INTERNATIONAL SCIENTIFIC FORUM, ISF 2013

12-14 December 2013, Tirana, Albania

Forum’s venue: Vitrina University

PROCEEDINGS Vol. 3
1ST INTERNATIONAL SCIENTIFIC FORUM, ISF 2013

12-14 DECEMBER 2013, TIRANA, ALBANIA

(FORUM’S PLACE: Vitrina University, Tirana)
Impressum

Bibliographic information published by the National and University library "St. Kliment Ohridski" in Skopje, Macedonia; detailed bibliographic data are available in the internet at http://www.nubsk.edu.mk/;

CIP - 6(062) 502/504(062)
COBISS. MK-ID 95468554

Any brand names and product names mentioned in this book are subject to trademark, brand or patent protection and trademarks or registered trademarks of their respective holders.

The use of brand names, product names, common names, trade names, product descriptions etc. even without a particular marking in this works is in no way to be construed to mean that such names may be regarded as unrestricted in respect of trademark and brand protection legislation and could thus be used by anyone.

European Scientific Institute, ESI, 2013. - 3 vol. (596, 337, 382 p.) : ilust. ; 28 cm
Kocani, Republic of Macedonia
Email: contact@eujournal.org
Printed in Republic of Macedonia

Copyright © 2014 by the authors, ESI and licensors
All Rights Reserved 2014
Table of Contents

PHYTOTHERAPEUTIC TREATMENT OF ALLERGIC RHINITIS IN AUTISTIC SUBJECT
Lydia Ferrara
Daniele Naviglio
Arturo Armone Caruso

PHYSICAL - CHEMICAL AND BACTERIOLOGICAL ANALYSIS OF THE RIVER DRINI I BARDEH:
Burim Haxhibeqiri
Fatou Maloku
Ferdi Brahushi

ASSESSMENT, MONITORING AND PROTECTION OF GROUNDWATER POLLUTION IN URBAN AREAS - CORDOBA CITY – ARGENTINA:
Ferral Anabella,
Sarmiento Tagle Martin
Alaniz Eugenia
Ferral Alberto

DISTURBED HOMEOSTASIS OF SOME INORGANIC ELEMENTS ASSOCIATED WITH CHRONIC EXPOSURE TO LOW LEVELS OF BENZENE AND POSSIBLE ASSOCIATED HEALTH HAZARDS:
Shams El-Din
El-Bassiouni EA
Kotb MA
Refaat R
Ramadan HS

THE USE OF GROUND BLAST FURNACE SLAG, CHROME SLAG AND CORN STEM ASH AS A COATING AGAINST THE CORROSION:
Klevis Reshka

KINETICS OF A S.G. CAST IRON:
Ioan Milosan

AMINOLYSIS OF Z-4-FURYLIDENE OXAZOLIN-5-ONE DERIVATIVES-CONFIGURATION AND KINETICS:
El-sayed M. Abdelrehim
Mohammed Abd Elatif

DEFINING OF PHYSICAL-CHEMICAL PARAMETERS OF KRENA RIVER AS THE POLLUTER OF ERENIKU RIVER:
Faton Maloku
Burim Haxhibeqiri
STUDIES ABOUT THE KEY ELEMENTS OF TOTAL QUALITY MANAGEMENT
Ioan Milosan

DETERMINATION OF PHYSICO-CHEMICAL PARAMETERS OF WATER IN BIOLOGICAL MINIMUM IN THE LAKE ”RADONIQ”
Xhelal Kepuska
Luan Daija
Ilir Kristo

COMPARISON OF RADON LEVEL CONCENTRATION IN SOILS WITH THE NATURAL RADIONUCLIDES CONTENT IN SOME REGIONS OF IONAIN COASTAL AREA, IN ALBANIA
Safet Dogjani
Hamza Reci

EXPERIMENTAL DEMONSTRATION OF THE TIME-IRREVERSIBLE THERMAL EVOLUTION PROCESS AND SOME OF ITS CONSEQUENCES
A. Titov
I. Malinovsky

ENFORCEMENT OF OCCUPATIONAL SAFETY AND HEALTH REGULATIONS IN NIGERIA: AN EXPLORATION
Nnedinma Umeokafor
David Isaac
Keith Jones
Boniface Umeadi

EVALUATION OF ROAD MARKINGS RETOREFLECTION MEASURING METHODS
Darko Babic
Mario Fiolic
Petar Prusa

DEMOGRAPHY AND IT’S INFLUENCE IN THE URBAN DEVELOPMENT OF A COUNTRY
Otjela Lubonja
Donila Pipa

A NEED TO CONTINUE THE TRADITION IN THE REGIONAL ARCHITECTURE OF THE PODHALE REGION
Kinga Palus

PRE-RESTORATION INVESTIGATIONS OF THE BASARABI CHALK MONUMENT DIAGNOSIS, TREATMENT AND IMPLICATIONS
Daniela Turcanu-Caruțiu
Rodica-Mariana Ion
METHODOLOGY FOR MEASURING TRAFFIC SIGNS

RETROREFLECTION

Andjelko Shcukanec
Dario Babic
Hrvoje Sokol

Rafael Shehu

THE FORMS OF PRODUCTION OF ALTERNATIVE ENERGY IN ALBANIA

Fejzo Nikollari

DEVELOPMENT OF THE DATA TRANSFERING SYSTEM USING SOC

Raisa Malcheva
Hazim Naaem

THE IMPACT OF GODEL ON AI

Jollanda Shara

USING MOBILE PHONE TO DETECT THE USER'S INDIVIDUAL RESPONSE TO SPACE WEATHER VARIATIONS

A.A. Abdrakhmanova

OBSERVATION AND MITIGATION OF POWER TRANSIENTS IN 160GBPS OPTICAL BACKHAUL NETWORKS

Vikrant Sharma
Anurag Sharma
Dalveer Kaur

AN ACCELERATION OF FPGA-BASED RAY TRACER

Raisa Malcheva
Mohammad Yunis

DEVELOPMENT OF THE DATA TRANSFERING SYSTEM USING SOC

Raisa Malcheva
Hazim Naaem

SUSTAINABLE DESIGN FOR SCHOOL BUILDINGS IN ALBANIA - KEY PRINCIPLES

Anxhela Lika

HIGH PRECISION CALCULATION OF MOVE OUT CORRECTION IN GPR MEASUREMENTS

Janis Karuss
STABILIZATION OF SOIL RESISTANCE IN NEW INSTALLATION IN THE COASTAL SOIL IN NIGER DELTA
John Tarilanyo Afa
E.N.C. Okafor

EFFECTIVE SPECTRUM SHARING METHOD USING POWER ALLOCATION ALGORITHM IN COGNITIVE RADIO NETWORKS
E.D. Kanmani Ruby
S. Nithya
N. Saranya

ELECTRONIC VOTING: TO HAVE, OR NOT TO HAVE?
Matej Travnicek

THE MECHANISM FOR THE IMPLEMENTATION OF DIGITAL EDUCATIONAL RESOURCES IN THE “E-LEARNING SYSTEM”
Saule Kudubayeva

COMPARATIVE ANALYSIS OF CYBERATTACKS ON ESTONIA, GEORGIA AND KYRGYZSTAN
Andrzej Kozlowski

PERFORMANCE ANALYSES OF SPECULATIVE VIRTUAL CHANNEL ROUTER FOR NETWORK-ON-CHIP
Amit Kumar Lamba
Bharati B. Sayankar
Pankaj Agrawal

CLUSTER ANALYSIS USING AFFINITY COEFFICIENT IN ORDER TO IDENTIFY RELIGIOUS BELIEFS PROFILES
Aurea Sousa
Fernando C. Nicolau
Helena Bacelar-Nicolau
Osvaldo Silva

ECONOMETRIC SCALES OF EQUIVALENCE, THEIR IMPLEMENTATIONS IN ALBANIA
Evgjeni Xhafaj
Ines Nurja
Alban Xhafaj

THE ELECTROMAGNETIC FIELD OF THE POINT HERTZIAN RADIATOR IN UNIAXIAL MAGNETIC CRYSTAL
Ilmira Kanymgaziyeva
THERMAL COMFORT EFFECTS ON PHYSIOLOGICAL ADAPTATIONS AND GROWTH PERFORMANCE OF WEST AFRICAN DWARF GOATS RAISED IN NIGERIA...275
Popoola
Bolarinwa
Yahaya
Adebisi, G.L.
Saka, A.A

THE CONNECTION OF THE SATISFACTION OF PATIENTS FOR THE OLD AND NEW DENTURES...282
Neada Hysenaj
Herta Beck

SOCIAL DETERMINANTS OF DIFFERENTIAL ACCESS TO HEALTH SERVICES ACROSS FIVE STATES OF SOUTHEAST NIGERIA..286
Au. N. Nnonyelu
Ignatius Uche Nwankwo

COMPREHENSIVE ASSESSMENT OF ESTROGENIC CONTAMINATION OF SURFACE WATERS OF THE RIVER BASIN SUQUIA...297
Gallardo Gustavo
Ferral Alberto
Alaniz Eugenia
Ferral Anabella
Sarmiento Tagle Martin
Vanesa Crissi Aloranti

A COMPARISON OF DIFFERENT PATTERN RECOGNITION METHODS WITH ENTROPY BASED FEATURE REDUCTION IN EARLY BREAST CANCER CLASSIFICATION...303
Liuhua Zhang
Wenbin Zhang

PHARMACEUTICAL CARE IN COMMUNITY PHARMACY IN THE REPUBLIC OF MACEDONIA: A COMPARED STUDY WITH EU COUNTRIES.........................313
Merita Dauti
Edita Alili-Idrizi
Ledjan Malaj

ANALYSIS OF SURGICAL TREATMENT OF VENTRAL HERNIA FOR PATIENTS WITH OBESITY...319
Olga Tashtemirova
Ainur Abitanova
Sabit Zhusupov
MID-TERM RESULTS OF THE ON-PUMP VS OFF-PUMP CORONARY ARTERY BYPASS GRAFTING SURGERY ... 324
Romel Mani
Paolo Nardi
Emanuele Bovio
Carlo Bassano
Antonio Pellegrino
Luigi Chiariello

SEASONAL TRENDS IN ANTIBIOTIC USAGE AMONG PAEDIATRIC OUTPATIENTS ... 332
Edita Alili-Idrizi
Merita Dauti
Ledjan Malaj

FORMATIVE ASSESSMENT OF QUALITY ASSURANCE AND SAFETY IN PHARMACEUTICAL EDUCATION IN SOUTH AFRICA 341
Roman Tandlich
Nosiphiwe P. Ngqwala
Eva Tandlichová

CONDITION OF DONATION IN BLOOD SERVICE ... 352
Kamal Tashtemirov
Sagit Imangazinov
Olga Tashtemirova

AJWA DATES AS A PROTECTIVE AGENT AGAINST LIVER TOXICITY IN RAT .. 358
Bassem Y. Sheikh
Wael M. Elsaed
Abdulrahman H. Samman
Bassem Yousef Sheikh
Al-Moalim Bin Ladin

THERAPEUTICAL ASPECTS IN CONVENTIONAL REMOVABLE TREATMENT ... 369
Dan Nicolae Bosînceanu
Norina Consuela Forna
Dana Bosînceanu

PERCEPTIONS OF SEXUAL BEHAVIOR AND KNOWLEDGE ABOUT SEXUALLY TRANSMITTED INFECTIONS AMONG YOUNG PEOPLE IN TIRANA, ALBANIA ... 376
Anisa Subashi
METHODOLOGY FOR MEASURING TRAFFIC SIGNS RETROREFLECTION

Andjelko Shcukanec, PhD
Dario Babic, Mag.ing.traff.
Faculty of Traffic and Transport Science Zagreb, Croatia
Hrvoje Sokol, Dipl.ing.grad.
Croatian Roads d.o.o., Branch Zagreb Zagreb, Croatia

Abstract

Increase of traffic congestion and speed, as a result of the development of modern society require high-quality solutions in the field of traffic signalization. Modern traffic signalization needs to enable right decision making in order to secure a safe and optimal traffic flow. One of the key elements of traffic signalization is timely detection which, followed by reading and understanding its meaning, allows drivers to make proper response in accordance with the requirements of the situation. Quality solutions in the field of traffic signalization, especially traffic signs, can be achieved with relatively small investments through application of modern technologies and continuous inspection and maintenance. Important element of traffic signs maintenance is their retroreflectivity measurement. In order to ensure a satisfying level of retroreflection, continuous measurements in accordance with prescribed standards and technical requirements, should be carried out. The aim of this paper is to analyze the importance of traffic signs retroreflection measurement as a part of standard maintenance program in order to increase road safety.

Keywords: Traffic signs, retroreflection, traffic safety

Introduction

Roads must be equipped with adequate traffic signs that warn road users about potential danger and threats that are in users near distance, providing them with clear information’s about limitations, prohibitions and obligations which must be respected. Sign information can be conveyed through the legend, which can be compromised of words, symbols, and arrows. Roadway users can also extract information from a sign’s unique appearance as size, color, and shape are critical components.

In road traffic, the impact of direct information is of the greater importance than in other traffic modes due to the large number of participants, the intensity of traffic flows and participant’s individual decision making in different situations, either as a driver of the vehicle or pedestrian.

It has been scientifically proven that with a use of modern technologies and proper implementation of traffic signs, a significant impact on the traffic flow of the entire network, enhancement of traffic safety and motivation of road users to cooperate can be achieved.

Quality of traffic signs is especially important in night and in conditions of difficult or poor visibility. In these conditions there is very little light available and overall visibility is decreased which directly impacts traffic safety and traffic flow.

In order to perform its task properly, traffic signs retroreflection and visual inspection should be performed at least once a year. For the measurement of retroreflection portable or mobile retroreflectometers are used. Portable retroreflectometers contains an internal light source and photoreceptors and relies on the method of substitution calibration.
This paper will analyze the importance of traffic signs retroreflection measurements and give guidelines for this type of measurements with the examples of measurements conducted in Croatia.

Definition and basics of traffic signs retroreflection

The only way an object on the road is visible at night is if it is artificially illuminated or if part of light that falls on the object is reflected back to the driver’s eyes. The amount of light entering driver’s eyes from a certain object will have a great impact on how bright that object appears to the driver. At night, light comes from sources such as streetlights or vehicle headlights. In areas without streetlights, the vehicle is the only possible light source. Because the light from a vehicle is generally aimed in a downward direction, little light is directed upward towards traffic signs. With so little light directed at them, traffic signs must be very efficient at returning light back to the vehicle and driver so they can be visible. This property of returning light back to the source is called retroreflectivity.

From all of the above, retroreflection can be defined as a phenomenon of light rays striking a surface and being redirected back to the source of light. Principle of retroreflection in shown in Figure 1.

![Figure 1. Principle of retroreflection](http://www.roadvista.com/retroreflection/) (19.11.2013.)

Retroreflectivity of traffic signs is achieved by specially manufactured materials or sheeting’s that are applied on the traffic signs face. Today, three types of retroreflective materials for traffic signs are used:

a) **Materials class I**

 Materials class I are retroreflective sheeting’s made of a durable material with the bounded glass micro beads or prisms. Retroreflection of materials class I with glass micro beads is about 70 cd·lx⁻¹·m⁻² and because of its low retroreflection it is in most cases used in areas with low-speed and calmer traffic flow. Materials class I that have bounded micro prims have significantly higher retroreflection (around 200 cd·lx⁻¹·m⁻²) than materials with glass micro beads.

b) **Materials class II**

 Materials class II are retroreflective sheeting’s that contains encapsulated glass micro beads or prims that are three times brighter than materials class I. The signs made from materials class II are clearly visible, even from a wide viewing angle, and the lighted environment, effectively warning drivers of approaching danger on the roads. Retroreflection
of materials class II with glass micro beads is around 250 cd•lx⁻¹•m⁻² and 500 cd•lx⁻¹•m⁻² for materials with micro prisms.

c) Materials class III

Materials class III are retroreflective sheeting’s that are made of highly effective micro prisms that enables retroreflection around 700 cd•lx⁻¹•m⁻². Therefore, they provide the drivers with adequate visibility in all day and night and adverse weather conditions.

There are several types of reflective materials class III:
- V.I.P. (Visual Impact Performance) - enables maximum efficiency over short distances and is ideal for signs in city traffic.
- L.D.P. (Long Distance Performance) - developed specifically for the use on motorways and main roads and, therefore, the signs made from these materials are visible from greater distances.
- Fluorescent - provides increased visibility during the day, not just at night, with a usage of fluorescent dye.
- Diamond Grade Cubed - combines the best features of VIP and LDP so it can be used either in the city or on the highways.

Methodology of traffic signs retroreflection measurement

As mentioned before, traffic signs should be inspected at least once a year to verify their retroreflection properties and quality. For the measurement of retroreflection handheld or mobile (dynamic) retroreflectometers are used.

Mobile retroreflectometers for measuring traffic sign retroreflectivity is highly advanced and automated system which represents a new technology which is still in the testing phase. System is equipped with high sensitivity cameras installed onboard which measures the luminance. The response curve of the cameras is equivalent to the human eye and allows luminance measurement consistency. Also, cameras are geometrically calibrated to measure distances and dimensions together with the multiple sensors onboard.

With a further development of mobile retroreflectometers could provide the following advantages:
- measurements could be made while driving down the highway and therefore no equipment would have to be in contact with the sign
- measurements would be made at real roadway geometries rather than prescribed geometries that do not always represent the real world
- twisted and leaning signs would be measured as seen from the roadway perspective and can be easily identified as needing routine maintenance
- images of signs could be recorded at highways speeds, although post-processing the images would be needed, this would minimize the exposure and risk of the technicians
- all signs can be measured, including overhead and difficult-to-reach shoulder mounted signs
- using image analysis, the entire retroreflective area of the sign can be measured rather than a few 1-inch diameter areas.

Because the mobile system is still in the testing phase, for the measurements of traffic signs retroreflectivity, handheld retroreflectometers are used. There are several types of these instruments depending on manufacturer: Zehntner ZRS 6060, Delta RetroSign, Road Vista 922 etc.. These instruments, in the measuring process, are placed on the surface of the sign in

11 Luminance - the quantitative measure of brightness of a light source or an illuminated surface, equal to luminous flux per unit solid angle emitted per unit projected area of the source or surface
12 Carlson, P.: Evaluation of sign retroreflectivity measurements from the advanced mobile asset collection (AMAC) system, Texas Transportation Institute, Texas 2011.
13 Ibidem
order to exclude the impact of daylight and the measuring method is based on substitution calibration because of which they need to be regularly calibrated.

Instruments have a internal light source that corresponds to the standard source A according to CIE-in, and photoreceptor that have a spectral sensitivity that fits standard photo-optical observer according to CIE. Geometry should be selected so that it corresponds to the values that are listed in national specifications which in the European specifications means observation angle of 0.33° and the entrance angle of 5° (Figure 2.).

Entrance angle is primarily determined by the position of the sign in the edge of the road and geometry of an oncoming vehicle and it is formed between a light beam that falling on the surface of the sign and the line that comes out vertically from the surface. Observation angle is the angle between the incoming light beam and reflected light beam and it is a function of the height of driver eye compared to the vehicle headlights. As it is assumed that most of the retroreflection materials reflects light directly back to the source, the optimal observation angle is zero. However, in reality it is not so considering that the driver's eye is higher than the vehicle headlights.

![Figure 2. Entrance and observation angle for a traffic sign](image)

Minimum initial coefficient of retroreflection \(R_A \) (cd•lx\(^{-1}\)•m\(^{-2}\)) of traffic signs measured in accordance with the procedure using CIE standard light source A, must match the values in Table 1., 2. and 3.

Table 1. The coefficient of retroreflection \(R_A \): Class I units cd•lx\(^{-1}\)•m\(^{-2}\)

<table>
<thead>
<tr>
<th>Geometry of measurement</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>white</td>
</tr>
<tr>
<td>(\beta_1) ((\beta_2=0))</td>
<td>yellow</td>
</tr>
<tr>
<td></td>
<td>red</td>
</tr>
<tr>
<td></td>
<td>green</td>
</tr>
<tr>
<td></td>
<td>blue</td>
</tr>
<tr>
<td></td>
<td>brown</td>
</tr>
<tr>
<td></td>
<td>orange</td>
</tr>
<tr>
<td></td>
<td>gray</td>
</tr>
</tbody>
</table>

\(^{14}\) CIE, Maintained Night-time Visibility of Retroreflectivity Road Signs, Brussel, 1995

Table 2. The coefficient of retroreflection \(R_A\): Class II units cd\(\cdot\)lx\(^{-1}\)\(\cdot\)m\(^{-2}\)

<table>
<thead>
<tr>
<th>Geometry of measurement</th>
<th>Color</th>
<th>(\alpha)</th>
<th>(\beta_1)</th>
<th>(\beta_2)</th>
<th>white</th>
<th>yellow</th>
<th>red</th>
<th>green</th>
<th>dark green</th>
<th>blue</th>
<th>brown</th>
<th>orange</th>
<th>gray</th>
</tr>
</thead>
<tbody>
<tr>
<td>12'</td>
<td></td>
<td>+5°</td>
<td>70</td>
<td>30</td>
<td>50</td>
<td>22</td>
<td>14.5</td>
<td>9</td>
<td>3.5</td>
<td>4</td>
<td>1.7</td>
<td>0.3</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+30°</td>
<td>22</td>
<td>10</td>
<td>7</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>1.8</td>
<td>1.5</td>
<td>0.5</td>
<td>#</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+40°</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>2.2</td>
<td>3</td>
<td>1.5</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>6</td>
</tr>
<tr>
<td>20'</td>
<td></td>
<td>+5°</td>
<td>50</td>
<td>24</td>
<td>35</td>
<td>16</td>
<td>10</td>
<td>7</td>
<td>3</td>
<td>1.2</td>
<td>1</td>
<td>0.6</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+30°</td>
<td>24</td>
<td>9</td>
<td>16</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1.2</td>
<td>#</td>
<td>0.2</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+40°</td>
<td>9</td>
<td>6</td>
<td>1</td>
<td>1.8</td>
<td>1.2</td>
<td>1.2</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>18</td>
</tr>
<tr>
<td>2'</td>
<td></td>
<td>+5°</td>
<td>5</td>
<td>2.5</td>
<td>3</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>#</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+30°</td>
<td>2.5</td>
<td>1.5</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
<td>#</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+40°</td>
<td>1.5</td>
<td>1.0</td>
<td>1.0</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
<td>#</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Signifies "Value greater than zero but not meaningful or not applicable"

\(\alpha =\) observation angle ; \(\beta =\) entrance angle

Table 3. The coefficient of retroreflection \(R_A\): Class III units cd\(\cdot\)lx\(^{-1}\)\(\cdot\)m\(^{-2}\)

<table>
<thead>
<tr>
<th>Geometry of measurement</th>
<th>Color</th>
<th>(\alpha)</th>
<th>(\beta_1)</th>
<th>(\beta_2)</th>
<th>white</th>
<th>yellow</th>
<th>red</th>
<th>green</th>
<th>blue</th>
<th>orange</th>
<th>gray</th>
</tr>
</thead>
<tbody>
<tr>
<td>10'</td>
<td></td>
<td>+5°</td>
<td>850</td>
<td>600</td>
<td>425</td>
<td>425</td>
<td>425</td>
<td>425</td>
<td>425</td>
<td>425</td>
<td>425</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+20°</td>
<td>550</td>
<td>390</td>
<td>275</td>
<td>275</td>
<td>275</td>
<td>275</td>
<td>275</td>
<td>275</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+30°</td>
<td>170</td>
<td>120</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>20'</td>
<td></td>
<td>+5°</td>
<td>625</td>
<td>450</td>
<td>325</td>
<td>425</td>
<td>425</td>
<td>425</td>
<td>425</td>
<td>425</td>
<td>425</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+20°</td>
<td>400</td>
<td>290</td>
<td>210</td>
<td>210</td>
<td>210</td>
<td>210</td>
<td>210</td>
<td>210</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+30°</td>
<td>125</td>
<td>90</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
</tr>
</tbody>
</table>

Signifies "Value greater than zero but not meaningful or not applicable"

\(\alpha =\) observation angle ; \(\beta =\) entrance angle

Current practices of traffic signs retroreflection measurement and maintenance in Croatia

In the Croatia, traffic signs retroreflection measurements are conducted by the Department for Traffic Signalization at the Faculty of Transport and Traffic Sciences for more than ten years. In the capital city of Croatia, Zagreb, traffic signs were measured on all newly constructed roads in the least ten years for clients like Zagreb Roads d.o.o., Viadukt d.d., Hidroelektra d.o.o., etc. Measuring retroreflection of road signs have been carried out also on state roads for Croatian Roads d.o.o. and on some county roads for County Roads Administration16.

Measurements are conducted using handheld retroreflectometer Zehntner ZRS 6060 in accordance with the European and National standards and specifications. When measuring retroreflection each sign is measured four times: up, down, left and right. The relevant value of retroreflection represents the average values of all four measurements. Except the retroreflection value, several other elements are analysed:

- sign name and code
- graphic display (sign picture)
- dimension and height and distance from the edge of sign
- colours of surface, edge and symbols
- way the sign is implemented and fixed
- information about the producer of sign
- retroreflective material etc.

For the maintenance purposes, Department for Traffic Signalization, have developed online based software “Retrorefleksija” which consists of two fields: road markings and traffic signs.

Field traffic signs allows clients easy and quick overview of retroreflection measurements conducted by the Department. Data access is possible with the user name and password that is assigned to the authorized personnel involved in the process of traffic sign maintenance. The aim of the software is to provide a data base of traffic signs on particular road and clearer overview of measured values.

Data base provides personnel’s involved in the signs maintenance with the inside view into the state of traffic signs on specific road enabling them to optimize whole maintenance process which as a result should have increase of road safety and decrease of maintenance costs. Optimization is achieved by prioritization of maintenance, optimization of replacement of existing signs, reviewing “black spots” or critical places on the road and by enabling the authorities to create a long and short term maintenance plan.

<table>
<thead>
<tr>
<th>α (°)</th>
<th>33°</th>
<th>+5°</th>
<th>425</th>
<th>275</th>
<th>85</th>
<th>40</th>
<th>28</th>
<th>95</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+20°</td>
<td>300</td>
<td>195</td>
<td>60</td>
<td>30</td>
<td>20</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+30°</td>
<td>225</td>
<td>145</td>
<td>45</td>
<td>20</td>
<td>15</td>
<td>49</td>
<td></td>
</tr>
</tbody>
</table>

Signifies "Value greater than zero but not meaningful or not applicable "
α = observation angle ; β = entrance angle

Figure 3. Data base of traffic signs in software “Retrorefleksija”
Source: http://ispitivanja.fpz.hr/#!sign-measurement:526f7786e4b0371ab15a7352
(26.11.2013.)

Figure 3. shows a date base of traffic signs on one road in software “Retrorefleksija”.

Data base includes all signs on road, their retroreflection and technical characteristics, time of the measurement, temperature and humidity, digital map with correct location of the signs etc.. Also, data base provides a picture of the sign when particular sign is chosen for a detailed view as shown on figure 4.

Figure 4. Detailed view of chosen traffic sign
Source: http://ispitivanja.fpz.hr/#!sign-measurement:526f7786e4b0371ab15a7352
(26.11.2013.)

Conclusion
Traffic experts interpreted road accidents as a result of the constant increase in the number of vehicles, a high percentage of defective vehicles in traffic, insufficient traffic culture of road users, lack of road adaptability to the requirements of the modern traffic, inadequate traffic signs and signalization, etc.. Modern road traffic demands safe movement of users under normal circumstances and especially at night and/or in circumstances of reduced visibility. One way to ensure safer road traffic is with implementation of modern and innovative technologies for traffic signalization. Quality solutions in the field of traffic signalization, especially traffic sings, can be achieved with relatively small investments and continuous maintenance.
Traffic signs should be inspected at least once a year to verify their retroreflection properties and quality. For the measurement of retroreflection handheld or mobile (dynamic) retroreflectometers are used. Although mobile retroreflectometers, in theory, have several advantages over handheld due to the lack of practical use and tests handheld retroreflectometers are commonly used in traffic signs retroreflection measurements.

In the Croatia, traffic signs retroreflection measurements are conducted by the Department for Traffic Signalization at the Faculty of Transport and Traffic Sciences for more than ten years. Methodology of measurement is based on the European and National standards and specifications. When measuring retroreflection, each sign is measured four times (up, down, left and right) and the relevant value represents the average values of all four measurements.

To achieve quality level of maintenance, except the retroreflection value, several other elements must be analysed so the data base of traffic signs on a specific road can be created. Data base provides personnel’s involved in the sings maintenance with the inside view into the state of traffic signs on specific road enabling them to optimize whole maintenance process which as a result should have increase of road safety and decrease of maintenance costs.

References:
Carlson, P.: Evaluation of sign retroreflectivity measurements from the advanced mobile asset collection (AMAC) system, Texas Transportation Institute, Texas 2011.
CIE, Maintained Night-time Visibility of Retroreflectivity Road Signs, Brussel, 1995
Regulations of road signs and equipment on the roads, the Ministry of Sea, Tourism, Transport and Development, NN 33/2005.
http://www.roadvista.com/retroreflection/ (19.11.2013.)