol. 16, pp. 563–600, Dec. 2008.

[203] Y. Koren, “Tutorial on recent progress in collaborative filtering,” in RecSys ’08: Pro-

ceedings of the 2008 ACM conference on Recommender systems, (New York, NY, USA),

pp. 333–334, ACM, 2008.

[204] A. W. Services, “Amazon ec2,” 2012. Elastic Compute Cloud.

[205] S. software, “Loadui.” http://www.loadui.org/, 2012. Open source load and

stress testing tool.

[206] D. Avresky, J. Arlat, J.-C. Laprie, and Y. Crouzet, “Fault injection for formal testing of

fault tolerance,” Reliability, IEEE Transactions on, vol. 45, no. 3, pp. 443–455, 1996.

[207] A. Vattani, “k-means requires exponentially many iterations even in the plane,” in Pro-

ceedings of the 25th annual symposium on Computational geometry, SCG ’09, (New

York, NY, USA), pp. 324–332, ACM, 2009.

175

http://www.loadui.org/


Biography

Marin Šilić was born in 1983 in Sarajevo, Bosnia and Herzegovina. He finished the ele-

mentary school and the gymnasium in Makarska. He received his M.Sc. degree in 2007 at the

Faculty of Electrical Engineering and Computing, University of Zagreb, under the supervision

of Professor Siniša Srbljić. During his studies at the University of Zagreb, Marin was receiving

a scholarship from the Croatian Ministry of Science. As an outstanding student he was enrolled

in advanced study program with a special emphasis on the research work. He was awarded

with the "Josip Lončar" award which is given to the top graduating students in computing at the

University of Zagreb. In 2007, Marin joined the Faculty of Electrical Engineering and Comput-

ing at the University of Zagreb as a research assistant. He actively participated on the research

project entitled “End-User Tool for Gadget Composition” sponsored by Croatian Ministry of

Science and Google. In 2008, Marin was an software engineering intern in Google Inc., in New

York, USA. He was working in the Google Docs team on the design and implementation of the

Google Spreadsheets List View. Marin has presented his research results in the papers that are

published in the respected journal and at the top software engineering venue. He is a student

member of the IEEE.

List of papers

1. ŠILIĆ, MARIN; DELAČ, GORAN; KRKA, IVO; SRBLJIĆ, SINIŠA. Scalable and Accu-

rate Prediction of Availability of Atomic Web Services. // IEEE Transactions on Services

Computing. (2013).

2. ŠILIĆ, MARIN; DELAČ, GORAN; SRBLJIĆ, SINIŠA. Prediction of Atomic Web Services

Reliability for QoS-aware Recommendation. // IEEE Transaction on Services Comput-

ing. (2013).

3. DELAČ, GORAN; ŠILIĆ, MARIN; SRBLJIĆ, SINIŠA. A Reliability Improvement Method

176



BIBLIOGRAPHY

for SOA-Based Applications. // IEEE Transactions on Dependable and Secure Comput-

ing. (2012).

4. DELAČ, GORAN; ŠILIĆ, MARIN; VLADIMIR, KLEMO. Reliability Sensitivity Analysis

for Yahoo! Pipes Mashups // Proceedings of the 36th International Convention of Infor-

mation Communication Technology, Electronics and Microelectronics, MIPRO 2013.

5. ŠILIĆ, MARIN; DELAČ, GORAN; SRBLJIĆ SINIŠA. Prediction of atomic web services

reliability based on k-means clustering // Proceedings of the 2013 9th Joint Meeting on

Foundations of Software Engineering, ESEC/FSE’13 / Meyer, Bertrand ; Baresi, Luciano

; Mezini, Mira, editor(s). New York, NY, USA : ACM, 2013. 70-80.

6. DELAČ, GORAN; ŠILIĆ, MARIN; SRBLJIĆ, SINIŠA. Reliability Modeling for SOA Sys-

tems // Proceedings of the 35th International Convention of Information Communication

Technology, Electronics and Microelectronics, MIPRO 2012. 2012. 847-852.

7. PAVLIĆ, ZVONIMIR; LUGARIĆ, TOMISLAV; ŠILIĆ, MARIN. Debugging in consumer-

programming oriented environments // Proceedings of the International Conference on

Computers in Technical Systems. 2012. 982-987.

8. DELAČ, GORAN; ŠILIĆ, MARIN; KROLO, JAKOV. Emerging Security Threats For Mo-

bile Platforms // Proceedings of the Information Systems Security, MIPRO 2011 / Čišić,

Dragan ; Hutinski, Željko ; Baranović, Mirta ; Mauher, Mladen ; Ordanić, Leo, editor(s).

Zagreb : Croatian Society for Information and Communication Technology, Electronics

and Microelectronics - MIPRO, 2011. 126-131.

9. ŠILIĆ, MARIN; KROLO, JAKOV; DELAČ, GORAN. Security Vulnerabilities in Modern

Web Browser Architecture // Proceedings of the Information Systems Security, MIPRO

2010 / Čišić, Dragan ; Hutinski, Željko ; Baranović, Mirta ; Mauher, Mladen ; Pletikosa,

Marko, editor(s). Croatian Society for Information and Communication Technology,

Electronics and Microelectronics - MIPRO, 2010. 198-203.

10. KROLO, JAKOV; ŠILIĆ MARIN; SRBLJIĆ SINIŠA. Security of Web Level User Identity

Management // Proceedings of the Information Systems Security, MIPRO 2009 / Čišić,

Dragan ; Hutinski, Željko ; Baranović, Mirta ; Mauher, Mladen ; Dragšić, Veljko, edi-

tor(s). Croatian Society for Information and Communication Technology, Electronics and

Microelectronics - MIPRO, 2009. 93-98.

177



Životopis

Marin Šilić rod̄en je 1983. godine u Sarajevu u Bosni i Hercegovini. Osnovnu školu i Opću

gimnaziju završio je u Makarskoj. Diplomirao je 2007. godine na Fakultetu elektrotehnike i

računarstva Sveučilišta u Zagrebu pod mentorstvom prof.dr.sc. Siniše Srbljića. Tijekom studija

primao je stipendiju Ministarstva Znanosti Republike Hrvatske namijenjenu posebno nadarenim

studentima. Kao izvrstan student upisao je poseban program završetka studija s naglaskom na

znanstveno-istraživački rad. Nakon završetka studija dobio je brončanu plaketu "Josip Lončar"

koja se uručuje najboljim studentima računarstva na Sveučilištu u Zagrebu. Od 2007. godine za-

poslen je kao znanstveni novak na Fakultetu elektrotehnike i računarstva Sveučilišta u Zagrebu.

Aktivno je sudjelovao na istraživačkom projektu “End-User Tool for Gadget Composition” pod

pokroviteljstvom Ministarstva znanosti Republike Hrvatske te kompanije Google. U 2008. go-

dini boravio je na znanstvenom usavršavanju u kompaniji Google u uredu u New York-u, SAD.

Tijekom usavršavanja radio je u Google Docs timu na oblikovanju i ostvarenju primjenskog sus-

tava Google Spreadsheets List View. Rezultate svojih istraživanja Marin je opisao u člancima

koji su objavljeni u uglednom časopisu i najjačem skupu istraživača područja programskog in-

ženjerstva. Član je strukovne udruge IEEE.

Popis radova

1. ŠILIĆ, MARIN; DELAČ, GORAN; KRKA, IVO; SRBLJIĆ, SINIŠA. Scalable and Accu-

rate Prediction of Availability of Atomic Web Services. // IEEE Transactions on Services

Computing. (2013).

2. ŠILIĆ, MARIN; DELAČ, GORAN; SRBLJIĆ, SINIŠA. Prediction of Atomic Web Services

Reliability for QoS-aware Recommendation. // IEEE Transaction on Services Comput-

ing. (2013).

3. DELAČ, GORAN; ŠILIĆ, MARIN; SRBLJIĆ, SINIŠA. A Reliability Improvement Method

178



BIBLIOGRAPHY

for SOA-Based Applications. // IEEE Transactions on Dependable and Secure Comput-

ing. (2012).

4. DELAČ, GORAN; ŠILIĆ, MARIN; VLADIMIR, KLEMO. Reliability Sensitivity Analysis

for Yahoo! Pipes Mashups // Proceedings of the 36th International Convention of Infor-

mation Communication Technology, Electronics and Microelectronics, MIPRO 2013.

5. ŠILIĆ, MARIN; DELAČ, GORAN; SRBLJIĆ SINIŠA. Prediction of atomic web services

reliability based on k-means clustering // Proceedings of the 2013 9th Joint Meeting on

Foundations of Software Engineering, ESEC/FSE’13 / Meyer, Bertrand ; Baresi, Luciano

; Mezini, Mira (ur.). New York, NY, USA : ACM, 2013. 70-80.

6. DELAČ, GORAN; ŠILIĆ, MARIN; SRBLJIĆ, SINIŠA. Reliability Modeling for SOA Sys-

tems // Proceedings of the 35th International Convention of Information Communication

Technology, Electronics and Microelectronics, MIPRO 2012. 2012. 847-852.

7. PAVLIĆ, ZVONIMIR; LUGARIĆ, TOMISLAV; ŠILIĆ, MARIN. Debugging in consumer-

programming oriented environments // Proceedings of the International Conference on

Computers in Technical Systems. 2012. 982-987.

8. DELAČ, GORAN; ŠILIĆ, MARIN; KROLO, JAKOV. Emerging Security Threats For Mo-

bile Platforms // Proceedings of the Information Systems Security, MIPRO 2011 / Čišić,

Dragan ; Hutinski, Željko ; Baranović, Mirta ; Mauher, Mladen ; Ordanić, Leo (ur.). Za-

greb : Croatian Society for Information and Communication Technology, Electronics and

Microelectronics - MIPRO, 2011. 126-131.

9. ŠILIĆ, MARIN; KROLO, JAKOV; DELAČ, GORAN. Security Vulnerabilities in Modern

Web Browser Architecture // Proceedings of the Information Systems Security, MIPRO

2010 / Čišić, Dragan ; Hutinski, Željko ; Baranović, Mirta ; Mauher, Mladen ; Pletikosa,

Marko (ur.). Croatian Society for Information and Communication Technology, Electron-

ics and Microelectronics - MIPRO, 2010. 198-203.

10. KROLO, JAKOV; ŠILIĆ MARIN; SRBLJIĆ SINIŠA. Security of Web Level User Identity

Management // Proceedings of the Information Systems Security, MIPRO 2009 / Čišić,

Dragan ; Hutinski, Željko ; Baranović, Mirta ; Mauher, Mladen ; Dragšić, Veljko (ur.).

Croatian Society for Information and Communication Technology, Electronics and Mi-

croelectronics - MIPRO, 2009. 93-98.

179


	Introduction
	Consumer Computing
	Feasibility of Consumer Computing
	Motivation for Consumer Computing
	State-of-the-art Technology for Consumer Computing
	Additional Benefits of Consumer Computing
	Challenges in Consumer Computing

	Programming Methodology in Consumer Computing
	Programming Elements in Consumer Computing
	Programming Language in Consumer Computing
	Programming Technique in Consumer Computing

	Consumer Computing Environment
	Domain Specific Applications
	Generic Programmable Applications
	Consumer Assistants Applications

	Architecture of Applications in Consumer Computing
	Architecture of Atomic Consumer Applications
	Architecture of Composite Consumer Applications


	Reliability in Consumer Computing
	Software Reliability Basics
	Adoption of SOA Model in Consumer Computing
	Reliability Challenges In SOA
	Information to Support Reliability Analysis in SOA
	Obtaining Reliability Information
	Parameters of the Service Invocation Context
	Failure Model for Service-oriented Systems

	Reliability Prediction System in Consumer Computing
	Prediction System
	Feedback Management System
	Rating System
	Consumer Assistant Geppeto ReliabilityOptimizeMe


	State-of-the-art Models for Prediction of Application's Reliability
	The UMEAN Approach
	The IMEAN Approach
	Memory-Based Collaborative Filtering Approaches
	Similarity Computation
	Prediction and Recommendation Computation
	Top-N Recommendation
	Extensions to Memory-Based Collaborative Filtering Algorithms

	Model-Based Collaborative Filtering Approaches
	Bayesian Belief Net Collaborative Filtering Algorithms
	Clustering-Based Collaborative Filtering Algorithms
	Regression-Based Collaborative Filtering Algorithms
	MDP-Based Collaborative Filtering Algorithms
	Latent Semantic Collaborative Filtering Algorithms
	Other Model-Based Collaborative Filtering Algorithms

	Hybrid Collaborative Filtering Approaches
	Hybrid Recommenders Combining Collaborative Filtering and Content-Based Features
	Hybrid Recommenders Incorporating Collaborative Filtering and Other Recommendation Systems
	Hybrid Recommenders Based on Combination of Other Collaborative Filtering Algorithms

	Characteristics and Challenges in Different Collaborative Filtering Approaches
	Data Sparsity
	Scalability
	Dynamic Environments
	Synonymy
	Gray Sheep
	Shilling Attacks
	Other Challenges


	LUCS - Model for Prediction of Application's Reliability
	LUCS Overview
	Model Parameters
	Reliability Prediction Process

	Formal Definition of LUCS
	Data Classification
	Request Classification
	Calculating Similarity Relations
	Determining Similar Sets of Entities
	Calculating the Expected Reliability


	CLUS - Model for Prediction of Application's Reliability Based on K-means Clustering
	CLUS Overview
	Invocation Context Parameters in CLUS
	Reliability Prediction Process

	Formal Definition of CLUS
	Environment-specific Data Clustering
	User-specific Data Clustering
	Service-specific Data Clustering
	Creation of Space D and Prediction


	Evaluation
	Experiment Setup
	Overall Prediction Accuracy
	Impact of Data Density
	Prediction Accuracy
	Computational Performance

	The Significance of Service Load and Class Parameters
	Significance of Load Parameter
	Significance of Class Parameter

	The Importance of Each Individual LUCS's Input Parameter
	The Impact of Individual Input Parameter Available
	The Impact of Individual Input Parameter Missing

	The Sensitivity of LUCS Groupings
	The Heuristics for LUCS Model's Parameters ,  and 
	The Impact of CLUS's Number of Clusters
	Prediction Accuracy
	Computational Performance

	Complexity Analysis
	Evaluation Summary

	Conclusion
	Bibliography
	Biography
	Životopis

