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GENERALIZATIONS AND IMPROVEMENTS OF CONVERSE
JENSEN’S INEQUALITY FOR CONVEX HULLS IN R¥

J. PECARIC AND J. PERIC

(Communicated by Marko Matic)

Abstract. In this paper we prove generalizations and improvements of Lah-Ribari¢ and related
inequalities for convex functions on convex hulls in R¥ and, analogously, for convex functions
on k-simplices in R¥. We also verify that one of them is a generalization and an improvement
of the Hermite-Hadamard inequality for simplices.

1. Introduction

Let U be a convex subset of R and n € N. If f: U — R is a convex function,
X1,...,x, € U and py,...,p, nonnegative real numbers with P, =Y |, p; > 0, then
Jensen’s inequality

1 ¢ 1 ¢
"Ny Y pixi | < P Y pif (xi) (1
n =1 ni=1
holds.
Convex hull of vectors xi,...,x, € R is the set

n n
Z(X,’X,’|OC,’ eER, o > O,ZOC,’ =1
i=1 i=1

and is denoted by K = co ({x1,...,x,}).
Barycentric coordinates over K are continuous real functions Ay, ..., A, on K with
the following properties:

x= Z Ai(x)x;. 2)
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2 J. PECARIC AND J. PERIC

If x, —x1,...,x, —x; are linearly independent vectors, then each x € K can be
written in the unique way as a convex combination of xy,...,x, in the form (2).

We also consider k-simplex S = co({v,va,...,v1}) in R¥ which is a convex
hull of its vertices vy,..., v € R¥, where v, — Vi,...,Vkt1 — V] € R¥ are linearly
independent. In this case we denote the simplex by S = [vy,...,v;1]. Barycentric
coordinates Ay, A>,..., A over S are nonnegative linear polynomials on S and have
a special form (see [1]).

Let E be a non-empty set and L be a linear class of real-valued functions f: E —
R which contains constant functions, that is, L has the following properties:

(L1) (Vf,geL)(Va,beR) af+bgeclL
(L2) 1€L,thatis,if f(r) =1 forall t € E, then f € L.
We consider positive linear functionals A: L — R, or in other words we assume:
(A1) (Vf,geL)(Va,beR) A(af+bg)=aA(f)+DbA(g) (linearity)
(A2) (VfeL)(f 20= A(f) = 0) (positivity).

If additionally the condition A(1) =1 is satisfied, we say that A is a positive normalized
linear functional.
With L* we denote the linear class of functions g: E — R¥ defined by

gt)=(a1(t),...,ax(t)), €L, i=1,..k

For a given linear functional A, we also consider linear operator A = (A,...,A): L¥ —

R* defined by

*)

Ag) = (A(g1),-- . Ag)). 3)
If A(1) =1 is satisfied, then using (A1) we also have:

(A3) A(f(g)=f (g(g)) for every linear function f on RK.

The following result is Jessen’s generalization of Jensen’s inequality for convex
functions (see [8, p. 45]) which involves positive normalized linear functionals.

THEOREM 1. Let L satisfy (L1) and (L2) on a nonempty set E and let A be a
positive normalized linear functional on L. If f is a continuous convex function on an
interval I C R, then for all g € L such that f(g) € L we have A(g) € I and

f(A(g)) <A(f(g))- “)

The next theorem, proved by J. Pecari¢ and P. R. Beesack in 1985., presents a
generalization of Lah-Ribaric€ inequality (see [7, p. 98], [8, p. 98]).
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THEOREM 2. (Lah-Ribaric inequality) Let L satisfy properties (L1) and (L2)
and A be a positive normalized linear functional on L. Let f be a convex function
on an interval 1 =[m,M] CR (—co <m <M < o). Then for all g € L such that
g(E)CIland f(g) €L

M—Ag)
A(f(g)) < ﬂf(m) +

Using Theorem 2, Beesack and Pecari¢ in 1987. also proved the next result [8, p.
101].

———f(M). (5)

THEOREM 3. Let L, A and f be as in Theorem 2. Let J be an interval in R such
that f(I) CJ. If F: J xJ — R is an increasing function in the first variable, then for
all g € L such that g(E) C I and f(g) € L, we have

x€[m,M] M—m M—m
— s F(0(m)-+ (1~ 0)f(M).(0m~+ (1~ 0)h)).

FIA/()). f(A(s)) < max F (M_xf(m)+ xom f<M>,f<x>) ©)

REMARK 1. If we choose F(x,y) =x—y, as a simple consequence of Theorem 3
it follows

A(f(2)) = f(A(g)) < max [0f(m)+(1—-6)f(M)—f(Om+(1-6)M)]. (7)

0€[0,1]
Taking F(x,y) = f,for f >0, it follows
A(f(g)) 0f(m)+(1—06)f(M)
F(Alg) < ol | FOm+ (1—0)M)

An additional generalization of Jessen’s inequality (4) is proved by E. J. McShane
(see [6], [8, p. 48]).

®)

THEOREM 4. (McShane’s inequality) Let L satisfy properties (L1) and (L2), A
be a positive normalized linear functional on L and A defined as in (3). Let f be a

continuous convex function on a closed convex set U C RX. Then for all g € L* such
that g(E) C U and f(g) € L, we have that A(g) € U and

f(A(g)) <A(f(8))- ©

J. Pecari¢ and S. Iveli¢ in [3] proved the following generalization of Theorem 2.

THEOREM 5. Let L satisfy properties (L1) and (L2) on nonempty set E and
A be a positive normalized linear functional on L. Let xi,...,x, € R* and K =
co({x1,...,xn}). Let f be a convex function on K and Ai,...,A, barycentric coordi-
nates over K. Then for all g € L* such that g(E) CK and f(g),Ai(g) €L,i=1,...,n

we have
n

A(f(g) < Y AKi(8))f (xi)-

i=1
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2. Main results

Our main results are generalizations and improvements of Theorems 3 and 5 which
will be obtained using the following lemma.

LEMMA 1. Let ¢ be a convex function on U where U is a convex set in R¥,

n
(x1,...,x,) €U" and p = (p1,...,pn) be nonnegative n-tuple such that Zp; =1.
i=1
Then

mintpcn) | £ o) 0 (1 £

Lot o (£

n l n
<maX{p17 7pn Z xl _n(P <; in>‘| .
i=1 i=1

M=

Proof. This is a simple consequence of [7, p. 717, Theorem 1 ]. [

For n € N we denote

A1 = {(.ulv"'aun): #i?oaie{lv"'vn}vz.ui: 1}
i=1

We also need to equip our linear class L from Introduction with an additional
property denoted by (L3):

(L3) (Vf,g€L)(min{f,g} € Land max{f,g} € L) (lattice property).

Obviously, (R, <) (with standard ordering) is a lattice.
Also, if f is a function defined on a convex subset U C RF and x; X2, ..., X, €U,

we denote
n l n
Sf Xlyeees X fol _nf _in .
i=1 iz
Obviously, if f is convex, Sf(xl,...,x,,) >0
Next theorem presents an improvement of Theorem 5.

THEOREM 6. Let L satisfy properties (L1), (L2) and (L3) on a nonempty set
E and A be a positive normalized linear functional on L. Let xy,...,x, € R and
K =co({x1,...,x4}). Let f be a convex function on K and Ay,...,A, barycentric
coordinates over K. Then for all g € L* such that g(E) C K and f(g), %i(g) € L,
i=1,...,n, we have

iA A(min{4(g)}) SH(x1, . Xn). (10)



CONVERSE JENSEN’S INEQUALITY 5

Proof. Foreach t € E we have g(t) € K. Using barycentric coordinates we have
Ai(g(r))=0,i=1,...,n, Y7  Li(g(r)) =1 and

Since f is convex, we can apply Lemma 1, and then

-y (Zl Al-<g<r>>x,»>

Ai(g(t))f (xi) —min{i(g [foz —nf< Z )] (11

i=1

<

-

Now, applying the functional A on (11), we get

A(f <A<Zl —min{A;(g )}S;‘c(xl,...,xn)>

'M=

A(Li(g)) f (xi) —A(min{Ai(g)})SF(x1,. .., xn). O

i=1

REMARK 2. Theorem 6 is an improvement of Theorem 5 since under the required
assumptions we have

A(min {Ai(g)}) SH(xr, .- %) > 0,

REMARK 3. If all the assumptions of Theorem 6 are satisfied and additionally f
is continuous, then

f(A(g)) < i A(min{2;(g)}) S}(x1,- -, %n).

The first inequality is from Theorem 4 and the second from Theorem 6.

REMARK 4. We know that under the assumptions of Theorem 6 we have

AU(&)) < YA (@) f (k) — Almin {2:(8)}) S} x1....52).

Dividing this by f(A(g)) = f <Z Ai(g ) , when f >0, we obtain

Zn 1I~Lif(xi) A (mln {)’t(g) )Sn (xl;

< max —

S FEEmm) g (Ag))
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which is equivalent to

A7) < pax BLELEL 1 (R (g)) — A min (e Sy, x). 12

This is an improvement of the inequality (2.6) from [3].

REMARK 5. As a special case of Theorem 6 for k =1 we get [5, Theorem 12],

M
and if we take p and ¢ nonnegative real numbers such that A (g) = % we get
p+q

right hand side of the inequality (2.3) in [4].

Using Teorem 6 we prove a generalization and an improvement of Theorem 3.

THEOREM 7. Let L satisfy properties (L1), (L2) and (L3) on nonempty set
E, A be a positive normalized linear functional on L and A defined as in (3). Let
X1, % € RY and K = co({x1,...,x,}). Let f be a convex function on K and
M, ..., Ay barycentric coordinates over K. If J is an interval in R such that f(K) C J
and F: JxJ — R is an increasing function in the first variable, then for all g € LF
such that g(E) C K and f(g),Ai(g) € L,i=1,...,n we have

F@U@»ﬂ&wn
(zA <mmu«>p$uhuJ»J@@»>

maxF <Zn:,u,f x;) —A(min{A;(g)}) St (x1,- .., %), f <iuixi>> .

i=1

13)

Proof. For each r € E we have g(r) € K. Using barycentric coordinates we have
Ai(g(r)) =>0,i=1,....,n, Y7 Ai(g(t)) =1 and

Since A is a positive normalized linear functional on L and A a linear operator on L¥,
we have

A8)= (Ala1),A8) = A g3
where A(i(g)) >0, i=1,...,n and ¥ A(Ai(g)) = A(L}; ki(g)) = A1) = L.
Therefore, A (g) € K.
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Since F: J xJ — R is an increasing function in the first variable, using (10) we
have

F(A((8)), /(A (g)))
<F (ZA A(min {3 (g(r >>}>s';»<x1,...,xn>,f<ﬁ<g>>> .

By substitutions
A(A‘l(g)) = ‘Lli,i: 17"'7”7

it follows
= Z HiX;.
i=1

Now we have

<ZA A (min{2;(g ())})S?(n,---,xn),f(g(g))>
=F <Z pif (xi) — A (min{A;(g(t))}) St (x1,.. .. %), f <Zn; /.tix,->>
< maxF <Z pif (xi) — A (min{2;(g(t))}) St(x1,-. ., %n), f <Zn‘1 /.tix,->> .

Ap—y

By combining (14) and the last inequality we get (13). O

REMARK 6. If we choose F(x,y) =x—y, as a simple consequence of Theorem 7
it follows

A(f(g))— f(A(g))
grArla})li (ilh‘f <Zu,xl> A (min{A;(g )})S;’c(xl,...,xn)> .
(14)

Taking F(x,y) = i, for f > 0, it follows

Alf(g) (z;’lul-f<x,»>—A(min{&(g)})Sﬁ(xl,...,xn>>. s

< max -
A 1 (X wixi)

n—

The inequalities (14) and (15) present generalizations and improvements of (7) and

(8).

Replacing F by —F in Theorem 7 we get the next theorem.
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THEOREM 8. Let L satisfy properties (L1), (L2) and (L3) on nonempty set
E, A be a positive normalized linear functional on L and A defined as in (3). Let
X1, % € RY and K = co({xy,...,x,}). Let f be a convex function on K and
M, - .., Ay barycentric coordinates over K. If J is an interval in R such that f(K) C J
and F: JxJ — R is an decreasing function in the first variable, then for all g € L*
such that g(E) C K and f(g),Ai(g) € L,i=1,...,n we have

F (A<f<g>>,f<2<g>>)
(zA A(min{2(g )})s;oq,...,xn>,f<2<g>>>

m1nF (Zn: pif (xi) — A (min{2;(g)}) S¥(x1,...,. %), f <Zn‘1 u,-x,-)) .

i=1

(16)

3. Convex functions on k-simplices in R*

Let S be a k-simplex in R¥ with vertices v{,vs,...,vi.1 € R¥. The barycen-
tric coordinates A;,...A;, over S are nonnegative linear polynomials which satisfy
Lagrange’s property

l,i=j

It is known (see [1]) that for each x € S barycentric coordinates A (x), ..., Ax1(x)

have the form

~ Vol ([x,v2,...,vi11))
A (x) = Vol (S) ’
_ Vol ([vi,x,v3,...,viq1))
Mlx) = Vol () ’
R () = Vol ([vi, ..., vi.x]) (17)

VOlk (S) ’

where Vol (F) denotes the k-dimensional Lebesgue measure of a measurable set F C
R¥. Here, for example, [v},x,..., v, 1] denotes the subsimplex obtained by replacing
v, by x, i.e. the subsimplex opposite to v, when adding x as a new vertex.

The signed volume Voli(S) is given by (k4 1) x (k+ 1) determinant

1 1 - 1
Vil V2l Vi1l
Volk(s)zﬁ Viz v Vit |

Vik V2k **° Vik+1k
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where v = (V11,v12, . ,Vlk), ceoy Vil = (kal,kaz, . 7Vk+lk) (see [9])
Since vectors v, —vy,..., v, — vy are linearly independent, then each x € S can
be written as a convex combination of vy,..., v, in the form
_ Vol ([x,va,... ,vk+1])v - Vol ([vl,...,vk,x])v (18)
Vol (S) P Vol (S) ket

Now we present an analog of Theorem 6 for convex functions defined on k-
simplices in R,

THEOREM 9. Let L satisfy properties (L1), (L2) and (L3) on a nonempty set
E, A be a positive normalized linear functional on L and A defined as in (3). Let f
be a convex function on a k-simplex S = [v{,va,...,vir1) in RE and Ay,... sy be
barycentric coordinates over S. Then for all g € L* such that g (E) C S and f(g) € L
we have

k+1
A(f(8) < Y A(%i(g) f (vi) —A(min{Ai(g)}) Sy (vi,... viey1) (19)
i=1
Vol ({g(g),vz, . ,vk+1D Vol ([vl,vz, . 7g(g)D
= VoI (S) Jv)+...+ Volr(S) S (Ver1)
A (min{2:(g)}) S5 (v1,....ves1)-
Proof. Analogous to the proof of Theorem 6 with
1 1 - 1
1 [&1(t) va Vi+11
E . .
Vol t
2 (g() = ol ([8(1),v2, -, vi1]) _ 8k(t) vak -+ Vi1k 7
VOlk(S) 1 1 .-+ 1
1 [ Vi1 vai Vit11
Vik Vok = Vi+1k
11 1
1|vit v &)
kb
Vol ([vi,. .., v, g(1)]) Vik - ik 8k(t)
A ) = =
k+l(g( )) VOlk(S) 1 1 ... 1 ’
1 |V V21 Vi+11
E . .
Vik V2k * Vitlk
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and
1 1 -+ 1
1 A(gl) V21 Vi+11
q o
A(), (g)) _ A(gk) Vot Vi 1k _ Vol,, ({A(g),vz,...,vkﬂ])
1 1 1 --- 1 Volk(S) ’
Livievar - Vil
k!
Vik Vak - Vi+lk
(20)
1vit via A(gr)
A _ Vik - Vi A(gk) B Vol ({vl,...,vlﬁA(g)D
At @) == 1.1 1~ o) 0
Livie vzt Vit
k! .

Vik V2k * " Vitlk
Using Theorem 9 we prove an analog of Theorem 7 for k-simplices in R¥.

THEOREM 10. Let L satisfy properties (L1), (L2) and (L3) on a nonempty set
E, A be a positive normalized linear functional on L and A defined as in (3). Let
f be a convex function on a k-simplex S = [v{,va,..., V1] in R* and Aq,..., M1
be barycentric coordinates over S. If J is an interval in R such that f(S) C J and
F:JxJ— R an increasing function in the first variable, then for all g € L* such that

g(E)C S and f(g) € L we have

F(A(f(8)).£(A(g))) en
< maep (Wl ) g Wl g,

—A (min {2(g)}) S5 (01, vin). f (3) )

ket k+1
= maxF <Z wif (vi) — A (min{2:(g)}) S (v1,... . viep1), f (Z um)) :
e izl i=1

Proof. Analogous to the proof of Theorem 7 with substitutions

~ Vol ([x,v2,...,vii1]) _ Vol ([vi,..., v, X])
Uy = peey M1 = )
VOlk(S) VOlk(S)
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and
k+1

X = Z Hiv;. |
i=1

REMARK 7. If all the assumptions of Theorem 9 are satisfied and in addition f is
continuous, then

f(A(g)) < A(f(8))
k+1

ZA A(min{A(&)}) S (1, i) (22)

Vol ( |A(g),v2,...,Vv
- k({ m?s) k+1Df(V1)+---+

—A (min {ki(g)})S?’l (Viyeooy Vig1)-

The first inequality is from Theorem 4 and the second from Theorem 9.

Vol ([vl,vz, ... ,g(g)} ) £

Vol (S) Viet1)

EXAMPLE 1. Let S = [v{,v2,...,v;,1] be a k-simplex in R¥ and f a continuous
convex functionon S. Let (E, o7, 1) be a measure space with positive measure A such
that A(E) < eo. Let L be a linear class of measurable real functions on E. We define

the functional A: L — R by
1
=T t
Py [0

It is obvious that A is positive normalized linear functional on L. Then the linear
operator A is defined by

1
= W/Eg(t)
We denote g = % Jz8(t)dA(t). 1If g(E) C S and f(g) € L, then from (22) it follows
(@) <A(f(g) (23)
< Vol ([g7v27 vk+l])f( )_|_ 4 VOlk([vlv"'avk,g])f(karl)

Vol (S)
( /mm{x )} dA(t )) S5 W Wes):

VOlk (S)

REMARK 8. Let S = [vy,...,v;1] be a k—simplex in R*. If we put E = §,
g =idg and A is Lebesgue measure on S, from Example 1 we get

1 k+1

— 1

ids = — [tdt=v' = —— i
s |S|/ v k+1i;v
lds |S|/f
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where v* is the barycenter of S. Now we have

1
V) < m/Sf(r)dt

VOlk ([V*,Vz,...,vk_;,_]])
N

Vol ([vi,..., v, v'])
N

<|S|/m1n{7t }dt) lkillf vi)— (k+1)f(v )] (24)
iy (lcilf v,) <|S|/mln{7t }dt) lkilf vi)— (k+1)f(v )]

For i=1,...,k+ 1, let S; be the simplex whose vertices are v* and all vertices of
S except v;. Denote by v} the barycentre of S;,i =1,...,k+ 1. Since Vol (S;) =
Vol (Sj),i,j=1,...,k+1, it follows from (17) that t € S; implies min{A;(r)} = A;(1).
It follows

fov)+.+ J(Vit1)

k+1

/ min{A(r)}dr = Z / A4 25)

We have

1
/ )yj(l)dl: —/ VOlk[Vl,...,l‘,...,vk+1]dl
S; S| Js;

J

1
—Voly, |:V1, ,/ tdt,...,ka]
|S| S
15,1 " )
= |TJ|V01k [V[,...,Vj,...,vk_;,_l} :mVolk [V[,...,Vj,...,vk_;,_l}
1 1
= — Vol R =——|5| 26
(k+1)2 Ok[vla ,V ,Vk+1] (k+1)3| | ( )
Using (25) and (26) we get
/ min{2,(0)}di = )2| . 27)

Now, putting (27) in (24), we have

1
< — t)dt
'S /sf v
k k+1 1
< [ e * )
which is obtained in [2, Theorem 4.1].

It can be easily verified that the right-hand side of this inequality is equivalent to
the k-dimensional version of the Hammer-Bullen inequality, namely

1 y k k+1 k
5 o) < 5 Lor) g [Lroar
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which is proved, for example in [10].

In one dimension this is an improvement of classical Hermite-Hadamard inequal-

1ty
a+b 1 b fla)+f0b) 1,
f< ! )< b_a/a foyar < 242 2S3a.b).
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