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This paper describes three different ways of transformer modeling for inrush current simulations. The developed transformer
models are not dependent on an integration step, thus they can be incorporated in a state-space form of stiff differential equation
systems.The eigenvalue propagations during simulation time cause very stiff equation systems.The state-space equation systems are
solved by using A- and L-stable numerical differentiation formulas (NDF2) method. This method suppresses spurious numerical
oscillations in the transient simulations. The comparisons between measured and simulated inrush and steady-state transformer
currents are done for all three of the proposed models. The realized nonlinear inductor, nonlinear resistor, and hysteresis model
can be incorporated in the EMTP-type programs by using a combination of existing trapezoidal and proposed NDF2 methods.

1. Introduction

The transformer represents one of the essential elements
in power systems. Proper modeling of the transformer is
very important in different transient and steady-state power
systems simulations.The nonlinearity of the transformer iron
core is the most important parameter in simulations of low-
frequency transients, such as transformer inrush current,
ferroresonance, temporary overvoltages during transformer
energizations, load rejections, and harmonic analysis. All
these transients belong to a frequency range of up to 1 kHz [1]
for which it is not necessary to take into account frequency
dependencies of the transformer parameters. A standard
Steinmetz 𝑇 equivalent circuit model of a two-winding
single-phase transformer is shown in Figure 1. In addition,
there is an analogousΠ-shaped equivalentmodel.Thismodel
is rarely used due to the fact that the detailed transformer
construction has to be known for determining the parameters
of the Π equivalent model.

Different types of 𝑇 transformer models will be used
in this paper in the first place. Transformer parameters
can be divided into two basic groups: winding and iron-
core parameters. In Figure 1, 𝑅𝑝 and 𝑅𝑠 represent the serial

winding resistances that generally include the Joule and eddy
current losses in the windings, whilst 𝐿𝑝 and 𝐿 𝑠 represent
the serial leakage inductances divided amongst primary and
secondary windings. The shunt branch parameters describe
iron core behavior, where the resistance 𝑅𝑚 represents the
core eddy current losses, whilst inductance 𝐿𝑚 represents
the saturation or hysteresis phenomena in the transformer
core. The winding parameters are linear, whilst the iron
core parameters describe nonlinear phenomena during the
analysis of low-frequency transformer transients.

In general, there are three different approaches when
modeling transformer iron-core nonlinearities:

(a) linear resistor 𝑅𝑚 and nonlinear inductor 𝐿𝑚,

(b) nonlinear resistor 𝑅𝑚 and nonlinear inductor 𝐿𝑚,

(c) linear resistor 𝑅𝑚 and nonlinear hysteresis inductor
𝐿𝑚.

During the analysis of low-frequency transformer tran-
sients such as inrush current and ferroresonance, the more
used model is the model (a) because of its simplicity;
relatively rare used models are (b), and (c). For example,
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Figure 1: Standard 𝑇 equivalent transformer circuit model.

𝜙

𝜙sN

𝜙s2

𝜙s1
is1 is2 isN

im

Figure 2: Nonlinear curve of core inductor.

[2–10] use the (a) based model of transformer, [11–14] use the
(b) but [15–18] use the (c) based model of the transformer.

Typical procedures for obtaining an instantaneous non-
linear magnetizing curve and nonlinear curve of core losses,
by the separation technique of losses from the magnetizing
curve, are described in [19, 20].

The modeling of nonlinear or hysteresis inductor and
nonlinear core loss resistor can be done by using the curve
fitting procedure for the approximation of nonlinearity or by
using piecewise linear representation of the nonlinear curve.

The well-known curve fitting approximations are
obtained by using the polynomial, exponential, arctg, and
hyperbolic functions. The polynomial approximation was
suggested by Mayergoyz in [21]. Exponential approximation
was introduced by Trutt et al. in [22]. Arctg approximation
was started by Karlqvist in [23], and the hyperbolic functions
were introduced by Takâcs in [24] and refined by Takâcs in
[25].

The piecewise linearization of a nonlinear curve for
the modeling of nonlinear or hysteretic inductor, on the
other hand, is used in [7–10]. Linearization of a nonlinear
curve has certain advantages and disadvantages. Successful
control of the numerical stability properties of the applied
numerical methods is the main advantage [26–28]. Also,
another advantage of this linearization is the improved speed
compared to those classical methods used in calculations
within nonlinear algebraic-differential equation systems. On
the other hand, piecewise linearization has disadvantages
related to overshooting effects [27].

2. Transformer Iron Core Modeling

Theoriginal way ofmodeling nonlinear transformer iron core
in low-frequency transient analysis, using three mentioned
models, is derived in this paper.
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Figure 3: (a) Nonlinear inductor and (b) equivalent model.
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Figure 4: Nonlinear curve of core resistor.

2.1. Modeling of Nonlinear Core Inductor. The nonlinear core
inductor can be described using a magnetizing curve: mag-
netizing current versus magnetic flux, as shown in Figure 2.

When this curve is piecewise linear, the results are the
input vectors magnetizing currents 𝐼𝐿

𝑚

= [𝑖𝑠
1

, 𝑖𝑠
2

, . . . , 𝑖𝑠
𝑁

]
𝑇

and magnetic fluxes Φ𝐿
𝑚

= [𝜙𝑠
1

, 𝜙𝑠
2

, . . . , 𝜙𝑠
𝑁

]
𝑇, whereas 𝑁

is the total number of magnetizing curve regions. The mag-
netizing current for the 𝑘th linear region of the magnetizing
curve, 𝑘 = 1, 2, . . . , (𝑁 − 1), is calculated using the equation

𝑖𝑚
𝑘

=
1

𝐿𝑚
𝑘

𝜙 + sign (𝜙) 𝐼𝑠
𝑘

=
1

𝐿𝑚
𝑘

𝜙 + 𝑆𝜙
𝑘

, (1)

where 𝐿𝑚
𝑘

= (𝜙𝑠
𝑘+1

−𝜙𝑠
𝑘

)/(𝑖𝑠
𝑘+1

−𝑖𝑠
𝑘

) and 𝐼𝑠
𝑘

= 𝑖𝑠
𝑘

−(1/𝐿𝑚
𝑘

)𝜙𝑠
𝑘

.

Based on (1), it is possible to create a nonlinear inductor
equivalent model using a linear inductor and a correspond-
ing current source, Figure 3. This model is functionally
dependent on the position of the operating point 𝑘. At the
same time, contrary to EMTP-based equivalent models, the
inductor model is not dependent on the integration step.

2.2. Modeling of Nonlinear Core Resistor. Analogous to the
nonlinear core inductor, the nonlinear core resistor can be
described using the curve: resistor current versus corre-
sponding resistor voltage, as shown in Figure 4.

In this case, the input vectors are the resistor currents
𝐼𝑅
𝑚

= [𝑖𝑟
1

, 𝑖𝑟
2

, . . . , 𝑖𝑟
𝑀

]
𝑇 and resistor voltages 𝑈𝑅

𝑚

= [𝑢𝑟
1

,

𝑢𝑟
2

, . . . , 𝑢𝑟
𝑀

]
𝑇, where𝑀 is the total number of resistor curve
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Figure 5: (a) Nonlinear resistor and (b) equivalent model.

regions. The resistor current for the 𝑘th linear region of the
resistor curve, 𝑘 = 1, 2, . . . , (𝑀 − 1), is calculated using the
equation

𝑖𝑅
𝑘

=
1

𝑅𝑚
𝑘

𝑢𝑅 + sign (𝑢𝑅) 𝐼𝑟
𝑘

=
1

𝑅𝑚
𝑘

𝑢𝑅 + 𝑆𝑟
𝑘

, (2)

where𝑅𝑚
𝑘

= (𝑢𝑟
𝑘+1

−𝑢𝑟
𝑘

)/(𝑖𝑟
𝑘+1

−𝑖𝑟
𝑘

) and 𝐼𝑟
𝑘

= 𝑖𝑟
𝑘

−(1/𝑅𝑚
𝑘

)𝑢𝑟
𝑘

.
In the sameway, it is possible to create a nonlinear resistor

equivalent model using a linear resistor and a corresponding
current source, Figure 5.

2.3. Modeling of Hysteresis Core Inductor. By definition, the
major loop is the largest possible loop whose end points
reach the technical saturation. Beyond the saturation points
the hysteresis is a single-valued function. Symmetrical or
asymmetrical minor hysteresis loops lie within the major
loop. The following is assumed, based on experimental
results, for hysteresis modeling (Figure 6) (a) the operating
point trajectories lie within the major hysteresis loop, (b) in
the direction of the flux increase (decrease), the operating
point heads towards the lower (upper) branch of the major
loop, and (c) after the flux reversal points are detected (1,
2, 3), the operating point trajectories will head towards the
previous reversal point.

Therefore, following the symmetry, the major hysteresis
loop is defined by the points of the lower (or upper) half of the
major hysteresis loops, that is, by input vectors are: hysteresis
currents 𝐼𝐿

ℎ

= [𝑖ℎ
1

, 𝑖ℎ
2

, . . . , 𝑖ℎ
𝑃

]
𝑇 and magnetic fluxes Φ𝐿

ℎ

=

[𝜙ℎ
1

, 𝜙ℎ
2

, . . . , 𝜙ℎ
𝑃

]
𝑇, where 𝑃 is the total number of the major

hysteresis loops.
The expression for the hysteresis current of the 𝑘th piece-

wise region in terms of the main flux 𝜙𝑚, 𝑘 = 1, 2, . . . , (𝑃−1),
Figure 6, can be stipulated as

𝑖ℎ
𝑘

=
1

𝐿𝑚
𝑘

𝜙𝑚 + sign (Δ𝜙𝑚) 𝐼ℎ
𝑘

, (3)

where Δ𝜙𝑚 = 𝜙𝑚(𝑡𝑗) − 𝜙𝑚(𝑡𝑗−1), 𝑗 = 1, 2, 3, . . . , 𝐽max, 𝐿𝑚
𝑘

=

(𝜙ℎ
𝑘+1

− 𝜙ℎ
𝑘

)/(𝑖ℎ
𝑘+1

− 𝑖ℎ
𝑘

), and 𝐼ℎ
𝑘

= 𝑖ℎ
𝑘

− (1/𝐿𝑚
𝑘

)𝜙ℎ
𝑘

.
In the general case, if it is assumed that the distance

between the operating point and the major loop is a linear
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Figure 6: Major and minor hysteresis loops.

function of the magnetic flux, for both the ascending and
descending trajectory, the next equation is valid:

𝑑 = 𝜇𝑘𝜙 + 𝜂𝑘 = sign (Δ𝜙) (𝜙 − 𝜙𝑚) . (4)

The unknown coefficients 𝜇𝑘 and 𝜂𝑘 are determined on
condition that the two successive reversal points (𝜙rev1, 𝑑rev1)
and (𝜙rev2, 𝑑rev2) lie on this line.

Based on relations (3)-(4) it can be proved that the
expression for the hysteresis current of the 𝑘th linear region
that describes the trajectory of the actual operating point is

𝑖ℎ
𝑘

=
1

𝐿𝑚
𝑘

− Δ𝐿𝑚
𝑘

𝜙 + sign (Δ𝜙) ⋅ (𝐼ℎ
𝑘

− Δ𝐼𝑘) , (5)

noting that Δ𝐿𝑚
𝑘

= (sign(Δ𝜙)𝜇𝑘/(sign(Δ𝜙)𝜇𝑘 − 1))𝐿𝑚
𝑘

and
Δ𝐼𝑘 = (1/𝐿𝑚

𝑘

)𝜂𝑘.
In this way the hysteresis inductor 𝐿ℎ in Figure 3(a) can

be modeled by introducing a linear inductor 𝐿ℎ
𝑘

in parallel
connection with a current source 𝑆ℎ

𝑘

, both functionally
dependent on the actual linear region 𝑘, Figure 7 as follows:

𝐿ℎ
𝑘

= 𝐿𝑚
𝑘

− Δ𝐿𝑚
𝑘

,

𝑆ℎ
𝑘

= sign (Δ𝜙) ⋅ (𝐼ℎ
𝑘

− Δ𝐼𝑘) .

(6)

It is noted that all three developed models has a special
routine for eliminating the possible overshooting effect [26–
28].

3. Inrush Current Modeling and
Numerical Methods

The transformer inrush current is a well-known transient
response to the energization of a transformer iron core.
During transformer energization, depending on the value of
the remanent flux, the magnetization curve and the breaker
switching instant, the iron core magnetic flux can reach a
twice higher value than the nominal operating value. In
the case when the remanent flux is nearly as high as the
saturation, then the inductance is reduced to near zero.
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Figure 7: (a) Hysteresis inductor and (b) equivalent model.

The only initial impedance is the small ohmic resistance of
the primary coil. As a result, the transformer iron core is
driven into a saturation, and inrush current is produced.
The transformer inrush current, which could be many times
higher than the operational current, may cause irreparable
damages to the circuit without taking into account the design
stage.

The developedmodels for the nonlinear inductor, nonlin-
ear resistor, and hysteresis inductor are very suitable for for-
mulation state-space equations that describe low- frequency
transformer transients such as transformer energization,
Figure 8.

An arbitrary numerical method could be applied in such
a state-space form. In the EMTP-type of programs, the
elements are strongly dependent on the integration step; this
fact becomes apparent when a trapezoidal numerical method
is applied to the relevant branch. The general algorithm
procedure for generating state-space matrixes is shown in
[27]. According to this procedure, a state-space equation
is developed that describes transformer transients during
inrush current analysis:

𝑑𝑋 (𝑡)

𝑑𝑡
= 𝐴𝑗,𝑘𝑋 (𝑡) + 𝐵𝑗,𝑘𝑈 (𝑡) = 𝐹 (𝑋, 𝑡) , (7)

where the state-space vector and input vector are:

𝑋 (𝑡) = [𝑖𝐿
𝑝

𝜙]
𝑇

,

𝑈 (𝑡) = [𝑒 (𝑡) 𝑆𝜙
𝑘

𝑆𝑟
𝑗
]
𝑇

.

(8)

System matrixes are, respectively as follows:

𝐴𝑗,𝑘 =

[
[
[
[
[
[

[

−

𝑅𝑝 + 𝑅𝑚
𝑗

𝐿𝑝

𝑅𝑚
𝑗

𝐿𝑝𝐿𝑚
𝑘

𝑅𝑚
𝑗

−

𝑅𝑚
𝑗

𝐿𝑚
𝑘

]
]
]
]
]
]

]

,

𝐵𝑗,𝑘 =

[
[
[
[
[
[
[
[
[

[

1

𝐿𝑝

0

𝑅𝑚
𝑗

𝐿𝑝

−𝑅𝑚
𝑗

𝑅𝑚
𝑗

𝐿𝑝

−𝑅𝑚
𝑗

]
]
]
]
]
]
]
]
]

]

𝑇

.

(9)

It is very important to discover whether the demonstrated
system is a stiff system. Stiff systems are categorized as
those different components of solutions which evolve on very
different time scales occurring simultaneously, that is, the
rates of change of the various components of the solutions
which differ markedly. Stiffness is a property of system with
strong implications for its practical solution using numerical
methods. The stiffness of system is defined by two factors:
stiffness ratio 𝜉𝑗,𝑘 and stiffness index 𝜁𝑗,𝑘 for all state matrixes
𝐴𝑗,𝑘.:

𝜉𝑗,𝑘 =

max𝑖

Re (𝜆(𝑖)

𝑗,𝑘
)


min𝑖

Re (𝜆(𝑖)

𝑗,𝑘
)


,

𝜁𝑗,𝑘 = max
𝑖


Re (𝜆(𝑖)

𝑗,𝑘
)

,

(10)

where 𝜆(𝑖)
𝑗,𝑘
, 𝑖 = 1, 2, . . . , dim(𝐴𝑗,𝑘) are eigenvalues of all state

matrixes 𝐴𝑗,𝑘.. In the case for 𝜉𝑗,𝑘 ≫ 1 it is a stiff system, and
in the case for 𝜁𝑗,𝑘 → ∞ it is a very stiff system.

The state equations (7) are traditionally solved using the
implicit 𝐴-stable, second-order trapezoidal method [7]:

𝑋𝑛+1 = 𝑋𝑛 +
Δ𝑡

2
[𝐹 (𝑋𝑛, 𝑡𝑛) + 𝐹 (𝑋𝑛+1, 𝑡𝑛+1)] ,

𝑛 = 1, 2, 3, . . . .

(11)

The trapezoidal method is suitable for nonstiff and
moderate stiff systems; however for a very stiff system this
method could be inaccurate, and other techniques should
be used [26–30]. Indeed, the trapezoidal method is not 𝐿-
stable, such that, for state matrixes 𝐴𝑗,𝑘 with eigenvalues
containing large negative real parts, this method produces
unwanted numerical oscillations. In addition, the classical
explicit numerical methods are not applicable for stiff or very
stiff systems due to finite regions of numerical stability.

On the other hand, the Backward Differentiation Formu-
las (BDF𝑝) methods of 𝑝th order, 𝑝 ≤ 5, as introduced by
Gear in 1971, have the following form [29, 30]:

𝑝

∑

𝑚=1

1

𝑚
∇
𝑚
𝑋𝑛+1 = Δ𝑡𝐹 (𝑋𝑛+1, 𝑡𝑛+1) . (12)

The order of the truncation errors for the BDF𝑝 methods
is Δ𝑡𝑝+1 [29, 30]. The BDF𝑝 methods are 𝐴(𝛼)- and 𝐿-
stable, with stability angles ranging between 90∘, 90∘, 86∘,
73∘, and 51∘ [25]. The 𝐿-stability properties of the BDF𝑝
methods lead to the suppression of numerical oscillations,
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Figure 8: Equivalent transformer model for inrush current simulations.
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Figure 9: Magnetizing curve and hysteresis loop.

whereas the trapezoidal method is not free from numerical
oscillations [29, 30]. In addition, Numerical Differentiation
Formulas (NDF𝑝), as suggested by Klopfenstein in 1971, are
a modification of the BDF𝑝’s methods with the next relations
[31, 32]:

𝑝

∑

𝑚=1

1

𝑚
∇
𝑚
𝑋𝑛+1 = Δ𝑡𝐹 (𝑋𝑛+1, 𝑡𝑛+1)

+ 𝜅𝛾𝑝 (𝑋𝑛+1 − 𝑋
[0]

𝑛+1
) ,

(13)

where the coefficients are 𝛾𝑝 = ∑
𝑝

𝑚=1
(1/𝑚), the predicted

value is𝑋[0]
𝑛+1

= ∑
𝑝

𝑚=0
∇
𝑚
𝑋𝑛, and parameter 𝜅was introduced

by Shampine and Reichelt [32], which is a compromise made
in balancing efficiency in step size and stability angle of
the NDFp. These methods are also 𝐴(𝛼)- and 𝐿-stable [32].
Compared with the BDFp’s, the NDFp methods achieve
the same accuracy as BDFp methods with a bigger step-
size percents 26%, 26%, 26%, 12%, and 0%, respectively.
This implies improvements in the efficiency of the methods.
However, the percent changes in the stability angle are 0%,
0%, −7%, −10%, and 0%, respectively. It can be concluded
the NDFp methods are more precise than the BDFp but
not more stable. The other modifications of original BDFp
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Figure 11: Measured transformer inrush current.

methods are the extended BDFmethods as proposed by Cash
in [33], the generalized 𝐴-BDF methods as introduced by
Fredebeul in [34], the diagonalizable extended BDFmethods
as suggested by Frank and vanderHouwen in [35], a predictor
modification to the extended BDF methods as introduced
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Figure 12: Measured transformer steady-state current.

Figure 13: Harmonic content of measured inrush current.
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Figure 14: Inrush current simulation, Model 3, trapezoidal method,
Δ𝑡 = 100 𝜇sec.

by Alberdi and Anza in [36], and the block BDF methods
developed by Yatim et al. in [37].

The main aim of this paper was to explore the types of
differential equation systems describing the energization of
a transformer, using appropriate numerical method for the
correct simulations of equations. In general, for simulating
electrical systems, the priority is that the numericalmethod is
𝐴-stable, has a high accuracy, and successfully solves a (very)
stiff system.

In regard to these requirements, the conclusion is that
methods BDF1 and -2 and NDF1 and -2 are 𝐴- and 𝐿-stable.
They are generally well suited for simulations of nonlinear
electrical systems. This paper realizes an algorithm for the
solution of (7) based on the usages of the NDF2 or BDF2
methods. These methods were selected because of the fact
that they have the same truncation errors of order Δ𝑡3, like
a trapezoidal method, and they are 𝐴- and 𝐿-stable. On
the other hand, it is shown that it is possible to combine
these methods using the widely used trapezoidal method for
simulating electrical systems.

4. Inrush Current
Measurements and Simulations

Three developed single-phase transformer models were
tested on an example of a transformer inrush current tran-
sient.

The system and transformer parameters are
(i) system voltage: 𝑒(𝑡) = 328 cos(𝜔𝑡 − 39∘);
(ii) nominal transformer power: 𝑆tr = 300VA;
(iii) primary/secondary voltage: 𝑈𝑝 = 220/24V;
(iv) short circuit voltage: 𝑢𝑘% = 5.45%;
(v) primary winding resistance: 𝑅𝑝 = 3.75Ω;
(vi) primary winding leakage inductance: 𝐿𝑝 = 2.54mH;
(vii) core loss resistance: 𝑅𝑚 = 3826Ω.
The nonlinear magnetizing curve with a major hysteresis

loop is shown in Figure 9. A nonlinear curve of an iron core
losses resistor is shown in Figure 10.

Figures 11 and 12 present the results of measurement
of transformer inrush and steady-state current. In addition,
harmonic analysis of the transformer inrush current for the
first four harmonic components is realized, Figure 13.

Figure 14 shows the simulation results of the developed
algorithm for Model 3 realized using the classical trapezoidal
method with integration step Δ𝑡 = 100 𝜇sec.

Figure 14 clearly shows the existence of numerical oscil-
lations during the trapezoidal method’s usage. Otherwise,
any simulations of the developed models (Model 1, Model 2,
or Model 3), using trapezoidal method, clearly showed the
existence of unwanted numerical oscillations.

In order to investigate the causes of numerical oscillations
during simulation of maximum and minimum eigenvalues,
stiffness ratios and stiffness indexes were calculated at each
integration step. Figure 15 shows the results of the calculated
maximum and minimum eigenvalues during the simulation
times.
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Figure 15: Eigenvalue propagation during the simulation time: all three models.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

0

2

4

6

8

10

Time (s)

Cu
rr

en
t (

A
)

Inrush current (measurement and simulation)

Measured
Model 1

Model 2
Model 3

Figure 16: Measured and simulated transformer inrush current,
NDF2 method, Δ𝑡 = 100 𝜇sec.

Table 1 shows the borders of the analyzed stiffness param-
eters. It is obvious that they are very stiff systems for all three
cases.

It is interesting that the extreme values of parameters
𝜉𝑗,𝑘 rose in the unsaturated regions of the magnetizing
(hysteresis) curve, and the extreme values of parameter 𝜁𝑗,𝑘
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Figure 17: Measured and simulated transformer steady-state cur-
rent, NDF2 method, Δ𝑡 = 100 𝜇sec.

rose in the saturated region of this curve. Also, it is interesting
that the time function of parameter 𝜁𝑗,𝑘 is an analog to the
inrush current waveform in all three cases.

In view of the mentioned reasons, the BDF2 and NDF2
methods were used for simulation of transformer inrush
current. Figures 16 and 17 show the results when comparing
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Figure 18: Relative error of peak values of inrush current.
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Figure 19: Harmonic content of measured and simulated inrush currents.
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Table 1: Stiffness ratios and stiffness indexes of the system.

Model 1 1.508 ⋅ 10
6
≤ 𝜁𝑗,𝑘 ≤ 1.596 ⋅ 10

6

1.965 ⋅ 10
4
≤ 𝜉𝑗,𝑘 ≤ 4.949 ⋅ 10

4

Model 2 0.964 ⋅ 10
6
≤ 𝜁𝑗,𝑘 ≤ 3.775 ⋅ 10

6

1.256 ⋅ 10
4
≤ 𝜉𝑗,𝑘 ≤ 1.183 ⋅ 10

7

Model 3 4.521 ⋅ 10
6
≤ 𝜁𝑗,𝑘 ≤ 4.784 ⋅ 10

6

4.622 ⋅ 10
4
≤ 𝜉𝑗,𝑘 ≤ 1.566 ⋅ 10

7

Table 2: Peak error of steady-state current.

Model Model 1 Model 2 Model 3
Peak error [%] 13.18% 11.98% 4.56%

the measured and simulated inrush current and steady-state
transformer current by usage of the NDF2 method with an
integration step of Δ𝑡 = 100 𝜇sec.

Figure 18 shows the peak values for the inrush currents
errors for all three models. It is necessary to note that the
maximum error when usingModels 1 and 2 was 5.29%, whilst
when using Model 3, the maximum error was 4.30%.

Table 2 shows the error in peak value for the transformer
steady-state current. Minimum error was in Model 3.

In addition, a comparison of the harmonic contents
between the measured and simulated inrush current is
realized, Figure 19.This figure shows that the best results were
for Model 3, whilst Models 1 and 2 provided mostly identical
simulation results.

On the basis of all the aforementioned, it is possible to
suggest the hybrid numerical method as a linear combination
of the traditional trapezoidalmethod and the proposed BDF2
(NDF2) method. In [38] a hybrid method was proposed
by Tadeusiewicz and Halgas in 2005 that presented a linear
combination of the trapezoidal and BDF2method in the form

𝑋𝑛+1 = (1 +
𝜃

3
)𝑋𝑛 −

𝜃

3
𝑋𝑛−1 + (1 − 𝜃)

Δ𝑡

2
𝐹 (𝑋𝑛, 𝑡𝑛)

+ (1 +
𝜃

3
)
Δ𝑡

2
𝐹 (𝑋𝑛+1, 𝑡𝑛+1) .

(14)

In expression (14), 𝜃 = 0 leads to the trapezoidal method,
whereas 𝜃 = 1 leads to the BDF2 method.

In the same way, we have proposed a hybrid method that
represents a linear combination of the trapezoidal and NDF2
methods in the form

𝑋𝑛+1 = (1 +
𝜃

5
)𝑋𝑛 −

3𝜃

10
𝑋𝑛−1 + (1 − 𝜃)

Δ𝑡

2
𝐹 (𝑋𝑛, 𝑡𝑛)

+ (1 +
𝜃

5
)
Δ𝑡

2
𝐹 (𝑋𝑛+1, 𝑡𝑛+1) +

𝜃

10
𝑋
[0]

𝑛+1
.

(15)

In the expression (15), 𝜃 = 0 leads to the trapezoidal
method, whereas 𝜃 = 1 leads to the NDF2 method. This
method overcomes all the eventual problems during the
usage of the standard trapezoidal method.

5. Conclusions

This paper investigates the different models and numerical
methods that could be implemented for the simulations of
inrush current in a single-phase transformer. Various core
models of a transformer are developed in the paper: a model
with a nonlinear inductor and a linear resistor, a model with
a nonlinear inductor and a nonlinear resistor, and a model
with a hysteresis inductor and a linear resistor. In addi-
tion, the paper investigates eigenvalues propagations during
simulation time for all three models. The defined stiffness
parameters, the stiffness ratios and the stiffness indexes,
indicated that very stiff systems should be solved for all three
developed models. The state-space equation system is solved
by using proposed 𝐴- and 𝐿-stable numerical differentiation
formulas (NDF2) (BDF2) method. The proposed method
has the same order as a trapezoidal method; however this
method overcomes the main drawback of the trapezoidal
method (numerical oscillations). In the case where the
numerical oscillations are generated by use of the trapezoidal
method, the NDF2 (BDF2) method efficiently suppresses
them. Comparisons between the measured and simulated
inrush and steady-state currents of a transformer are con-
ducted for all three proposed models. The best simulation
results were obtained by using the developed Model 3, which
incorporates hysteresis inductor. The developed Models 1
and 2 gave almost identical simulation results. The realized
nonlinear inductor, nonlinear resistor, and hysteresis model
can be incorporated within the EMTP-type of programs
by using a combination of the existing trapezoidal and
proposed NDF (BDF) method of order 2. In this way, the
suggested numerical method could be used in the simulation
of electrical networks with nonlinear elements. The future
work will investigate the propagation of eigenvalues of a
system in simulations of inrush currents in a three-phase
power transformer.
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“A time domain small transformer model under sinusoidal
and non-sinusoidal supply voltage,” European Transactions on
Electrical Power, vol. 15, no. 4, pp. 311–323, 2005.

[12] J. R. Lucas, P. G. McLaren, W. W. L. Keerthipala, and R.
P. Jayasinghe, “Improved simulation models for current and
voltage transformers in relay studies,” IEEE Transactions on
Power Delivery, vol. 7, no. 1, pp. 152–159, 1992.

[13] Y. Baghzouz and X. D. Gong, “Voltage-dependent model for
teaching transformer core nonlinearity,” IEEE Transactions on
Power Systems, vol. 8, no. 2, pp. 746–752, 1993.

[14] T. Tran-Quoc and L. Pierrat, “Efficient non linear transformer
model and its application to ferroresonance study,” IEEE Trans-
actions on Magnetics, vol. 31, no. 3, pp. 2060–2063, 1995.

[15] A. D. Theocharis, J. Milias-Argitis, and T. Zacharias, “Single-
phase transformer model including magnetic hysteresis and
eddy currents,”Electrical Engineering, vol. 90, no. 3, pp. 229–241,
2008.

[16] J. Faiz and S. Saffari, “Inrush current modeling in a single-phase
transformer,” IEEE Transactions onMagnetics, vol. 46, no. 2, pp.
578–581, 2010.
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