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Memory CD8+ T cells confer efficient and long-lasting immunity 
against secondary pathogen exposure1,2. Events during primary expo-
sure (priming) affect the quality of the initial effector and subsequent 
memory cytotoxic T lymphocyte (CTL) responses. Unless environ-
mental cues (for example, CD4+ T cell help or inflammation) are 
present, T cell receptor (TCR) signaling does not result in effective 
activation of CD8+ T cells3–7. Furthermore, in the absence of CD4+ 
T cell help, the resultant CD4-unhelped CD8+ T cells do not differ-
entiate into sustainable memory cells4.

NKG2D is expressed on natural killer (NK) cells and on activated 
CD8+ T cells and binds to the ligands retinoic acid early inducible 
protein 1ε (Rae-1ε), MULT-1 and H60 in mice8–13, and MICA/B and 
ULBP in humans14,15. NKG2D engagement on CD8+ T cells contributes 
to TCR signaling, co-stimulation and amplification of T cell signals  
and recognition of stress-induced proteins16–18. In addition to this 
canonical function, NKG2D also has a role in CD8+ T cell–mediated  
autoimmune pathophysiology19. Therefore, strategies augmenting 
NKG2D engagement on CD8+ T cells and harnessing its new func-
tions identified here may result in the rescue of CD4-unhelped CD8+ 
T cell responses.

RESULTS
NKG2D co-stimulation rescues CD8+ T cell memory expansion
CD8+ T cells that do not receive CD4+ T cell help during priming 
undergo impaired memory-recall responses6,20. Because NKG2D 
engagement on CD8+ T cells contributes to co-stimulation16,17, 
we hypothesized that increased NKG2D engagement by Rae-1ε on  
antigen-presenting cells (APCs) during priming would rescue memory-
recall CD4-unhelped CD8+ T cell expansion. We used skin gene gun 
vaccination21 (in vivo biolistic transfection) to co-deliver DNA plas-
mids encoding chicken ovalbumin (OVA) and Rae-1ε (OVA + Rae-1ε),  
OVA and empty vector (OVA + empty), or both empty vectors (empty +  
empty) to skin APCs. Using a Rae-1ε–GFP fusion vector22, we veri-
fied that skin DNA delivery resulted in elevated expression of Rae-1ε 
protein on draining lymph node APCs (Supplementary Fig. 1).

Next, we assessed the effects of OVA + Rae-1ε vaccination (the 
NKG2D co-stimulation regimen) on CD8+ T cell memory-recall 
responses. C57BL/6 mice received gene gun vaccinations three 
times (days 0, 5 and 10) with or without antibody-mediated CD4 
depletion (days −2, 0, 5 and 10), were rested for 4 weeks during 
memory formation and then received one memory boost vaccination 

1Department of Surgery, Committee on Immunology, The University of Chicago, Chicago, Illinois, USA. 2Department of Surgery, Oncology Institute, Cardinal Bernardin 
Cancer Center, Loyola University Chicago, Maywood, Illinois, USA. 3Department of Microbiology, Center for Immunology, University of Minnesota, Minneapolis, 
Minnesota, USA. 4Department of Pathology, Committee on Immunology, The University of Chicago, Chicago, Illinois, USA. 5Section of Pulmonary and Critical Care 
Medicine, Department of Medicine, Committee on Immunology, The University of Chicago, Chicago, Illinois, USA. 6Department of Immunology/Microbiology and 
Developmental Center for AIDS Research, Rush University Medical Center, Chicago, Illinois, USA. 7Rush University Cancer Center, Rush University Medical Center, 
Chicago, Illinois, USA. 8Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA. 9Department of Histology and Embryology, 
University of Rijeka School of Medicine, Rijeka, Croatia. 10These authors contributed equally to this work. Correspondence should be addressed to  
J.A.G.-P. (jaguevara@lumc.edu).

Received 10 November 2011; accepted 20 January 2012; published online 26 February 2012; doi:10.1038/nm.2683

NKG2D signaling on CD8+ T cells represses T-bet and 
rescues CD4-unhelped CD8+ T cell memory recall but 
not effector responses
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CD4-unhelped CD8+ T cells are functionally defective T cells primed in the absence of CD4+ T cell help. Given the co-stimulatory 
role of natural-killer group 2, member D protein (NKG2D) on CD8+ T cells, we investigated its ability to rescue these immunologically 
impotent cells. We demonstrate that augmented co-stimulation through NKG2D during priming paradoxically rescues memory, 
but not effector, CD8+ T cell responses. NKG2D-mediated rescue is characterized by reversal of elevated transcription factor T-box 
expressed in T cells (T-bet) expression and recovery of interleukin-2 and interferon-g production and cytolytic responses. Rescue is 
abrogated in CD8+ T cells lacking NKG2D. Augmented co-stimulation through NKG2D confers a high rate of survival to mice lacking 
CD4+ T cells in a CD4-dependent influenza model and rescues HIV-specific CD8+ T cell responses from CD4-deficient HIV-positive 
donors. These findings demonstrate that augmented co-stimulation through NKG2D is effective in rescuing CD4-unhelped CD8+  
T cells from their pathophysiological fate and may provide therapeutic benefits.
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(OVA only without Rae-1ε and without 
CD4 depletion) on day 38 (Fig. 1a). OVA- 
specific CD8+ T cell numbers were determined  
by OVA-tetramer staining of splenocytes 
(Fig. 1b and Supplementary Fig. 2) and  
confirmed in the draining inguinal lymph 
node (Supplementary Fig. 3). We observed 
similar post-contraction numbers (day 38, 
before boost) of OVA-specific CD8+ T cells 
in all groups (Fig. 1b,c). Remarkably, the 
NKG2D co-stimulation regimen at priming 
resulted in complete rescue of CD4-unhelped 
OVA-specific CD8+ T cell expansion at 
the memory-recall phase (Fig. 1c,d and 
Supplementary Fig. 3b).

NKG2D co-stimulation rescues CD8+ T cell memory function
Given the ability of the NKG2D co-stimulation regimen to augment 
memory-recall expansion, we hypothesized that such engagement 
during priming may rescue memory cytolytic molecule and cytokine 
production by CD4-unhelped CD8+ T cells. Notably, upon memory 
boost with OVA only, CD4-unhelped CD8+ T cells that received the 
NKG2D co-stimulation regimen during priming showed complete 
rescue of granzyme B, interleukin-2 (IL-2) and interferon-γ (IFN-γ) 
production (Fig. 2a). The effect of the memory boost vaccination 
(that is, a single vaccination) on naive cells on day 38 was negligible 
(Supplementary Fig. 4).

To further investigate NKG2D-mediated rescue of CD4-unhelped 
CD8+ T cell memory-recall responses, we examined antigen-specific  
target lysis ability (Fig. 2b). CD4 depletion at priming significantly 
weakened CD8+ T cell memory-recall lytic activity (CTL lysis) 
(Fig. 2c,d). Notably, administration of either Rae-1ε (to C57BL/6 mice) 
or H60 (NKG2D ligand in B6BCF1 mice) during priming resulted 
in complete rescue of CD4-unhelped CD8+ T cell memory CTL lysis 
(Fig. 2d). As CD4+ T cells were present during the boost vaccination, 
we next analyzed memory-recall responses in their absence. CD4 deple-
tion during the memory boost resulted in decreased memory-recall 
CTL lysis in all groups (Supplementary Fig. 5). Although we observed 
the greatest decrease in the group primed without the NKG2D co-
stimulation regimen and depleted of CD4+ T cells both during priming 
and memory boost, we nevertheless observed rescue of CTL lysis with 
the NKG2D co-stimulation regimen (Supplementary Fig. 5).

NKG2D is necessary on CD8+ T cells for memory rescue
To demonstrate that the observed rescue of memory-recall responses 
is dependent on NKG2D and, specifically, on CD8+ T cell NKG2D 
engagement, we conducted a series of experiments. First, we blocked 

NKG2D with antibody during priming and observed decreased 
memory CTL lysis (Fig. 3a). Vaccination of NKG2D-blocked, CD4-
depleted mice with OVA + Rae-1ε did not rescue CD4-unhelped 
CD8+ T cell lysis (Fig. 3a).

Second, given that NK and NKT cells express NKG2D, we deter-
mined their role in NKG2D-mediated CD8+ T cell rescue. We depleted 
C57BL/6 mice of NK1.1+ cells23 and transferred Thy1.1-marked OT-I 
CD8+ T cells into them. This design allowed induction of detectable 
OVA-specific responses with a single vaccination, thereby abrogating 
the need for further NK1.1 depletions and thus avoiding depletion of 
activated NK1.1-expressing OT-I CD8+ T cells. In this experiment, prim-
ing of CD8+ T cells occurred after NK1.1 depletion antibody had cleared 
(data not shown) and before NK and NKT cells had returned (Fig. 3b). 
Memory-recall OVA-specific CD8+ T cell lysis was not negatively affected 
by NK1.1 depletion during priming, and CD4-unhelped CD8+ T cell lysis 
was rescued by the NKG2D engagement regimen (Fig. 3c).

Lastly, to demonstrate that NKG2D-mediated rescue is the result of 
NKG2D engagement on CD8+ T cells, we vaccinated CD45.1+ C57BL/6 
wild-type (WT) mice that received adoptively transferred CD45.1− 
CD8+ T cells from NKG2D-deficient (Klrk1−/−)24 (Fig. 3d) or CD45.1−  
WT mice. Compared to transferred WT CD8+ T cells, transferred 
NKG2D-deficient CD8+ T cells showed decreased memory-recall 
expansion (Fig. 3e). OVA + Rae-1ε vaccination at priming did not 
rescue memory-recall expansion (Fig. 3e) of CD4-unhelped NKG2D-
deficient transferred CD8+ T cells but did rescue expansion of  
CD4-unhelped WT transferred CD8+ T cells (Fig. 3e) and endogenous 
CD8+ T cells in both hosts (data not shown).

NKG2D-mediated rescue is not independent of IL-15
Roles for IL-15 in NKG2D upregulation25 and signaling26 and rescue 
of CD4-unhelped CD8+ T cells27 have been reported. Therefore, we 

Effectora

c d

Memory

0

OVA + empty No
depletion

CD4
depletion

OVA + empty

OVA + Rae-1ε

OVA +
empty

OVA OVA

No depletion CD4 depletion

No depletion

OVA OVA

No depletion

OVA +
Rae-1ε

OVA +
empty

OVA +
Rae-1ε

OVA +
empty

OVA OVA

No depletion CD4 depletion

No depletion

OVA OVA

No depletion

OVA +
Rae-1ε

OVA +
empty

OVA +
Rae-1ε

OVA + Rae-1ε

N
um

be
r 

of
 O

V
A

-t
et

ra
m

er
+

C
D

8+
 T

 c
el

ls

F
ol

d 
ch

an
ge

(d
ay

 4
3 

/ d
ay

 3
8)

200,000
12

9

6

3

0

*
*

*

*
*

Day 38 (before boost)

150,000

100,000

50,000

0

Priming:

Boost:

Priming:

Boost:

5 10 15

Isolation of splenocytes for detection of OVA-tetramer+ CD8+ T cells

25
4 weeks

Memory boost
(day 38; OVA only)

38 43 50

DNA vaccination (days 0, 5, 10)
(± CD4 depletion on days –2, 0, 5, 10)

b 200,000

150,000

100,000

N
um

be
r 

of
 O

V
A

-t
et

ra
m

er
+

C
D

8+
 T

 c
el

ls

50,000

Time (d)
0 5 10 15 20 25 30 35 40 45 50

0

Figure 1  NKG2D engagement by Rae-1ε 
rescues CD4-unhelped CD8+ T cell memory-
recall expansion. (a) Experimental design  
for vaccination and CD4+ cell depletion.  
(b) Expansion kinetics of OVA-tetramer+ CD8+  
T cells (± s.e.m.) calculated per spleen.  
(c) Mean number of OVA-tetramer+ CD8+ T cells 
(+ s.e.m.) per spleen on days 38 and 43.  
(d) Data from c shown as a fold change  
(+ s.e.m.). All data are cumulative from three to 
five mice (analyzed individually) per group from 
one experiment of three experiments conducted 
with similar results. *P < 0.05.
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investigated IL-15 presentation (via dendritic 
cell IL-15Rα expression) and found it to be 
equal under our four vaccination conditions 
(Supplementary Fig. 6a).

Memory phase expansion (Supplementary 
Fig. 6b) and CTL lysis (Supplementary Fig. 6c) 
of OVA-specific CD8+ T cells were greatly 
reduced in IL-15–deficient (Il15−/−) mice in 
comparison to WT mice. The NKG2D co-stimulation regimen was  
partially able to rescue CD4-unhelped CD8+ T cell responses in the 
absence of IL-15 to the level observed without CD4 depletion but  
was unable to rescue to the level observed in WT mice (Supplementary 
Fig. 6b,c). Thus, NKG2D-mediated rescue of CD8+ T cells is not  
independent of IL-15.

NKG2D co-stimulation does not rescue effector responses
We next investigated CD8+ T cell responses at the effector phase. 
We observed a decreased expansion of CD4-unhelped OVA-specific 
CD8+ T cells at the effector phase (day 15), which, unexpectedly, was 
not augmented by the NKG2D co-stimulation regimen (Fig. 1b and 
Supplementary Fig. 7).

We observed an increase in CD8+ T cell effector phase 
granzyme B production (Supplementary Fig. 8a) and target lysis 
(Supplementary Fig. 8b) in nondepleted mice receiving the NKG2D 
co-stimulation regimen as opposed to mice depleted of CD4+ cells. 
However, lack of CD4 help resulted in unrescued minimal target 
lysis in mice receiving OVA + empty, OVA + Rae-1ε and OVA + 
H60 vaccination (Supplementary Fig. 8c,d).

NKG2D engagement results in JNK2-mediated T-bet suppression
CD4-unhelped CD8+ T cells have greater T-bet protein expression 
than their CD4-helped counterparts28, and T-bet expression during 
the effector phase distinguishes short-lived effector cells (SLECs;  
T-bethi) from memory precursor effector cells (MPECs; T-betlo)28–31. 
To determine whether effector phase T-bet expression correlates with 

NKG2D-mediated rescue of CD4-unhelped CD8+ T cell memory-
recall responses, we determined T-bet expression in OVA-specific 
CD8+ T cells. In the context of CD4 help, OVA-specific CD8+ T cells 
consistently had low T-bet expression throughout the effector and 
memory phases (Fig. 4a–c). Conversely, CD4-unhelped OVA-specific 
CD8+ T cells primed without the NKG2D co-stimulation regimen 
had significantly increased expression of T-bet (Fig. 4a–c). Notably, 
T-bet expression levels in CD4-unhelped CD8+ T cells were reduced 
(45%) with the NKG2D co-stimulation regimen, were similar to  
T-bet levels of CD4-helped CD8+ T cells throughout the effector phase 
and were lower during the memory phase (Fig. 4a–c). Corroborating 
these findings, T-bet levels were higher in NKG2D-deficient versus 
WT OVA-specific CD8+ T cells transferred into a WT host, especially 
under CD4-depletion conditions (Fig. 4d), and were higher when com-
pared to those in endogenous CD8+ T cells (Supplementary Fig. 9a).  
Likewise, T-bet expression in OVA-specific CD8+ T cells was elevated 
in IL-15–deficient versus WT hosts, especially under CD4-depletion 
conditions (Fig. 4e), and only partially repressed by the NKG2D  
co-stimulation regimen (Fig. 4e and Supplementary Fig. 9b).

Studies have shown that co-stimulation of CD8+ T cells results in 
activation of the c-Jun N-terminal kinase 2 (JNK2) pathway32 and that 
JNK2-knockout mice have increased levels of T-bet expression33. In our 
studies, in vitro–activated NKG2D-deficient CD8+ T cells expressed 
higher T-bet (Fig. 5a) and lower phosphorylated JNK2 (pJNK2) levels 
(Fig. 5b) compared to WT counterparts. Additionally, WT CD8+  
T cells similarly activated in the presence of NKG2D-blocking antibody 
showed lower pJNK2 levels (Fig. 5b). On the basis of these observations 
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and evidence that NKG2D modulates JNK signaling34,35, we hypoth-
esized that NKG2D signaling represses T-bet via JNK2. JNK2 pathway 
inhibition of in vitro OT-I CD8+ T cell activation with OVA257–264 
peptide–loaded EL4 mouse lymphoma cells expressing Rae-1ε resulted 
in a significant increase in T-bet to levels resembling OT-I CD8+ T cells 
activated without NKG2D co-stimulation (Fig. 5c).

NKG2D confers protection in CD4-dependent infections
To address the condition in which CD4+ T cell counts in vivo remain 
continuously low or absent, we characterized the ability of NKG2D to 
rescue CD8+ T cell responses under continuous CD4+ cell depletion 
via CD4-specific antibody administered every 5 d (days −2 to 43) 
(Fig. 6a). Under these conditions, CD8+ T cell memory expansion was 

significantly reduced (Fig. 6b) and T-bet expression further increased  
(Fig. 6c) compared to CD4 depletion only during priming (Figs. 1 and 4).  
However, CD8+ T cells primed with the NKG2D co-stimulation regi-
men and continuously depleted of CD4+ T cells showed rescued total 
memory-recall responses (Fig. 6c) as well as memory-recall responses 
on a per-cell basis in an ex vivo CTL assay where OVA-tetramer+ 
CD8+ T cell numbers were equalized from the vaccination conditions 
(Supplementary Fig. 10).

To assess functional responses in an in vivo pathogenic model, 
we used a lethal influenza-PR/8 infection model, in which the virus 
expresses OVA and clearance via CD8+ cells is CD4 dependent  
(Fig. 6d). Absence of the NKG2D co-stimulation regimen and pres-
ence of continuous CD4 depletion in C57BL/6 mice resulted in 
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from one experiment of three experiments conducted with similar results. *P < 0.05; NS: P > 0.05.
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decreased CD8+ T cell memory-recall responses (Fig. 6e) and low 
survival (~20%) (Fig. 6f) after influenza-PR/8 infection. In contrast, 
the NKG2D co-stimulation regimen resulted in augmented CD8+ 
T cell memory-recall responses and survival (Fig. 6e,f). Further, 
CD8+ T cells from mice lacking NKG2D expression were unable to 
respond to influenza-PR/8 challenge in vivo despite receiving OVA 
+ Rae-1ε vaccination during priming (Fig. 6e).

To further assess the role of NKG2D co-stimulation in a pathogenic 
model where chronic CD4 deficiency has a major role in disease pro-
gression, we determined the response of HIV-specific CD8+ T cells 
from chronic HIV-positive donors, whose lack of CD4+ T cell help 
leads to CD4-unhelped CD8+ T cells36, and compared these with 
CD8+ T cells from long-term nonprogressor (LTNP) HIV-positive 
donors whose maintained CD4+ T cell help leads to potent anti-HIV 
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CD8+ T cell responses37 (Supplementary Table 1). To replicate the 
conditions used in our in vivo mouse studies, we stimulated donor 
peripheral blood mononuclear cells (PBMCs) with pooled HIV 
peptides in the presence or absence of exogenous NKG2D agonist 
antibody, rested them for 2 d and re-stimulated them with pooled 
HIV peptides (without NKG2D agonist antibody) (Fig. 6g). As in the 
mouse models, NKG2D co-stimulation of human CD8+ T cells from 
chronic HIV donors lowered T-bet expression (Fig. 6h) and rescued 
their recall ability to produce granzyme B, IL-2 and IFN-γ (Fig. 6i) 
and proliferate (Fig. 6j). Further, the phenotype and functionality 
of NKG2D-rescued recall CD8+ T cell responses from chronically 
infected HIV-positive donors resembled those associated with CD8+ 
T cell responses from HIV-positive LTNPs (Fig. 6h–j).

DISCUSSION
We demonstrate that augmented NKG2D engagement on CD8+ T cells 
rescues CD4-unhelped CD8+ T cell memory-recall responses. Contrary 
to our expectations, the NKG2D co-stimulation regimen did not  
rescue CD4-unhelped effector responses. This paradoxical finding 
raises the question of how memory-recall responses can be rescued 
in the absence of effector responses. We discovered that, through aug-
mentation of JNK2 phosphorylation, increased NKG2D co-stimulation  
results in CD4-unhelped CD8+ T effector cells with reduced expres-
sion of T-bet, a transcription factor that at low expression drives for-
mation of effector cells with increased memory potential28–31. This 
leads us to propose that the effector-phase responses and memory 
potential of CD8+ T cells may be dictated by separate signals and, 
furthermore, that NKG2D co-stimulation provides CD8+ T cells with 
memory potential programming for conversion to potent memory 
CD8+ T cells even in the absence of primary effector responses.

Similar to the impaired effector cytolytic responses of CD4-
unhelped CD8+ T cells in our study, previous studies5,38 have shown 
comparable (that is, nearly absent) CD4-helpless effector responses on 
day 14. However, some studies have shown that CD4-unhelped CD8+ 
T cell effector responses are typically less affected and that memory-
recall responses are greatly impaired4,6,7,39,40. This difference may be 
attributed to the level of inflammation-mediated response present 
during the effector phase. In the studies conducted using infection 
models, CD4-unhelped CD8+ T cell responses may have arisen from 
infection-associated inflammation signals. In our study, skin gene gun 
delivery causes limited inflammation41 and thus aids in deconstruct-
ing effector response mechanisms.

Despite the absence of effector responses from CD4-unhelped CD8+ 
T cells vaccinated without the NKG2D co-stimulation regimen, we 
observed memory responses, albeit defective ones. These preserved 
memory responses are attributable to the return of CD4+ T cell help 
during memory-phase boost vaccination. Recent studies support the 
notion that CD4-unhelped responses can be rescued in the memory 
phase5,42. Notably, even with continuous CD4 depletion throughout 
both the effector and memory phases, the NKG2D co-stimulation 
regimen still rescued CD8+ T cell memory responses.

Studies have shown that IL-15 can induce NKG2D expression on 
CD8+ T cells25 and that IL-15 is necessary for NKG2D signaling26. 
In our study, NKG2D-mediated rescue in CD4-unhelped CD8+ 
T cells was partially dependent on IL-15. These data may provide the 
mechanism by which IL-15 has been shown to aid in CD4-unhelped 
memory response rescue27. IL-2, a cytokine augmented in our studies 
with increased NKG2D engagement, has been reported to compen-
sate for the lack of IL-15 (ref. 43). These results may warrant future 
investigation in determining whether the partial rescue observed in  

IL-15–deficient mice may be mediated by NKG2D signaling through 
alternative molecular pathways44 or whether other common γ-chain 
cytokines compensate for the lack of IL-15 in this situation.

Even under deleterious conditions in an in vivo pathogenic model of 
lethal influenza-PR/8 infection during continuous immunocompro-
mising CD4 depletion, augmented NKG2D co-stimulation provided 
mice with rescued memory-recall CD8+ T cells and a high rate of 
survival. These findings raise the possibility of including an NKG2D 
co-stimulation regimen in human vaccination protocols. Specifically 
in the context of influenza vaccines, which in a nonadjuvant form do 
not drive strong CD4+ T cell responses45, these data suggest a poten-
tial enhancement, via the NKG2D co-stimulation regimen, of the 
effectiveness of CD8+ T cell responses. Additionally, such an NKG2D 
co-stimulation regimen may avoid vaccine side effects attributable to 
robust CD4+ T cell activation in the presence of strong adjuvants46.

Finally, we demonstrate that the NKG2D co-stimulation regimen 
observations equally pertain to a human disease system in which CD4+ 
T cells are progressively depleted by HIV, resulting in CD8+ T cells  
that are characteristically CD4 unhelped47. Whereas increased T-bet 
expression by Nef peptide–stimulated, IFN-γ–producing CD8+ T cells 
from HIV elite controllers (a subset of LTNPs) has been reported48, 
our study demonstrates that NKG2D co-stimulation reduced T-bet 
expression of Gag tetramer– and Pol tetramer–specific CD8+ T cells 
from chronically infected HIV donors and rescued their ability to 
acquire cytolytic potential. Furthermore, such NKG2D co-stimulation 
rescued ex vivo CD8+ T cell responses from chronically infected HIV-
positive donors to resemble the phenotype and functionality associated 
with HIV-positive LTNP CD8+ T cell responses. Augmented NKG2D 
co-stimulation may have a role in improving CD8+T cell responses 
against HIV itself and against AIDS-associated pathogens.

This work demonstrates that NKG2D co-stimulatory signaling 
during priming may have therapeutic value, specifically in the devel-
opment of optimal memory-recall responses and the reversal of the 
impotent state of CD4-unhelped CD8+ T cells. These findings may 
be useful in T cell–based vaccine design and adoptive T cell therapy, 
where potent effector and memory formation are vital for successful 
eradication of acute and recurrent disease, especially in situations 
where CD4+ T cells are depleted as a result of the disease (for example,  
HIV/AIDS), exhausted or suppressed as a sequela of the given 
pathology (for example, chronic infection or cancer) or therapeuti-
cally depleted to remove immune suppression (for example, cancer).  
In such situations, delivery of NKG2D ligand may be a feasible  
substitute for CD4+ T cell help.

Methods
Methods and any associated references are available in the online  
version of the paper at http://www.nature.com/naturemedicine/.

Note: Supplementary information is available on the Nature Medicine website.
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ONLINE METHODS
Mice, donors and cells. Six-week-old, specific pathogen–free, male C57BL/6 
(B6), C57BL/6-Tg(TcraTcrb)1100Mjb/J (OT-I) and B6.SJL-PtprcaPepcb/BoyJ 
(CD45.1+) mice (Jackson Laboratories); C57BL/6NTac-IL15tm1Imx N5 (IL-15– 
deficient; Il15−/−) and C57BL/6 control mice (Taconic); Thy1.1-marked 
OT-I and B6BCF1 (C57BL/6 × Balb/c F1 hybrid) mice (bred in house); and 
NKG2D-deficient (Klrk1−/−) mice (D. Raulet) were housed under conventional 
conditions. We conducted experiments in accordance with The University of 
Chicago Institutional Animal Care and Use Committee (IACUC) and the 
Loyola University Chicago IACUC guidelines. We obtained peripheral blood 
from chronic HIV-positive donors (documented as HIV positive for at least 
5 years without extended antiretroviral therapy, with CD4+ T cell count <500 
cells per mm3 and uncontrolled plasma HIV-1 RNA levels) and LTNP donors 
(documented as HIV positive for at least 5 years without extended antiretroviral 
therapy, with CD4+ T cell count >500 cells per mm3 and low or undetectable 
plasma HIV-1 RNA levels). We conducted human cell research in accordance 
with guidelines on human research and the approval of the Institutional Review 
Board of Rush University Medical Center. We obtained donor informed con-
sent in accordance with the Declaration of Helsinki. All cells were cultured in 
RPMI supplemented with 10% heat-inactivated FBS (Atlanta Biologicals), 2 mM  
l-glutamine (Mediatech) and 1% penicillin-streptomycin (Mediatech).

In vitro culture. Mouse EL-4 target cells were loaded (for 2 h) with OVA257–264  
peptide (1 µg ml−1) and co-cultured for 72 h with CD8+ T cells (isolated by nega-
tive selection from OT-I mouse spleens) and 30 U ml−1 IL-2 (R&D Systems) with 
or without JNK inhibitor IX (N-[3-cyano-4,5,6,7-tetrahydro-1-benzothien-2-yl]- 
1-naphthamide; EMD Chemicals; 25 ng ml−1). We primed human HIV-positive 
donor PBMCs for 3 d with pooled HIV peptides spanning the Gag or Pol 
regions49 (NIH AIDS Research and Reference Reagent Program) at 2 µg per 
peptide per ml with or without NKG2D agonistic antibody (1D11, 2 µg ml−1) 
(BioLegend), rested them for 2 d in medium with minimal IL-2 (10 U ml−1) 
and re-stimulated them as before with HIV peptides (no NKG2D agonistic 
antibody) for 6 h.

DNA vaccination. We performed vaccinations (4 µg plasmid DNA per mouse 
per vaccination) using a Helios gene gun (Bio-Rad) as previously described21,50. 
DNA vaccines (OVA + Rae-1ε, OVA + empty, OVA + H60, empty + empty) 
(empty bullets were made with everything the same except without OVA, Rae 
and H60) were generated using the pCRAN multiple cloning site variant of 
pcDNA3 (Invitrogen). DNA was produced in large quantities and purified by 
GeneArt. We generated bullets containing DNA as previously described21.

Influenza infection. Mice were anesthetized with ketamine and xylazine51, 
weighed and given influenza A virus (PR/8; strain A/Puerto Rico/8/1934 H1N1 
modified to express OVA) via intranasal administration (80,000 half-maximal 
embryo infectious dose). We killed mice on day 3 of infection for spleen recovery 
or weighed them throughout the infection and killed them when they reached 
<70% preinfection weight.

Cytotoxic T lymphocyte lysis assays. C57BL/6 splenocyte target cells were  
peptide-loaded (with 1 µg ml−1 of SIINFEKL (OVA257–264) or irrelevant peptide 
(KVPRNQDWL, hgp10025–33)), CFSE-labeled (0.5 and 8 µM, respectively) and 
adoptively transferred (1:1 ratio, 2 × 107 cells total) via retro-orbital injection. 
Eighteen hours later, transferred spleen cells were analyzed by flow cytometry 
for CFSE loss and specific lysis was calculated52.

Flow cytometry. We purchased all flow cytometry antibodies from Ebioscience, 
except antibodies to mouse CD3 (BD Biosciences), T-bet (BioLegend) and pJNK2 
(Santa Cruz Biotechnology). OVA MHC-I tetramer–PE (SIINFEKL), HIV Gag 
HLA-B57 tetramer–PE (KAFSPEVIPMF) and HIV Pol HLA-A2 tetramer–PE 

(ILKEPVHGV) were purchased from Beckman Coulter. These OVA and HIV 
tetramers are tetramers that are fluorescently labeled (with PE) and have an 
MHC-I that holds the respective peptide. We performed flow cytometric anti-
body staining and analysis as previously described49,53–55. Cell staining data were 
acquired using an LSR-II flow cytometer (BD Biosciences) and analyzed with 
FlowJo software (Tree Star). We gated on live lymphocytes using LIVE/DEAD 
staining (R&D Systems), forward scatter area (FSC-A) versus side scatter area 
(SSC-A), followed by forward scatter width (FSC-W) versus side scatter width 
(SSC-W), FSC-A versus forward scatter height (FSC-H) and SSC-A versus side 
scatter height (SSC-H) plots. Cell counts were calculated using PKH26 beads, 
as previously described56,57.

Antibody depletions, blocking and stimulation. We delivered depleting or 
blocking monoclonal antibodies (CD4-specific antibody (GK1.5; BioXcell 
and The University of Chicago Frank W. Fitch Monoclonal Antibody Facility) 
NK1.1-specific antibody (PK136, BioXcell) and NKG2D-specific antibody 
(HMG2D, BioXcell)) via intraperitoneal injection at 500 µg per mouse per 
depletion or blocking. In vitro NKG2D co-stimulation of human PBMCs was 
performed using NKG2D -specific agonistic antibody (1D11, BioLegend).

Adoptive CD8+ T cell transfer. We magnetically isolated cells from mouse 
spleens via negative selection using the MACS CD8α+ T cell negative isolation 
kit (Miltenyi Biotec) or a positive isolation kit (naïve (CD44−) CD8+ T cells: R&D 
Systems, CDllc+ cells: Miltenyi Biotec). Cells were delivered via retro-orbital 
injections in 100 µl serum-free PBS.

EL4 target cell preparation. We generated Rae-1ε and H60 constructs using 
the pcDNA3 vector (Invitrogen) and transfected them using lipofectamine into 
EL4 cells (V. Kumar and L. Chlewicki) not expressing Rae-1ε, as described previ-
ously50. Control EL4 cells were transfected with empty pCRAN.

Statistical analyses. We used the log-rank test for comparison of survival curves. 
For the remainder of statistical analyses we used Student’s t test (two-tailed).  
A P value of < 0.05 was considered statistically significant.

49.	Zloza, A. et al. Potent HIV-specific responses are enriched in a unique subset of 
CD8+ T cells that coexpresses CD4 on its surface. Blood 114, 3841–3853 
(2009).

50.	Zloza, A. et al. Engagement of NK receptor NKG2D, but not 2B4, results in self-
reactive CD8+ T cells and autoimmune vitiligo. Autoimmunity 44, 599–606 
(2011).

51.	Pain Management in Animals. (eds. Flecknell, P.A. & Waterman-Pearson, A.) 
(Harcout Publishers Ltd. (W.B. Saunders), London) (2000).

52.	Byers, A.M., Kemball, C.C., Moser, J.M. & Lukacher, A.E. Cutting edge: rapid  
in vivo CTL activity by polyoma virus–specific effector and memory CD8+ T cells.  
J. Immunol. 171, 17–21 (2003).

53.	Bellavance, E.C. et al. Development of tumor-infiltrating CD8+ T cell memory 
precursor effector cells and antimelanoma memory responses are the result of 
vaccination and TGF-β blockade during the perioperative period of tumor resection. 
J. Immunol. 186, 3309–3316 (2011).

54.	Zloza, A. et al. CD8 co-receptor promotes susceptibility of CD8+ T cells to 
transforming growth factor-β (TGF-β)-mediated suppression. Cancer Immunol. 
Immunother. 60, 291–297 (2011).

55.	Krutzik, P.O. & Nolan, G.P. Intracellular phospho-protein staining techniques for 
flow cytometry: monitoring single cell signaling events. Cytometry A 55, 61–70 
(2003).
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