
Java software development using component and metacomponent model

Danijel Radošević, Mario Konecki, Tihomir Orehovački
University of Zagreb

Faculty of Organization and Informatics, Varaždin
danijel.radosevic@foi.hr, mario.konecki@foi.hr, tihomir.orehovacki@foi.hr

Abstract: Component based modeling offers new
and improved approach to the design, construction,
implementation and evolution of software
applications development. Software components can
improve many aspects of software applications
development such as functionality, maintainability,
usability, etc. Components are used to develop
software applications by using some of their services.
This kind of software applications development is
usually represented by appropriate component
model/diagram. UML, for example, offers component
diagram for representation of this kind of model. On
the other hand, metacomponents usage offers some
new features which hardly could be achieved by using
generic components. Firstly, implementation of
program properties which are dispersed on different
classes and other program units, i.e. aspects, is
offered. This implies using automated process of
assembling components and their interconnection for
building applications, according to appropriate
model offered in this paper, which also offers generic
components usage. Benefits of this hybrid process are
higher flexibility achieved by automated connection
process, optimization through selective features
inclusion and easier application maintenance and
development. In this paper we give an example of
Java Web application development based on hybrid
metacomponent/component approach.

Keywords: component model, metacomponent
model, web application, Java

1. Introduction

The concept of building software from
components has been used for many years. Software
is made from components that can be developed or
can be bought. This kind of application is more
flexible than applications developed using non-
component approach because of their PNP nature.

Components are highly reusable which makes
development of further applications that offer similar
functionalities much easier. Another step forward
would be metacomponents usage. Metacomponents
usage offers automation, optimization and easier
maintenance/development and higher flexibility.

Components that are generated from
metacomponents consist of just those functionalities
that are needed for some particular case, rather than of

all functionalities available for some particular
component.

2. What is a component?

When we talk about component based software
development (CBSD) we can say that it is rather
young discipline that is still in the process of
development. There are several important terms that
we can identify in this discipline but the main focus is
on a component. A component is a part of a program
product. It consists of a group of functionalities that
are offered through that component [1]. A component
is implemented in some programming language,
compiled and as such it represents the black box, that
is, the implementation details of a component are not
known to its environment.

In order to communicate with its environment,
components use one ore more interfaces. Interface
provides component a way to communicate with its
environment, that is, with other components.
Interfaces define services that some particular
component provides. In most cases interface defines
just syntactical aspect of a component (inputs and
outputs) and says nothing about semantical aspect.
This tells to user very little about what a component
really does.

In order to describe functionalities of a
component, every component has its contract which
defines the behavior of a component (what we have to
provide to get certain results and which conditions
have to be met in order to get the right results). A
contract of a component also describes a way of
communication/interaction between components in
some particular group.

2.1. Types of components

There are 3 main types of components [1]:
custom-built components, reusable components and
commercial components. Custom-built components
are components developed for some particular
purpose (e.g. Figure 1.). Reusable components are
components owned by developers of application that
have been developed for some other application but
can be used for present development. Commercial
components are components that are developed for
sale on a component market.

Figure 1. UML model of Java component

2.2. Components Characteristics

There are some components principles which
distinguish them from other programming
technologies [1]:

• reusability – the property to use a component
developed during one software development
process (SDP) in another SDP

• substitutability - the ability to replace
component with alternative implementation of
component

• extensibility – the characteristic which can
add new features to individual components or
extend one component into two or more
components

• composability – the ability to assemble
various component functions in order to
satisfy specific user requirements

Beside the mentioned principles the following are
also referred [11][3]:

• executability – component is an executable
programming module

• interface – the property which determines
internal running of components

• source code protection – source code isn’t
directly accessible to component users

• interaction between components in order to
exchange information

• flexibility – the property to modify a single
component in order to use it in another SDP

• maintainability – the ability to modify
component in order to adapt it to a specific
SDP

2.3. Problems with components

When we consider the process of components
assembling we are facing with several problems [8]:

• if we want to implement desired functionality
we need to identify appropriate component(s)

• there are some gaps between components and
desired functionality so we need to specify
and resolve them

• it is necessary to specify interaction between
components

• during the interaction between components in
nonlinear systems some emergent behavior
can occur

Because of these problems, we will examine
properties which metacomponent approach brings.

3. Metacomponent approach

Metacomponent is, according to Villacıs, a
"container component that has “inside” knowledge
about the connections between components embedded
within it" [16]. The main difference between
metacomponents and components is that
metacomponents are just templates for components,
not the whole components that could be included into
working applications. So, metacomponents require
some automated process to produce components. That
process is quite invasive - all changes are hardcoded
into program code through the process of generation.
The main advantages of this approach are, according
to [2]:
• optimization: unlike components, which should

cover wide area of their problem domain, to
fulfill needs of many different applications,
metacomponents are pretty "light" - specific
properties could be involved by specific needs of
particular application (defined in application
specification).

• aspects: according to Kinczales [5], aspects
represent features that are not strictly connected
to individual program organizational units like
functions or classes, so they can appear within
different application parts. It means that some
feature have to be defined just once (in the
application specification), but dispersed on
different application parts. It was shown that
UML and other object modelling techniques have
significant problems in modelling aspects (i.e.
Lee [6]).

• flexibility: while components need to be
accessed through its public interface,
metacomponents allow invasive approach, i.e.
can be changed inside. This enables fine
adjusting of desired properties.

3.1. Scripting model of generator

Including aspects into generated application
requires appropriate connectivity model, which is
called, according to Kandé [4], the Join points model.
Scripting model of generator [9] is kind of Join points
model, where join points are defined as typeless [10]
unlike classic object model, where join point are
defined as complex connectivity classes. The property
of being typeless should make connectivities easier,
just like scripting programming languages, which tend
to be typeless, and are used for connecting
components written in system (structural and object
oriented) programming languages [7].

3.1.1. Diagrams of generator scripting model

The scripting model consists of two graphic
diagrams (or equivalent textual specifications), so it's
simpler in relation to the models based on UML [9].
The first diagram is called the specification diagram
and defines the structure of the application
specification within the generation system. The
specification diagram of Java application for remote
database maintaining generator defines features
(aspects) which make single application different
from other within it's problem domain. In the
example, specification defines used tables and fields
in each table (Figure 2.).

title []

table primary_key

field_int field_char field_float

field_

Figure 2. The specification diagram of the
example Java application

The generation system generates the application

within its problem domain, which is designated by
program code templates (metascripts). The connection
rules for connecting metascripts to application
specification are defined in the second diagram - the
metascripts diagram [9]. The metascripts diagram of
Java application for remote database maintaining
generator defines connections between metascripts
and application specification (Figure 3.).

SCRIPT

script.metascript

[table].Java

#primary_key#

primary_key

#table#

table

#arguments_post#

field_

#list_of_fields#

field_

field_post

field_post.metascript

#field#

field_

field_int

field_int.metascript

#field#

field_int

field_char

field_char.metascript

#field#

field_char

field_float

field_float.metascript

#field#

field_float

.

.

.

Figure 3. The metacsripts diagram of the

example Java application

4. Application prototype

In order to develop a suitable generator a
desktop/web application prototype was developed
using Java technology. This prototype was developed
in such way that it consists of all elements and
provides all necessary functionality that will be used
later in other generated applications. The platform for
prototype development was chosen according to some
simple guidelines, namely the main reason for
choosing Java was its openness and platform
independency.

When we talk about Java we talk about
programming language but also about platform (a
hardware or software environment in which program
runs [12]).

When writing java code, all code is first written in
plain text files ending with the .java using some
editor. The files are called the source files. They are
then compiled using javac compiler into .class files.
The files (.class) contain bytecode that isn’t native to
computer processor. Bytecode is machine language of
the Java Virtual Machine (Java VM [13]). Compiled
application is run with the instance of Java VM. Java
VM is available on various platforms and that is why
java programs are able to run on different operating
systems. The process of running Java application is
shown in Figure 4.

Figure 4. Running Java application

The technology that was used inside of Java is
Swing. Swing is a GUI toolkit for Java. It is one part
of the Java Foundation Classes (JFC) [14]. Swing
includes graphical user interface (GUI) widgets such
as text boxes, buttons, split-panes, and tables. Swing
is a platform independent, Model-View-Controller
GUI framework for the Java system [15]. Swing
enables one to develop an application that can be used
as a desktop or web application (as an applet inside of
a browser). Using this kind of technology a high-level
of flexibility was gained.

The database used in this prototype is MS Access
database. It was used because of its simplicity but any
other database could also be used, without changing
any of program code, except database connection
string. The database consists of just one table called
“Participants”. The structure of prototype database
table is shown in Table 1.

Program.java Compiler Program.class Java VM

Program
running

011011000

Attributes Data types
student_id (primary key) integer

surname_name varchar
year_of_study integer

year_of_enrolment integer

Table 1. Structure of prototype database table

The prototype developed is the base for generating
similar and more complex programs. The whole
program is written in just one .java file which
simplifies generating process. The application
prototype implements the following functionality:

• Inserting new participants
• Updating existing participants
• Deleting existing participants
• Viewing existing participants

All these functions are implemented on just one

screen to simplify the usage of this prototype. Also
some other features such as asking confirmation for
deleting are also implemented. The screenshot of
application is shown in Figure 5.

Figure 5. Screenshot of application prototype

5. Generating case

Generating case refers to generating Java applets
for database administration (data review; adding.
editing and deleting records), according to appropriate
specification and program code templates
(metascripts).

5.1. Specification

According to scripting model of generator,
building an application starts with the specification.
For example:

title:Students
table:students
primary_key:id
field_int:id

field_char:surname_name
field_int:year_of_study
field_int:year_of_enrollment

This specification defines table to be created and
maintained (students), with its fields (id, surname
name, year of study and year of enrollment), primary
key (id) and group title (Students). These are the
features of generated application that varies within its
problem domain.

5.2. Metascripts

Metascripts (program templates) define common
parts of different applications among its problem
domain. Features from specification are connected to
metascripts according to the metascripts diagram
(Figure 3). In the following example, several features
are connected to appropriate metascripts:
. . .
 {
 JOptionPane pane = new JOptionPane(
 "#table# with #primary_key# already exists !");
 JDialog dialog = pane.createDialog(new JFrame(),
"Data enter failed!");
dialog.setVisible(true);
 #primary_key#_polje.requestFocus();
 #primary_key#_polje.setSelectionStart(0);
 #primary_key#_polje.setSelectionEnd(100);
 }
. . .
- after connecting to specification (generated parts are
bolded):
. . .
{
 JOptionPane pane = new JOptionPane(
 "students with that id already exist !");
 JDialog dialog = pane.createDialog(new
JFrame(), " Data enter failed!");
 dialog.setVisible(true);
 id.requestFocus();
 id.setSelectionStart(0);
 id.setSelectionEnd(100);
 }
. . .

In the example, all tags (marked by # signs) are
directly exchanged by values from specification. That
is not a case in bit more complex example:

 public void mouseClicked(MouseEvent e)
{
 int row = table.getSelectedRow();
 int counter=0;
 if ((#table#.getValueAt(row, 0)) != "")
 {
//#primary_key#.setText(table.getValueAt(red,0).toStr
ing());//subtemplate
#show_record#
 }

 #primary_key#_polje.setEditable(false);
}

After using appropriate specification elements
(generated parts are bolded):

public void mouseClicked(MouseEvent e)
{
 int row = students.getSelectedRow();
 int counter=0;
 if ((students.getValueAt(row, 0)) != "")
 {
 id.setText(students.getValueAt(row, counter
++).toString());
surname_name.setText(students.getValueAt(row,cou
nter ++).toString());
year_of_study.setText(students.getValueAt(row,count
er ++).toString());
year_of_enrollment.setText(students.getValueAt(row,
counter++).toString());
 }
 id.setEditable(false);
}

Using of sub templates is defined by lower levels
of the metascripts diagram (Figure 3).

6. Combining component and metacomponent
approach

Despite of using metacomponent model, like
scripting model of generator, the whole approach of
application development is hybrid: component and
metacomponent approaches are combined.

Why? Looking just application prototype, it could
be fully described by its component model, despite
the fact that some of the components are generated
from appropriate metacomponents. It's not necessary
that all of the components have to be generated -
some have no features which should be defined in the
application specification. The aspiration of generator
scripting model is to make application specification as
light as possible, so it has to contain only features
which have to be different inside the generator
problem domain.

In our example of Java database administration
application, the component model is given in figure 6:

Figure 6: Java database administration
application component model

7. Conclusion

In this paper component and metacomponent
approach was compared on an example of Java
software generation system. Appropriate generator
was developed using scripting generator model which
represents kind of metacomponent model and the
main advantages of metacomponent approach, toward
to component model have been shown. Regarding the
fact that the fully metacomponent approach could be
too demanding, used approach was really hybrid.
Some of the components are common for all
applications inside the generator problem domain and
there is no need to generate them from
metacomponents. That means that whole software
development system could be defined by both
component and metacomponent model, keeping
advantages from both of them.

In our future work we plan to improve the
generative application development based on
generator scripting model with main accent on
following areas:

• problem domain reengineering,
• introducing some new concepts to the

scripting generator model, like virtual
metascripts, similar to the object model, and

• development of new programming platforms
for making generators, except the existing
scripting and C++ platform.

8. References

[1] Crnkovic, I.; Larsson, M.; Building Reliable

Component-Based Software Systems, Artech
House, Boston, 2002.

[2] Czarnecki, K.; Generative Core Concepts -
Generative Domain Model, Program-
Transformation.Org, 2002., http://www.program-
transformation.org/Transform/GenerativeCoreCo
ncepts

[3] Gómez-Perez A.; Lozano A.; Impact of Software
Components Characteristics above Decision-
making Factors, International Workshop on
Component-Based Software Engineering (CBSE
2000), Limerick, Ireland, 2000

[4] Kandé, M.M.; Kienzle,J.; Strohmeier, A.; From
AOP to UML - A Bottom-Up Approach, 1st
International Conference on Aspect-Oriented
Software Development, 2002., Enschede, The
Netherlands,
http://lglwww.epfl.ch/workshops/aosd-
uml/Allsubs/kande.pdf

[5] Kinczales, G.; Lamping, J.; Mendhekar, A.; Chris
Maeda, Cristina Videira Lopes, Jean-Marc
Loingtier, John Irwin. Aspect-Oriented
Programming”. In Proceedings of the European
Conference on Object-Oriented Programming
(ECOOP), Finland. Springer-Verlag LNCS 1241.
June 1997. http://citeseer.nj.nec.com/
kiczales97aspectoriented.html

[6] Lee, K. W. K.; An Introduction to Aspect-
Oriented Programming, COMP610E: Course of
Software Development of E-Business
Applications (Spring 2002), Hong Kong
University of Science and Technology, 2002.

[7] Ousterhout J. K.; Scripting : Higher Level
programming for the 21st Century, IEEE
computer magazine, march 1998.

[8] Parsons, R.; Components and the World of
Chaos, IEEE Software, Vol. 20, no. 3, pp. 83 –
85, 2003.

[9] Radošević, D.; Integration of Generative
programming and Scripting Languages, doctoral
thesis, Faculty of Organition and Informatics,
Varaždin, Croatia, 2005.

[10] Radošević, D., Kozina, M.; Kliček B.;
Comparison Between UML And Generator
Application Scripting Model, Conference
proceedings of Information and Intelligent
Systems 2005 (IIS 2005), Fakultet organizacije i
informatike, Varaždin, 21.-23.09.2005.

[11] Simão, R. P. S.; Belchior, A. D.; Quality
Characteristics for Software Components:
Hierarchy and Quality Guides, Component-Based
Software Quality, Volume 2693, pp. 184-206.,
Springer Berlin / Heidelberg, 2003.

[12] Sun Microsystems; About the Java Technology,
http://java.sun.com/docs/books/tutorial/getStarted
/intro/definition.html, Sun Microsystems, Inc.,
2006.

[13] Sun Microsystems; Java Virtual Machines,
http://java.sun.com/j2se/1.4.2/docs/guide/vm/inde
x.html, Sun Microsystems, Inc., 2002.

[14] Sun Microsystems; Java Foundation Classes,
http://java.sun.com/products/jfc/reference/, Sun
Microsystems, Inc., 2007.

[15] Sun Microsystems; Model-view-controller,
http://java.sun.com/blueprints/patterns/MVC.htm
l, Sun Microsystems, Inc., 2002.

[16] Villacıs, J. E.; The Component Architecture
Toolkit, Indiana University, Department of
Computer Science, 1999.,
http://www.extreme.indiana.edu/
cat/papers/discat.pdf

