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Poles of partial wave scattering matrices in hadron spectroscopy have recently been established as a sole link
between experiment and QCD theories and models. Karlsruhe-Helsinki (KH) partial wave analyses have been
“above the line” in the Review of Particle Physics (RPP) for over three decades. The RPP compiles Breit-Wigner
(BW) parameters from local BW fits, but give only a limited number of pole positions using speed plots (SP). In the
KH method only Mandelstam analyticity is used as a theoretical constraint, so these partial wave solutions are as
model independent as possible. They are a valuable source of information. It is unsatisfactory that BW parameters
given in the RPP have been obtained from the KH80 solution, while pole parameters have been obtained from
the KA84 version. To remedy this, we have used a newly developed Laurent + Pietarinen expansion method to
obtain pole positions for all partial waves for KH80 and KA84 solutions. We show that differences from pole
parameters are, with a few exceptions, negligible for most partial waves. We give a full set of pole parameters
for both solutions.
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I. INTRODUCTION

Revisions to the Review of Particle Physics (RPP) [1] and
contributions to recent workshops [2–4] have emphasized that
poles, rather than Breit-Wigner parameters, quantify resonance
masses and widths and make a link between scattering
theory and QCD. It appears that Karlsruhe-Helsinki partial
wave analyses make one of the most reliable data analyses
“above the line” in the RPP [1] for almost three decades
and give Breit-Wigner parameters over local energy ranges.
The pole parameters are given for only some of them. They
are presently extracted from speed plots (SP) as described by
Höhler in Refs. [5–7]. Let W be the center of mass energy. In
Ref. [5] it was shown that by using SP(W ) = |dT (W )/dW |,
and the T matrices defined as T (W ) = Tb + R�ei φ/(M −
W − i �/2) where Tb is a background term, the methods
of the authors of Ref. [6] are inadequate because the phase
information is not obtained. The authors of Ref. [5] proposed
an improvement by introducing Argand plots for dT (W )/dW .
This work assumed that dTb(W )/dW can be neglected. This
succeeded for several partial waves, but not all. Auxiliary
assessments were recommended; four-star resonances were
derived from speed plots and Argand diagrams dT /dW
over the range W = M ± �/2. The locations of T (M) and
T (M ± �/2) in the Argand plot for T (W ) were calculated
by interpolating the partial wave solution KA84. Next, the
radius R and phase φ were used to fit the resonance loop,
assuming that background Tb is constant over the range W =
M ± �/2. The expressions T̃ (M) and T̃ (M ± �/2) denote
points calculated for parameters R and φ. It is shown that
T (M) and T̃ (M) agree using this construction; however, the
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values T (M ± �/2) and T̃ (M ± �/2) are in general not yet
quite satisfactory. Therefore �, R, and φ were adjusted until a
good fit was obtained. This procedure was successful for eight
of the four-star resonances, and the parameters are listed in
Table 1 of Ref. [5]. This table, based on the KA84 solution, is
now cited in the RPP as KH pole positions.

In summary, the SP method is actually a three step
procedure: (i) make a classic speed plot; (ii) make an Argand
plot for dT (W )/dW and establish a phase φ; (iii) correct �,
R, and φ so that the interpolated value of KH (or any other)
amplitude and Argand plot coincide. We repeat the description
of this procedure in detail because occasionally only the first
step is used because Refs. [5,6] are not easily accessible.

This opens two issues. (i) First, is the generalized SP method
able to find all poles in KH amplitudes? And second (ii) are SP
pole parameters obtained from the KH80 solution comparable
to the pole position from KA84? So, the question arises: “How
similar are these two solutions?” Here we answer both issues.

Regarding issue (i) we use the newly developed
Laurent + Pietarinen method (L + P method) [8,9] to
extract all visible poles from KH80 and KA84 solutions. The
differences between these solutions are quantified here.

Regarding issue (ii), it is known from Refs. [5,7] that these
two solutions are not drastically different, but are definitely
not identical.

As other analyses have shown that the SP method is
only a first order approximation of more general search
methods [10,11], it remains a mystery to us why other methods
have not been used to complete the fragmentary list of KH pole
parameters obtained by using the SP technique only.

So the main purpose of this paper is to remedy these
problems. We use the recent L + P method [8,9] to extract
pole positions from both KH80 and KA84 solutions. We show
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the figures and pole parameters for both and compare them. We
find more poles than originally established by the SP technique,
and confirm that the differences between the two sets of KH
solutions are negligible. All results agree well with the present
results displayed in the RPP [1].

II. FORMALISM

A. Two classic partial wave analyses

For almost three decades two significantly different partial
wave analyses have appeared “above the line” in the RPP:
the Carnegie-Mellon-Berkeley (CMB) analysis of Cutkosky
et al. [12–14], and the Karlsruhe-Helsinki analysis by Höhler
et al. [15]. These two analyses enforce slightly different
criteria. The CMB model [12–14] produced partial wave poles
directly, but had some problems with Breit-Wigner parame-
ters [14]. The Karlstuhe-Helsinki approach was much more
successful in stabilizing solutions, but had some problems in
extracting BW parameters and poles.

1. CMB model

The authors of Ref. [12] amalgamated and stabilized
the data base; in Ref. [13] they performed a single-energy
stabilized partial wave analysis, and in Ref. [14] developed
a global solution—a coupled-channel model with analyticity
and unitarity explicitly included which they used to fit the
partial wave data of Ref. [13]. They explicitly obtained partial
wave poles by analytic continuation into the complex energy
plane, but had some problems defining an “analog” to BW
parameters. They did not make a local BW fit, but used their
coupled-channel model to extract BW parameters. Their list
of BW parameters and poles is complete.

2. KH80 method

The KH80 method used a different approach. Instead
of performing energy stabilization at the level of partial
waves, they evaluated pion-nucleon invariant amplitudes using
forward dispersion relations and the Pietarinen expansion.
The stabilization method is close to model independent.
The only constraint used is Mandelstam analyticity. The
method includes amplitude analysis at fixed t , amplitude
analysis at fixed center of mass (c.m.) angles, backward
amplitude analysis, and ordinary energy independent partial
wave analysis, all of them linked into one computer program.

The fixed-t amplitude analysis used C± and B± invari-
ant amplitudes over a large angular domain in the range
−1 � t(GeV2) � 0; invariant amplitudes satisfy exact fixed-t
analyticity and s-u crossing symmetry. Data are available up to
laboratory. momentum k = 200 GeV/c. The analysis at fixed
c.m. scattering angle was done at 18 angles with −0.8 �
cos θ � +0.8. Forward and backward amplitude analyses
were performed separately [15].

Energy independent partial wave analysis is the third step in
the Karlsruhe method. Partial waves were fitted to the data and
to invariant amplitudes at fixed-t , fixed c.m. scattering angle,
backward and forward at the same momentum and energy. The
strength of the constraints was adjusted allowing the possibility
of weak resonances. Partial waves found in one iteration were

used to reconstruct invariant amplitudes iteratively. The whole
method converged in several iterations [15].

The final step in the KH method was to fit partial waves
to experimental data. For that reason, partial waves from
KH80 partial wave analysis are only approximately smooth
as a function of energy. A smoother solution KA84 [16] was
constructed from KH80 work using constraints from s-channel
partial wave dispersion relations, fixed-s dispersion relations,
and information from the nearby part of the Mandelstam
double spectral function [17].

Being almost model independent and consistent with
Mandelstam analiticity, the Karlsruhe-Helsinki partial wave
solutions are a valuable input for extraction of resonances
in the πN system. We use data from the original KH code
preserved by one of our collaborators (Stahov1) from Tuzla.

B. Laurent (Mittag-Leffler) expansion

We generalize the Laurent expansion to the Mittag-Leffler
theorem [9,18], which expresses a function in terms of its first
k poles and an entire function

T (W ) =
k∑

i=1

a
(i)
−1

W − Wi

+ BL(W ); a
(i)
−1,Wi,W ∈ C. (1)

Here, W is c.m. energy, a
(i)
−1 and Wi are residues and pole

positions for the ith pole, and BL(W ) is a function regular
in all W �= Wi . It is important to note that this expansion is
not a representation of the unknown function T (W ) in the
full complex energy plane, but is restricted to the part of the
complex energy plane where the expansion converges. If we
choose poles as expansion points, the Laurent series converges
on the open annulus around each pole. The outer radius of the
annulus extends to the position of the next singularity (such
as a nearby pole). Our Laurent expansion converges on a sum
of circles located at the poles, and this part of the complex
energy plane in principle includes the real axes. By fitting the
expansion (1) to the experimental data on the real axis, this in
principle gives exact values of s-matrix poles.

The novelty of our approach is a particular choice for the
nonpole contribution BL(W ), based on an expansion method
used by Pietarinen for πN elastic scattering.

Before proceeding, we briefly review this method.

C. Pietarinen series

A specific type of conformal mapping technique was pro-
posed and introduced by Ciulli [19,20] and Pietarinen [21], and
used in the Karlsruhe-Helsinki partial wave analysis [15] as an
efficient expansion of invariant amplitudes. It was later used by
a number of authors to solve problems in scattering and field
theory [22], but not applied to the pole search prior to our recent
study [9]. A more detailed discussion of the use of conformal
mapping and this method can be found in Refs. [9,18].

1Jugoslav Stahov was one of the original “KH task force” members.
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If F (W ) is a general unknown analytic function with a cut
starting at W = xP , it can be represented as a power series of
“Pietarinen functions”

F (W ) =
N∑

n=0

cn X(W )n, W ∈ C,

(2)

X(W ) = α − √
xP − W

α + √
xP − W

, cn,xP ,α ∈ R,

with α and cn acting as tuning parameter and coefficients of
the Pietarinen function X(W ), respectively.

The essence of the approach is that (X(W )n, n = 1,∞)
forms a complete set of functions defined on the unit circle in
the complex energy plane with a branch cut starting at W =
xP ; the analytic form of the function is initially undefined.
The final form of the analytic function F (W ) is obtained
by introducing a rapidly convergent power series with real
coefficients, and the degree of the expansion is automatically
determined by fitting the input data. In the calculation of
the authors of Ref. [21], as many as 50 terms were used; in
the present analysis, covering a narrower energy range, fewer
terms are required.

D. Application of Pietarinen series to scattering theory

The analytic structure of each partial wave is well known.
Every partial wave contains poles that parametrize resonant
contributions, cuts in the physical region starting at thresholds
of elastic and all possible inelastic channels, plus t-channel,
u-channel and nucleon exchange contributions quantified with
corresponding negative energy cuts. However, the explicit
analytic form of each cut contribution is not known. Instead
of guessing the exact analytic form of all of these, we use one
Pietarinen series to represent each cut, and the number of terms
in the Pietarinen series is determined by the quality of fit to
the input data. In principle we have one Pietarinen series per
cut; branch points xP ,xQ, . . . , are known from physics, and the
coefficients are determined by fitting the input data. In practice,
we have too many cuts (especially in the negative energy
range), so we reduce their number by dividing them into two
categories: all negative energy cuts are approximated with only
one, effective negative energy cut represented by one (Pietari-
nen) series (we denote its branch point as xP ), while each
physical cut is represented by a separate series with branch
points determined by the physics of the process (xQ,xR, . . . ,).

In summary, the set of equations which define the Laurent
expansion + Pietarinen series method (L + P method) is

T (W ) =
k∑

i=1

a
(i)
−1

W − Wi

+ BL(W ),

BL(W ) =
M∑

n=0

cn X(W )n +
N∑

n=0

dn Y (W )n +
N∑

n=0

en Z(W )n + · · ·
(3)

X(W ) = α − √
xP − W

α + √
xP − W

; Y (W ) = β − √
xQ − W

β + √
xQ − W

; Z(W ) = γ − √
xR − W

γ + √
xR − W

+ · · ·

a
(i)
−1,Wi,W ∈ C

cn,dn,enα,β,γ, . . . , ∈ R and xP ,xQ,xR ∈ R or C

and k,M,N, . . . , ∈ N.

As our input data are on the real axes, the fit is performed
only on this dense subset of the complex energy plane. All
Pietarinen parameters in Eqs. (3) are determined by the fit.

We observe that the class of input functions that may be
analyzed with this method is quite wide. One may either fit
partial wave amplitudes obtained from theoretical models, or
possibly experimental data directly. In either case, the T matrix
is represented by this set of equations (3), and minimization is
usually carried out in terms of χ2.

E. Real and complex branch points

Branch points xP , xQ, xR , . . . , in the Pietarinen expan-
sion (3) can be real or complex. However, real or complex
branch points describe a different physical situation. If the
branch points xP , xQ, xR , . . . , are real numbers, this means
that our background contributions are defined by stable initial
and final state particles. Then all contributions to the observed
processes are created by intermediate isobar resonances, and
all other initial and final state contributions are given by
stable particles, as described by Pietarinen expansions with

real branch point coefficients. From experience we know that
this, in principle, is not true: a three body final state is always
created provided that the energy balance allows for it, and
in three body final states we typically do have a contribution
from one stable particle (nucleon or pion), and many other
combinations of two-body resonant substates like σ , ρ, �, . . .
So we choose the model where the first two branch points xP

and xQ are always real, but the third branch point xR can be
either real (two body final states) or complex (three body final
state with a resonance in a two body subsystem).

Let us claim the fact that the single channel character of
the method prohibits us to establish with certainty which
mechanism prevails. Using data from a single channel only (the
existing KH80 and KA84 input) we are unable with certainty
to say whether the new resonant state that appears is an isobar
state with two body final states, or a three body final state with
a resonance in a two body subsystem. If only single channel
information is available, we have two alternatives: either we
obtain a good fit with an extra resonance and stable initial and
final state particles (real branch points), or we obtain a good
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TABLE I. Pole positions in MeV and residues of partial waves as moduli in MeV and phases in degrees for lowest I = 1/2 partial waves.
The results from L + P expansion are given for Karlsruhe-Helsinki 80 (KH80) and Karlsruhe 84 (KA84) analysis. Resonances marked with
a star indicate resonances which can be explained by the ρN complex branch point. RPP denotes the range of pole parameters given by the
authors of Ref. [1], and RPP H93 denotes the values of pole parameters named HOEHLER 93 in the RPP, and taken from RPP and Table 1 of
Ref. [5].

PW Source Resonance Re Wp −2Im Wp |Residue| θ

S11 RPP 1490–1530 90–250 50 ± 20 (−15 ± 15)◦

RPP H93 1487 − − −
KH80 L + P N (1535) 1/2− 1509 ± 4 ± 2 118 ± 9 ± 2 22 ± 2 ± 0.4 (−5 ± 5 ± 3)◦

KA84 L + P 1505 ± 3 ± 1 103 ± 7 ± 3 20 ± 2 ± 1 (−14 ± 3 ± 1)◦

RPP 1640–1670 100–175 20–50 (−50–80)◦

RPP H93 1670 163 39 −37◦

KH80 L + P N (1650) 1/2− 1660 ± 3.5 ± 1 167 ± 8 ± 2 47 ± 3 ± 1 (−47 ± 3 ± 1)◦

KA84 L + P 1663 ± 3 ± 0 165 ± 7 ± 1 45 ± 2 ± 1 (−44 ± 3 ± 1)◦

RPP 1900–2150 90–479 1–60 (0–164)◦

RPP H93 − − − −
KH80 L + P N (1895) 1/2− 1917 ± 19 ± 1 101 ± 36 ± 1 3.1 ± 1.4 ± 0 (−107 ± 23 ± 2)◦

KA84 L + P 1920 ± 19 ± 2 93 ± 15 ± 3 2.7 ± 1 ± 0.2 (−105 ± 23 ± 3)◦

P11 RPP 1350–1380 160–220 40–52 (−75–100)◦

RPP H93 1385 164 40 −
KH80 L + P N (1440) 1/2+ 1363 ± 2 ± 2 180 ± 4 ± 5 50 ± 1 ± 2 (−88 ± 1 ± 2)◦

KA84 L + P 1365 ± 2 ± 4 187 ± 4 ± 10 48 ± 1 ± 3 (−88 ± 1 ± 4)◦

RPP 1670–1770 80–380 6–15 (90–200)◦

RPP H93 1690 200 15 −
KH80 L + P N (1710)∗ 1/2+ 1770 ± 5 ± 2 98 ± 8 ± 5 5 ± 1 ± 1 (−104 ± 7 ± 3)◦

KA84 L + P 1763 ± 4 ± 9 105 ± 5 ± 10 6 ± 1 ± 1 (−117 ± 4 ± 15)◦

RPP 2120 ± 40 180 − 420 14 ± 7 (35 ± 25)◦

RPP H93 – – – –
KH80 L + P N (2100)∗ 1/2+ 2052 ± 6 ± 3 337 ± 10 ± 4 30 ± 1 ± 1 (−92 ± 3 ± 2)◦

KA84 L + P 2023 ± 5 ± 25 346 ± 9 ± 13 32 ± 1 ± 3 (−118 ± 3 ± 21)◦

P13 RPP 1660–1690 150–400 15 ± 8 (−130 ± 30)◦

RPP H93 1686 187 15 −
KH80 L + P N (1720) 3/2+ 1677 ± 4 ± 1 184 ± 8 ± 1 13 ± 1 ± 0 (−115 ± 3 ± 2)◦

KA84 L + P 1685 ± 4 ± 1 178 ± 8 ± 1 13 ± 1 ± 1 (−104 ± 4 ± 1)◦

RPP 1870−1930 140−300 3 ± 2 (10 ± 35)◦

RPP H93 − − − −
KH80 L + P N (1900)∗ 3/2+ 1928 ± 18 ± 2 152 ± 40 ± 9 4 ± 1 ± 1 (−29 ± 15 ± 2)◦

KA84 L + P 1920 ± 17 ± 1 215 ± 37 ± 2 7 ± 1 ± 1 (−38 ± 11 ± 1)◦

fit with one resonance less, and a complex branch point. Data
from a single channel data do not distinguish between the two.
This effect has been already spotted, elaborated, and discussed
in the case of the Jülich model, and a more detailed elaboration
how the ρN complex branch point interferes and intermixes
with P11(1710) 1/2+ [23,24].

The issues connected with the importance of inelastic
channels, and two body resonant substates in three body
final states have already been recognized by the authors of
Ref. [5] (paragraphs 4.2 and 4.3). However, at that time, a
formalism to follow and quantify these effects did not exist,
so no estimates have been given. The L + P formalism with
complex branch points enables us to study these effects in
detail.

(i) In either case, a new resonant state is established,
but our single channel method cannot say where

(either in two body intermediate state or in three body
subchannel). We cannot distinguish whether the new
resonant state manifests itself as a new isobar resonance
with stable initial and final states (real branch points),
or as a resonance in the two body subchannel of a
three body final state (complex branch point). For
that, we need the data from extra channels, and an
experiment giving us missing information on a ratio of
two body/three body cross sections at the same energies
is badly missing.
The advantage of the Pietarinen expansion method is
that it can be extended directly to complex branch
points; we use it to search for suspicious partial waves.

(ii) We claim that this effect not only affects P11(1710)
resonance as established by the Jülich group [23,24]
for the ρN branch point, but influences the inter-
pretation of many more resonances from the RPP
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TABLE II. Pole positions in MeV and residues of partial waves as moduli in MeV and phases in degrees for higher I = 1/2 partial waves.
The results from L + P expansion are given for Karlsruhe-Helsinki 80 (KH80) and Karlsruhe 84 (KA84) analysis. Resonances marked with a
star indicate resonances that can be explained by ρN complex branch point. RPP denotes the range of pole parameters given by the authors of
Ref. [1], and RPP H93 denotes the values of pole parameters named HOEHLER 93 in RPP, and taken over from RPP and Table 1 of Ref. [5].

PW Source Resonance Re Wp −2Im Wp |Residue| θ

D13 RPP 1505−1515 105−120 35 ± 3 (−10 ± 5)◦

RPP H93 1510 120 32 −8◦

KH80 L + P N (1520) 3/2− 1506 ± 1 ± 1 115 ± 2 ± 1 33 ± 1 ± 1 (−15 ± 1 ± 1)◦

KA84 L + P 1506 ± 1 ± 1 116 ± 2 ± 2 33 ± 1 ± 1 (−15 ± 1 ± 1)◦

RPP 1650−1750 100−350 5−50 (−120 to 20)◦

RPP H93 1700 120 5 −
KH80 L + P N (1700)∗ 3/2− 1757 ± 4 ± 1 136 ± 7 ± 4 7 ± 1 ± 1 (−113 ± 4 ± 2)◦

KA84 L + P 1743 ± 4 ± 4 132 ± 7 ± 2 7 ± 1 ± 1 (−134 ± 4 ± 6)◦

RPP 1800−1950 150−250 2−10 (180 ± 80)◦

RPP H93 − − − −
KH80 L + P N (1875)∗ 3/2− 2094 ± 7 ± 11 296 ± 15 ± 4 13 ± 1 ± 1 (−2 ± 4 ± 9)◦

KA84 L + P 2120 ± 6 ± 11 270 ± 13 ± 5 11 ± 1 ± 1 (17 ± 4 ± 5)◦

D15 RPP 1655−1665 125−150 25 ± 5 (−25 ± 6)◦

RPP H93 1656 126 23 −22◦

KH80 L + P N (1675) 5/2− 1654 ± 2 ± 0 125 ± 3 ± 1 23 ± 1 ± 0 (−25 ± 2 ± 0)◦

KA84 L + P 1656 ± 1 ± 0 123 ± 2 ± 1 23 ± 1 ± 0 (−23 ± 1 ± 1)◦

RPP 2100 ± 60 360 ± 80 20 ± 10 (−90 ± 50)◦

RPP H93 − − − −
KH80 L + P N (2060)∗ 5/2− 2119 ± 11 ± 1 370 ± 20 ± 5 19 ± 1 ± 1 (−94 ± 5 ± 1)◦

KA84 L + P 2134 ± 9 ± 5 352 ± 18 ± 7 18 ± 1 ± 1 (−80 ± 4 ± 2)◦

F15 RPP 1665−1680 110−135 40 ± 5 (−10 ± 10)◦

RPP H93 1673 135 44 −17◦

KH80 L + P N (1680) 5/2+ 1674 ± 2 ± 1 129 ± 3 ± 1 44 ± 1 ± 1 (−16 ± 1 ± 1)◦

KA84 L + P 1672 ± 2 ± 1 132 ± 4 ± 1 45 ± 2 ± 1 (−16 ± 2 ± 1)◦

RPP
2030 ± 110

or 1779
480 ± 100

or 248
10−115 (−100 ± 40)◦

RPP H93 − − − −
KH80 L + P N (2000)∗ 5/2+ 1834 ± 19 ± 6 122 ± 34 ± 7 4 ± 1 ± 1 (−39 ± 18 ± 9)◦

KA84 L + P 1838 ± 20 ± 25 182 ± 40 ± 25 5 ± 2 ± 1 (−39 ± 20 ± 27)◦

G17 RPP 2050−2100 400−520 30−72 (−30 to 30)◦

RPP H93 2042 482 45 −
KH80 L + P N (2190) 7/2+ 2079 ± 4 ± 9 509 ± 7 ± 16 54 ± 1 ± 3 (−18 ± 1 ± 3)◦

KA84 L + P 2065 ± 3 ± 11 526 ± 7 ± 2 59 ± 1 ± 1 (−22 ± 1 ± 5)◦

G19 RPP 2150−2250 350−550 20−30 (−50 ± 30)◦

RPP H93 2187 388 21 –
KH80 L + P N (2250) 9/2− 2157 ± 3 ± 14 412 ± 7 ± 44 24 ± 1 ± 5 (−62 ± 1 ± 11)◦

KA84 L + P 2187 ± 3 ± 4 396 ± 6 ± 19 22 ± 1 ± 2 (−41 ± 1 ± 3)◦

H19 RPP 2130−2200 400−560 33−60 (−45 ± 25)◦

RPP H93 2135 400 40 −50◦

KH80 L + P N (2220) 9/2+ 2127 ± 3 ± 24 380 ± 7 ± 22 38 ± 1 ± 5 (−52 ± 1 ± 14)◦

KA84 L + P 2139 ± 3 ± 3 390 ± 6 ± 1 41 ± 1 ± 1 (−48 ± 1 ± 1)◦

(at least we have established that for the Karlsruhe-
Helsinki PWA). One definitely needs measurements
from other channels before claiming whether the
observed structure is an intermediate isobar resonance,
or a resonance appearing in the two body subsystem of
a three body final state. Single channel measurements
are insufficient, we need multichannel measurements
to distinguish between the two. Höhler has in his

Newsletter’s paper [5] discussed similar problems, but
he blamed guilt on the ωN branch point. However,
in this paper we claim the effects of the ρN branch
point are much more pronounced. We have tested the
influence of the better known π� branch point located
at (1370 − i40) MeV on KH amplitudes, but as it is
much lower in mass than the ρN branch point, its
influence was negligible.
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TABLE III. Pole positions in MeV and residues of partial waves as moduli in MeV and phases in degrees for lowest I = 3/2 partial waves.
The results from L + P expansion are given for Karlsruhe-Helsinki 80 (KH80) and Karlsruhe 84 (KA84) analyses. Resonances marked with a
star indicate resonances that can be explained by ρN complex branch point. RPP denotes the range of pole parameters given by the authors of
Ref. [1], and RPP H93 denotes the values of pole parameters named HOEHLER 93 in RPP, and taken over from RPP and Table 1 of Ref. [5].

PW Source Resonance Re Wp −2Im Wp |Residue| θ

S31 RPP 1590−1610 120−140 13−20 (−110 ± 20)◦

RPP H93 1608 116 19 −95◦

KH80 L + P �(1620) 1/2− 1603 ± 7 ± 2 114 ± 12 ± 4 17 ± 2 ± 1 (−106 ± 10 ± 4)◦

KA84 L + P 1605 ± 5 ± 2 108 ± 9 ± 1 16 ± 0 ± 1 (−103 ± 6 ± 3)◦

RPP
1820−1910

or 1780
130−345 10 ± 3

(−125 ± 20)◦

or (20 ± 40)◦

RPP H93 1780 − − −
KH80 L + P �(1900)∗ 1/2− 1865 ± 35 ± 19 187 ± 50 ± 19 11 ± 4 ± 2 (20 ± 27 ± 19)◦

KA84 L + P 1867 ± 22 ± 9 191 ± 23 ± 7 12 ± 0 ± 2 (22 ± 11 ± 8)◦

P31 RPP 1830−1880 200−500 16−45 −
RPP H93 1874 283 38 −

KH80 L + P �(1910) 1/2+ 1896 ± 11 ± 0 302 ± 22 ± 0 29 ± 2 ± 0 (−83 ± 4 ± 1)◦

KA84 L + P 1880 ± 19 ± 11 325 ± 37 ± 16 30 ± 4 ± 1 (−97 ± 7 ± 9)◦

P33 RPP 1209−1211 98−102 50 ± 3 (−46 ± 2)◦

RPP H93 1209 100 50 −48◦

KH80 L + P �(1232) 3/2+ 1211 ± 1 ± 1 98 ± 2 ± 1 50 ± 1 ± 1 (−46 ± 1 ± 1)◦

KA84 L + P 1210 ± 1 ± 1 100 ± 1 ± 1 51 ± 1 ± 1 (−46 ± 1 ± 1)◦

RPP 1460−1560 200−350 5−44 −
RPP H93 1550 − − −

KH80 L + P �(1600) 3/2+ 1469 ± 10 ± 5 314 ± 18 ± 8 38 ± 2 ± 2 (173 ± 5 ± 5)◦

KA84 L + P 1489 ± 9 ± 2 289 ± 17 ± 6 31 ± 3 ± 2 (−174 ± 5 ± 3)◦

RPP 1850−1950 200−400 11−28
(−130 ± 30)◦

(−45 ± 30)◦

RPP H93 1900 − − −
KH80 L + P �(1920)∗ 3/2+ 1906 ± 10 ± 2 310 ± 20 ± 11 26 ± 3 ± 2 −(130 ± 5 ± 3)◦

KA84 L + P 1923 ± 9 ± 2 347 ± 18 ± 13 31 ± 2 ± 2 −(116 ± 5 ± 1)◦

D33 RPP 1620−1680 160−300 10−50 (−45 to 12)◦

RPP H93 1651 159 10 –
KH80 L + P �(1700) 3/2− 1643 ± 6 ± 3 217 ± 10 ± 8 13 ± 1 ± 1 (−30 ± 4 ± 3)◦

KA84 L + P 1616 ± 3 ± 2 280 ± 6 ± 3 21 ± 1 ± 1 (−58 ± 2 ± 2)◦

RPP 1900−2080 190−400 1−8 (135 ± 45)◦

RPP H93 − − − −
KH80 L + P �(1940)∗ 3/2− 1878 ± 11 ± 5.5 212 ± 21 ± 6 9 ± 1 ± 1 (140 ± 7 ± 7)◦

KA84 L + P 1884 ± 7 ± 2 303 ± 13 ± 8 18 ± 1 ± 1 (158 ± 3 ± 1)◦

D35 RPP 1840−1960 175−360 7−30 (−20 ± 40)◦

RPP H93 1850 180 20 −
KH80 L + P �(1930) 5/2− 1848 ± 9 ± 19 321 ± 17 ± 7 9 ± 1 ± 1 (−37 ± 3 ± 7)◦

KA84 L + P 1844 ± 8 ± 28 334 ± 17 ± 9 10 ± 1 ± 1 (−40 ± 3 ± 9)◦

F. Fitting procedure
We use three Pietarinen functions (one with a branch point

in the unphysical region to represent all left-hand cuts, and
two with branch points in the physical region to represent
the dominant inelastic channels), combined with the minimal
number of poles. We also allow the possibility that one of
the branch points becomes a complex number allowing all
three body final states to be effectively taken into account. We
generally start with five Pietarinen terms per decomposition,
and the anticipated number of poles. The discrepancy criteria

are defined below using a discrepancy parameter Ddp. This
quantity is minimized using MINUIT and the quality of the fit
is visually inspected by comparing the fitting function to the
data. If the fit is unsatisfactory (the discrepancy parameters
are too high, or the fit visually does not reproduce the fitted
data), the number of Pietarinen terms is increased, and if
it does not help, the number of poles is increased by 1.
The fit is repeated, and the quality of the fit is reestimated.
This procedure is continued until we reach a satisfactory
fit.
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TABLE IV. Pole positions in MeV and residues of partial waves as moduli in MeV and phases in degrees for higher I = 3/2 partial waves.
The results from L + P expansion are given for Karlsruhe-Helsinki 80 (KH80) and Karlsruhe 84 (KA84) analyses. RPP denotes the range of
pole parameters given by the authors of Ref. [1], and RPP H93 denotes the values of pole parameters named HOEHLER 93 in RPP, and taken
over from RPP and Table 1 of Ref. [5].

PW Source Resonance Re Wp −2Im Wp |Residue| θ

F35 RPP 1805−1835 265−300 25 ± 10 (−50 ± 20)◦

RPP H93 1829 303 25 –
KH80 L + P �(1905) 5/2+ 1752 ± 3 ± 2 346 ± 6 ± 2 24 ± 1 ± 1 −(114 ± 1 ± 2)◦

KA84 L + P 1790 ± 3 ± 2 293 ± 6 ± 6 19 ± 1 ± 1 −(77 ± 2 ± 2)◦

RPP 2000 250−450 16 ± 5 (150 ± 90)◦

RPP H93 − − − −
KH80 L + P �(2000) 5/2+ 1998 ± 4 ± 4 404 ± 10 ± 4 34 ± 1 ± 1 (110 ± 1 ± 3)◦

KA84 L + P 2035 ± 6 ± 6 381 ± 13 ± 20 23 ± 1 ± 3 (132 ± 2 ± 5)◦

F37 RPP 1870−1890 220−260 47−61 (−33 ± 12)◦

RPP H93 1878 230 47 −32◦

KH80 L + P �(1950) 7/2+ 1877 ± 2 ± 1 223 ± 4 ± 1 44 ± 1 ± 0 −(39 ± 1 ± 1)◦

KA84 L + P 1878 ± 2 ± 1 246 ± 4 ± 3 53 ± 1 ± 1 −(36 ± 1 ± 1)◦

RPP 2250−2350 160−360 12 ± 6 (−90 ± 60)◦

RPP H93 − − − −
KH80 L + P �(2390) 7/2+ 2223 ± 15 ± 19 431 ± 26 ± 7 26 ± 2 ± 1 (−160 ± 5 ± 11)◦

KA84 L + P 2257 ± 13 ± 8 472 ± 25 ± 20 30 ± 2 ± 2 (−131 ± 4 ± 3)◦

H311 RPP 2260−2400 350−750 12−39 −(30 ± 40)◦

RPP H93 2300 620 39 −60◦

KH80 L + P �(2390) 11/2+ 2454 ± 4 ± 11 462 ± 8 ± 50 30 ± 1 ± 7 (11 ± 1 ± 8)◦

KA84 L + P 2301 ± 3 ± 4 533 ± 6 ± 11 31 ± 1 ± 1 (−65 ± 1 ± 2)◦

Pole positions, residues, and Pietarinen coefficients α, β, γ ,
ci , di , and ei are our fitting parameters. However, in the strict
spirit of the method, Pietarinen branch points xP , xQ, and
xR should not be fitting parameters; each known cut should
be represented by its own Pietarinen series, fixed to known
physical branch points. While this would be ideal, in practice
the application is somewhat different. We can never include
all physical cuts from the multichannel process.

Instead, we represent them by a smaller subset. So, in
our method, Pietarinen branch points xP , xQ, and xR are not
generally constants; we have explored the effect of allowing
them to vary as fitting parameters. In the following, we shall
demonstrate that when searched, the branch points in the
physical region still naturally converge towards branch points
that belong to channels that dominate a particular partial wave,
but may not actually correspond to them exactly. The proximity
of the fit results to exact physical branch points describes the
goodness of fit; it tells us how well certain combinations of
thresholds is indeed approximates a partial wave. Together
with the choice of the degree of Pietarinen polynomial, this
represents the model dependence of our method. We do
not claim that our method is entirely model independent.
However, the method chooses the simplest function with the
given analytic properties that fit the data, and increases the
complexity of the function only when the data require it.

G. Error analysis

When we fit KH80 and KA84 amplitudes, we have to define
which parameters we are minimizing.

For both solutions we introduce the discrepancy parameter
per data point Ddp (the substitute for χ2

dp per data point when
analyzing experimental data)

Ddp = 1

2 Ndata

Ndata∑
i=1

[(
ReT fit

i − ReT KH
i

ErrRe
i

)2

+
(

ImT fit
i − ImT KH

i

ErrIm
i

)2]
, (4)

where Ndata is the number of energies, and the errors of KH80
and KA84 solutions are introduced as

ErrRe
i = 0.05

∑Ndata
k=1

∣∣ReT KH
k

∣∣
Ndata

+ 0.05
∣∣ReT KH

i

∣∣,
(5)

ErrIm
i = 0.05

∑Ndata
k=1

∣∣ImT KH
k

∣∣
Ndata

+ 0.05
∣∣ImT KH

i

∣∣.
When the errors of the input numbers are not given, and

one wants to make a minimization, errors have to be estimated.
There are two simple ways to do it: either assigning a constant
error to each data point, or introducing an energy dependent
error as a percentage of the given value. Both definitions
have drawbacks. For the first recipe only high-valued points
are favored, while in the latter case low-valued points tend
to be almost exactly reproduced. We find neither satisfactory,
so we follow prescriptions used by the George Washington
University (GWU) and Mainz groups, and use a combined
error which consists of a sum of constant and energy dependent
errors.
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FIG. 1. (Color online) L + P fit for I = 1/2 solutions. (a) Fit to
KA84, (b) fit to KH80.

In our principal paper [9] we have tested the validity of
the model on a number of well-known πN amplitudes, and
concluded that the method is very robust. That paper did not
present an error analysis. We have done that here.

In the L + P method we have statistical and systematic
uncertainties.

1. Statistical uncertainty

Statistical uncertainties are simply taken from MINUIT,
which is used for minimization. It is shown separately in all
tables as the first term.

2. Systematic uncertainty

Systematic uncertainty is the error of the method itself, and
requires a more detailed explanation.

Our Laurent decomposition contains only two branch points
in the physical region, and this is far from enough in a realistic
case. Any realistic analytic function in principle contains
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FIG. 2. (Color online) L + P fit for I = 1/2 solutions. (a) Fit to
KA84, (b) fit to KH80.

more than two branch points approximated in our model by a
different analytic function containing only two.

We use the following procedure to define systematic
uncertainties.

(i) We release the first (unphysical) branch point xP

because we have no control over background contri-
butions.

(ii) We always keep the first physical branch point xQ fixed
at xQ = 1077 MeV (the πN threshold).

(iii) The error analysis is done by varying the remaining
physical branch point xR in two ways.

(1) We fix the third branch point xR to the
threshold of the dominant inelastic channel for
the chosen partial wave (e.g., the η threshold
for S wave) if only one inelastic channel is
important, or in the case of several equally im-
portant inelastic processes we perform several
runs with the xR branch point fixed to each
threshold in succession.

(2) We release the third branch point xR allow-
ing MINUIT to find an effective branch point
representing all inelastic channels. If only one
channel is dominant, the result of the fit will be
close to the dominant inelastic channel.
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FIG. 3. (Color online) L + P fit for I = 3/2 solutions. (a) Fit to
KA84, (b) fit to KH80.

(iv) We average results of the fit and obtain the standard
deviation.

The choice of all values for the branch point xR is given in
the Appendix (Table VI for the KH80 solution and Table VII
for KA84). The quality of our fits for both KH80 and KA84
solutions are measured by the discrepancy parameter Ddp

defined in Eqs. (4) and (5).

III. RESULTS

A. Real branch points

In Tables I–IV and in Figs. 1–4 we show L + P pole
parameters and the quality of the fit for all KH80 and KA84
partial waves for the case where the case where the the
reaction is two body → two body with an unknown number
of resonances in intermediate isobar states. In Tables VI
and VII, given in the Appendix, we show the corresponding
L + P parameters. In this case three body final states are
neglected.
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FIG. 4. (Color online) L + P fit for I = 3/2 solutions. (a) Fit to
KA84, (b) fit to KH80.

B. Complex branch points

In Table V we give the parameters for some typical
situations when fits with complex branch points achieve
a similar quality as fits with the real ones [measured by
the size of the discrepancy variable Ddp, see Eq. (4)]. The
complex branch point is a mathematical implementation of
the situation when the three body final state contains a two
body subchannel accompanied by the third “observer” particle.
In this case we also allow for an extra resonance in the
subchannel, but it is not located in the isobar intermediate
state, but in the final state interaction. Both mechanisms (real
and complex branch points) are indistinguishable in a single
channel model. As was the case in the Jülich model for
P11(1710), other channels (in the Jülich model K� channel)
are essential to distinguish between the two. Taking into
account the arbitrariness of two versus three body solutions,
we list resonances that are quite well established by the
Karlsruhe-Helsinki analysis, and those that are only possible
depending on the ratio of a two body to three body final state.
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TABLE V. Pole positions in MeV and residues of multipoles as moduli in mfm · GeV and phases in degrees. Nr is the number of resonance
poles. The results from L + P expansion are given for KH80 and KA84 solutions using ρN complex branch point.

Multipole Source Nr Resonance Re Wp −2Im Wp |Residue| θ xP xQ xR Ddp

P11 KH80 L + P 1 N (1440) 1/2+ 1368 167 45 −81◦ 369 1077πN (1708 − i70)ρN 0.325
KA84 L + P 1 1372 170 43 −78◦ 277 1077πN (1708 − i70)ρN 0.354

P13 KH80 L + P 1 N (1720) /3/2+ 1656 175 8 −151◦ 385 1077πN (1708 − i70)ρN 0.119
KA84 L + P 1 1676 169 10 −105◦ 197 1077πN (1708 − i70)ρN 0.026

D13 KH80 L + P 1 N (1720) 3/2− 1506 119 34 −15◦ 784 1077πN (1708 − i70)ρN 0.154
KA84 L + P 1 1507 114 32 −14◦ 756 1077πN (1708 − i70)ρN 0.161

D15 KH80 L + P 1 N (1675) 5/2− 1650 88 9 −24◦ 454 1077πN (1708 − i70)ρN 0.471
KA84 L + P 1 1656 137 29 −30◦ −644 1077πN (1708 − i70)ρN 0.058

F15 KH80 L + P 1 N (1680) 5/2+ 1671 142 49 −22◦ 176 1077πN (1708 − i70)ρN 0.071
KA84 L + P 1 1674 153 46 −23◦ 484 1077πN (1708 − i70)ρN 0.031

S31 KH80 L + P 1 �(1620) 1/2− 1605 139 26 −109◦ 45 1077πN (1708 − i70)ρN 0.021
KA84 L + P 1 1605 128 21 −107◦ −2446 1077πN (1708 − i70)ρN 0.018

P31 KH80 L + P 1 �(1910) 1/2+ 1847 257 49 −128◦ 739 1077πN (1708 − i70)ρN 0.109
KA84 L + P 1 1891 398 40 −75◦ −203 1077πN (1708 − i70)ρN 0.025
KH80 L + P 0 – – – – – −556 1077πN (1708 − i70)ρN 0.123
KA84 L + P 0 – – – 404 1077πN (1708 − i70)ρN 0.040

P33 KH80 L + P 2 �(1232) 3/2+ 1210 102 53 −47◦ 656 1077πN (1708 − i70)ρN 0.025
�(1600) 3/2+ 1537 157 10 −105◦

KA84 L + P 2 �(1232) 3/2+ 1210 102 53 −47◦ −403 1077πN (1708 − i70)ρN 0.034
�(1600) 3/2+ 1545 155 10 −95◦

D33 KH80 L + P 1 �(1700) 3/2+ 1663 180 12 15 53 1077πN (1708 − i70)ρN 0.161
KA84 L + P 1 1574 373 29 −111◦ 69 1077πN (1708 − i70)ρN 0.034

D35 KH80 L + P 1 �(1930) 5/2− 1813 242 8 −72◦ −302 1077πN (1708 − i70)ρN 0.498
KA84 L + P 1 1889 258 16 −49◦ −2398 1077πN (1708 − i70)ρN 0.069
KH80 L + P 0 – – – – – 887 1077πN (1708 − i70)ρN 0.303
KA84 L + P 0 – – – – – 24 1077πN (1708 − i70)ρN 0.102

F35 KH80 L + P 2 �(1905) 5/2+ 1782 243 17 −162◦ 899 1077πN (1708 − i70)ρN 0.254
�(2000) 5/2+ 2027 449 39 137◦

KA84 L + P 2 �(1905) 5/2+ 1790 314 22 −76◦ −240 1077πN (1708 − i70)ρN 0.045
�(2000) 5/2+ 2035 408 27 135◦

F37 KH80 L + P 2 �(1950) 7/2+ 1893 275 65 −15◦ 802 1077πN (1708 − i70)ρN 0.204
�(2390) 7/2+ 2419 323 16 −27◦

KA84 L + P 2 �(1950) 7/2+ 1882 252 54 −31◦ 520 1077πN (1708 − i70)ρN 0.021
�(2390) 7/2+ 2311 469 31 −100◦

We have tried to fit with complex branch points and more
resonances; however, without knowing the branching fraction
of two body to three body, the complex branch point takes
over the whole flux, and eliminates the additional resonance
altogether.

IV. DISCUSSION AND CONCLUSION

Using the L + P method we obtain almost perfect fits to all
KH80 and KA84 partial waves. This is visible in the very low
discrepancy parameters Ddp given in Tables VI and VII, and
in excellent visual agreement of fitting curves and input data
in Figs. 1 to 4. Agreement is somewhat poorer for KH80 H311,
G17, and G19 partial waves. For the first one, the discrepancy
parameter is of the order of two to three, while for the second
off the two it is of order one. For all other partial waves it
is significantly below 1. However, these results are consistent

with the graphs in Figs. 1 to 4. A closer look at the KH80
H3,11 partial wave in Fig. 4, one can detect somewhat poorer
agreement of the real part of the fitted curve with data near
1700 and 2100 MeV, and for imaginary parts near 1900 MeV.
Similar discrepancies can be found for G17 and G19 partial
waves if Fig. 2 is closely inspected. Such exceptions are not
present for the KA84 solution. All partial waves for KA84 are
fitted with discrepancy parameters significantly below one.
This supports the statement given in Ref. [5] that the KA84
solution is obtained by further smoothing of the KH80 solution,
and the L + P method can fit KA84 slightly better than KH80
due to additional smoothing.

We confirm the values of all the pole positions of the
Karlsruhe-Helsinki solutions given in the RPP using the speed
plot method of the authors of Ref. [5] for the KA84 solution
with better precision and confidence, giving corresponding
solutions for the same resonances of the KH80 solution, and

045205-10



POLES OF KARLSRUHE-HELSINKI KH80 AND KA84 . . . PHYSICAL REVIEW C 89, 045205 (2014)

a number of new poles which all agree with results quoted in
the RPP.

The new resonances, in the RPP but not established
by the SP method are as follows: S11 N (1895)1/2−,
P11N (2100)1/2+, P13N (1900)3/2+, D13N (1875)3/2−, F 15

N (2000)5/2+, D33 �(1940)3/2−, F 35 �(2000)5/2+, and
F 37 �(2390)7/2+.

We confirm that visual shapes of KH80 and KA84 solutions
and numerical values of pole positions are very similar, and in
practice either solution can be used. The masses (real parts)
of KH80 and KA84 poles are within error bars; however,
some partial waves [the first D33: �(1700)3/2− and first
F 35 �(1905) 5/2+] show slightly more than one standard
deviation discrepancy when the widths (imaginary parts)
of the poles are compared. Others are within one standard
deviation.

We establish that any single channel model based solely
on one channel of input data (in our case Karlsruhe-Helsinki
PWA), is unable to distinguish between alternative two body
and three body final state solutions. The L + P model can
produce equivalent solutions for two body and three body final
states; without new data, the two body to three body branching
fraction remains undetermined. In Tables I–IV we denote with
asterisks solutions that have the same discrepancy ratio, but
realized through different physics formalisms: the two body
final state given with the real branch point or three body final
state given by complex branch point. All these solutions are
indistinguishable within single channel models.

It is very interesting to observe that we have even more
ambiguity in the L + P method. There are partial waves in
which the L + P method gives equivalent solutions in three
body formalism with one resonance or without any resonances
at all. These are P31 and D35 partial waves (see Table V).

What is important is that the dominant resonances in two
body or three body formalism have identical parameters; i.e.,
the single channel formalism without ambiguity establishes the
existence of resonances without an asterisk.

The three body formalism using complex branch points
raises some doubt about higher order resonances, and requires
the measurement of new data for inelastic channels. Only firm
experimental numbers on inelastic two body → two body or
higher energy two body → three body data can resolve the
ambiguity between solutions given by single channel analysis.
We endorse strongly any new proposal that plans to measure
inelastic πN → XY channels, e.g., Ref. [25].
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APPENDIX

TABLE VI. Parameters from L + P expansion are given for KH80 solution. Nr is the number of resonance poles, xP ,xQ,xR are branch
points in MeV.

Source KH80
PW Nr xP xQ xR Ddp PW Nr xP xQ xR Ddp

S11 3 −18 216 1077πN 1215ππN 0.131 S31 2 −1123 1077πN 1215ππN 0.036
3 779 1077πN 1486ηN 0.130 2 −1967 1077πN 1370Real(π�) 0.043
3 −2529 1077πN 1491free 0.127 2 900 1077πN 1708Real(ρN) 0.041

2 −1239 1077πN 1702free 0.035

P11 3 −1135 1077πN 1215ππN 0.408 P31 1 314 1077πN 1215ππN 0.0789
3 −1270 1077πN 1370Real(π�) 0.453 1 281 1077πN 1210free 0.0786
3 −1988 1077πN 1320f ree 0.474

P13 2 −28 412 1077πN 1215ππN 0.126 P33 3 215 1077πN 1215ππN 0.098
2 776 1077πN 1370Real(π�) 0.119 3 707 1077πN 1370Real(π�) 0.097
2 −617 1077πN 1267 0.118 3 898 1077πN 1378free 0.076

D13 3 −697 1077πN 1215ππN 0.230 D33 2 −3832 1077πN 1215ππN 0.178
3 −4763 1077πN 1370Real(π�) 0.278 2 −3104 1077πN 1370Real(π�) 0.095
3 −8507 1077πN 1708Real(ρN) 0.236 2 −14 033 1077πN 1362free 0.094
3 −2066 1077πN 1107free 0.224

D15 2 407 1077πN 1215ππN 0.536 D35 1 315 1077πN 1215ππN 0.576
2 223 1077πN 1370Real(π�) 0.525 1 331 1077πN 1688K� 0.578
2 −5667 1077πN 1511free 0.469 1 409 1077πN 1211free 0.576
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TABLE VI. (Continued.)

Source KH80
PW Nr xP xQ xR Ddp PW Nr xP xQ xR Ddp

F15 2 239 1077πN 1215ππN 0.136 F35 2 7.8 1077πN 1215ππN 0.343
2 43.9 1077πN 1370Real(π�) 0.124 2 −249 1077πN 1708Real(ρN) 0.344
2 −157 1077πN 1708Real(ρN) 0.108 2 98 1077πN 1221free 0.330
2 −14.1 1077πN 1673free 0.105

G17 1 −261 1077πN 1215ππN 1.211 F37 2 −324 1077πN 1370Real(π�) 0.376
1 298 1077πN 1486ηN 1.302 2 −439 1077πN 1708Real(ρN) 0.379
1 −148 1077πN 1445free 1.164 2 −141 1077πN 1463free 0.374

G19 1 −10 490 1077πN 1486ηN 1.835 H311 1 −35 183 1077πN 1215ππN 3.513
1 −838 1077πN 1611K� 1.025 1 −1460 1077πN 1688K� 3.009
1 −196 1077πN 1713free 0.975 1 87.7 1077πN 1489free 2.482

H19 1 −49 1077πN 1486ηN 0.315
1 −1093 1077πN 1611K� 0.492
1 −1252 1077πN 1709free 0.298

TABLE VII. Parameters from L + P expansion are given for KA84 solution. Nr is the number of resonance poles, xP ,xQ,xR are branch
points in MeV.

Source KA84
PW Nr xP xQ xR Ddp PW Nr xP xQ xR Ddp

S11 3 822 1077πN 1215ππN 0.159 S31 2 −521 1077πN 1215ππN 0.034
3 900 1077πN 1486ηN 0.105 2 663 1077πN 1370Real(π�) 0.039
3 900 1077πN 1499free 0.096 2 196 1077πN 1708Real(ρN) 0.037

−255 1077πN 1217free 0.033

P11 3 287 1077πN 1215ππN 0.459 P31 1 −690 1077πN 1215ππN 0.091
3 −7351 1077πN 1370Real(π�) 0.451 1 −658 1077πN 1221free 0.088
3 −2082 1077πN 1382free 0.377

P13 2 345 1077πN 1215ππN 0.037 P33 3 440 1077πN 1215ππN 0.081
2 −957 1077πN 1370Real(π�) 0.038 3 576 1077πN 1370Real(π�) 0.088
2 543 1077πN 1201free 0.036 3 −646 1077πN 1469free 0.076

D13 3 −0.024 1077πN 1215ππN 0.332 D33 2 −696 1077πN 1215ππN 0.066
3 −1567 1077πN 1370Real(π�) 0.331 2 −31 769 1077πN 1370Real(π�) 0.063
3 −758 1077πN 1708Real(ρN) 0.270 2 −27 693 1077πN 1362free 0.061
3 −1449 1077πN 1880free 0.249

D15 2 753 1077πN 1215ππN 0.069 D35 1 −3753 1077πN 1215ππN 0.062
2 −4045 1077πN 1370Real(π�) 0.070 1 271 1077πN 1688K� 0.063
2 −5667 1077πN 1547free 0.057 1 409 1077πN 1382free 0.060

F15 2 −139 1077πN 1215ππN 0.084 F35 2 −1063 1077πN 1215ππN 0.045
2 −0.047 1077πN 1370Real(π�) 0.081 2 −3331 1077πN 1708Real(ρN) 0.057
2 −332 1077πN 1708Real(ρN) 0.052 2 −1384 1077πN 1186free 0.044
2 546 1077πN 1361free 0.027

G17 1 −50 1077πN 1215ππN 0.354 F37 2 −4046 1077πN 1370Real(π�) 0.039
1 −1513 1077πN 1486ηN 0.453 2 −3041 1077πN 1708Real(ρN) 0.039
1 250 1077πN 1307free 0.351 2 −3167 1077πN 1903free 0.027

G19 1 −1459 1077πN 1486ηN 0.345 H311 1 −983 1077πN 1215ππN 0.136
1 −2385 1077πN 1611K� 0.556 1 −1099 1077πN 1688K� 0.142
1 194 1077πN 1406free 0.115 1 44 1077πN 1462free 0.107

H19 1 −378 1077πN 1486ηN 0.027
1 433 1077πN 1611K� 0.021
1 556 1077πN 1715free 0.019
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[7] G. Höhler, in NSTAR 2001: Proceedings of the Workshop on

the Physics of Excited Nucleons Mainz, Germany, 7–10 March
2001, edited by D. Drechsel and L. Tiator (World Scientific,
Singapore, 2001), p. 185.
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