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Abstract—Usage of model-driven and component-based devel-
opment approaches in embedded systems allows timing analysis
to be performed using system models. One of the problems
rarely addressed by model-level analysis is support for analysis
of cyclic execution paths. In this paper we present a method
which allows compositional worst-case execution time analysis
to be performed on software models containing such cycles.
Our method allows defining cycle bounds for components and
connections, and provides an algorithm to analyze cyclic paths
containing such bounds. Additionally, we provide a possibility
to propagate cycle bound definitions through the component
hierarchy. The method is applied to the IEC 61499 component
model and its applicability has been tested using a prototype tool.

I. INTRODUCTION

When developing systems that operate in real-time, satisfy-
ing timing requirements is as essential as providing the correct
system functionality. Many of the methods for verifying if
the timing requirements of a system are met are based on
analysis of worst-case execution time (WCET). Analysis of
WCET on the level of source code is an already well established
area [1]. However, in the embedded system domain there is
an increasing trend of applying Model-Driven Engineering [2]
and Component-Based Software Engineering [3], [4] develop-
ment methods. In addition to other benefits, these approaches
provide a possibility to perform WCET analysis on the level
of system models, rather than executable code. Model-level
analysis can be performed early in the development process,
and can be more efficient than code-level analysis as it is
performed on a more abstract view of a system. However,
exploiting the full potential of model-level WCET analysis in
component-based systems is not trivial.

One of the problems often neglected in model-level WCET
analysis methods is support for systems containing cyclic
execution paths. Such paths in software models can, for
example, be used to implement functionalities such as aggre-
gation of sensor data, or iterative algorithms. In component-
based systems, cyclic paths introduces problems which are
not present in analysis of standard program code loops. As
opposed to program loops, which are created by loop definition
keywords, cycles in component-based models are formed by a
configuration of loosely bound components, having no explicit
beginning or end. They can form complex patters, having
multiple parallel execution paths, and can span over more than
one level of component hierarchy.

In this paper we present an extension to model-level
WCET analysis for component-based systems which allows the

analysis to be performed on software models containing cyclic
execution paths. This is achieved by multiple contributions:
(i) allowing specification of cycle bounds in component-based
software models, (ii) providing a method for WCET analysis
of bounded cycles, and (iii) enabling the cycle bounds to be
propagated through the component hierarchy. Our approach
is applied to software function blocks of the IEC 61499
standard [5], and a prototype tool implemented as a plug-in to
the 4DIAC development environment [6]. For the purpose of
validation of the cycle analysis we have tested it on a number
of scenarios, each covering a part of the desirable analysis
behavior.

II. BACKGROUND

In this section gives an overview of the IEC 61499 software
model and the model level WCET analysis method that is
extend in this work, limiting the description of both to only
the information needed for understanding the work presented
in this paper.

A. IEC 61499 software model

The main elements of the IEC 61499 [5] software model
are function blocks, which are the software components of the
standard. Although there are three types of function blocks, all
of them provide the same type of interface.

The function block interface defines how the functionality
of a function block is presented to the rest of the system. An
interface consists of input and output ports, which are explicitly
separated into event ports used for specifying execution flow,
and data ports used for exchange of data between function
blocks. Since the analysis we will describe only takes into
account execution flow, while disregarding the data exchanged
by the function blocks, we will present all examples without
data ports and data connections. Figure 1 shows an example
of a function block interface containing event input ports eic1 ,
and event outputs eoc1 , eoc2 and eoc3 . Because all elements
of the cycle analysis presented in this paper can be described
using composite function blocks, we will only provide a
description of this function block type.

Using connections between event and data ports, function
block can be composed into function block networks. Such
networks are used as implementation for composite function
blocks. Each composite consists of an internal function block
network which is connected to the ports in the interface of the
composite. In this way the functionality of the network can
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Fig. 1. Interface of the composite function block cfb. The red dashed arrows
represent the WCET data, and are not a part of the IEC 61499 standard.

encapsulated and used as a function block in new networks,
resulting in a hierarchical composition of function blocks. An
example of a composite function block can be seen in Figure 2.

B. Compositional model level WCET analysis

In this section we describe some of the elements of
a method for compositional model level WCET analysis of
IEC 61499 systems [7]. The analysis is performed for each
component in isolation, in a bottom-up manner. The analysis
result for a component is obtained by composing WCET data
of its sub-components. This result is then stored with the
component and can be used on the next level of hierarchy,
when the component is used in a composite or an application.

The base element on which the compositional analysis
method is built is the context-independent WCET data for
components. The WCET data consists of multiple entries, each
describing an execution alternative inside the component. Each
entry consists of an input event port, and the WCET value and
number of generated output events that a single activation of
that input event port can result in. A graphical representation
of function block WCET data is shown in Figure 2, expressed
as red dashed arrows. The arrow denotes that an event at the
input port that the arrow starts from can generate an event at
the output port that the arrow points to, and the red number
next to the arrow represents the WCET value of the execution
alternative. In the figure we can see that an event at the
input port ei11 of fb1 triggers execution that will result with
one event to both eo11 and eo12 output ports, with WCET
value 1. Input event ei31 of fb3 on the other hand has two
execution alternatives. One has WCET value 100 and results in
an output event at eo31 , while the other has WCET value 300
and generates an event at eo32 .

Analysis of a composite component is based on the analysis
of the internal component network of the composite. This
analysis is performed by finding all execution alternatives
for all its input event ports. The execution paths through the
network can be determined by following the event connections
between components, and by using the execution alternatives
defined in the component WCET data. For each execution
path, the WCET values of the utilized function block WCET
alternatives are accumulated. If an execution path reaches an
output event port of the composite, the number of occurrences
of that event in the resulting output information is increased.
We can describe the analysis of composites on the example
shown in Figure 2. The analysis starts at the input event port
eic1 . From this event port we can trace two different execution
paths. Although both paths visit same function block on this
hierarchical level, they take different internal paths (WCET data
entries) in fb3 . The result of the analysis is shown in Figure 1.
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Fig. 2. An example of a composite function block. The red dashed arrows
and numeric values next to them represent WCET data, and are not a part of
the IEC 61499 standard.

III. CYCLE BOUND DEFINITION

Performing WCET analysis on code containing program
loops is possible if the number of loop iterations has an upper
limit – a loop bound. To allow for analysis of cyclic paths
in component-based models we will use a similar approach
and introduce cycle bounds to the model. We define cycle
bounds by annotating elements of the component model. These
annotations will be used by the WCET analysis to determine
the maximum number of cycle iterations when the annotated
element is part of a cycle. When developing composites,
cycle bounds can also be defined on elements which are not
contained by a cycle. Although in this case the bound will not
be used when analyzing the composite in isolation, it may be
used when a cycle is formed on the higher level of hierarchy.
In our approach we can define two different types of cycle
bounds: component cycle bounds and connection cycle bounds.

Component cycle bounds are defined by the component
developer as annotations to the component interface. They
are used to describe internal mechanisms that a component
implements to limit the number of cyclic iterations. Because
the iteration limit is a result of component’s internals, it is
independent of the context that the component is used in, and
can be reused together with the component. Each component
cycle bound is defined between one input and one output event
port. The value of the bound represents the maximum number
of times an execution started at the input port will result in an
event at the output port if the two are used in a cycle.

When coupled with WCET data definition for components,
component cycle bounds can give special semantics to WCET
execution alternatives of the data. If an execution alternative
starts with the input of the bound, and produces an event
at the output port of the bound, during the analysis it will
be treated as a cycle-forming alternative. Cycle-forming al-
ternatives should be considered on each cycle iteration. If an
execution alternative contains only the input port of the bound,
but does not produce an event at the output port of the bound,
it will be treated as an exit alternative. Exit alternatives should
be considered only after the last iteration of a cycle.

Connection cycle bounds are defined by component inte-
grators as annotations to connections between components.
These bounds denote that the number of cyclic iterations is
limited by interaction of multiple components. Connection
cycle bounds can only be defined for connections that transfer
control flow between components (event connections in case of
IEC 61499 standard). The values of a connection cycle bound
represents the maximum number of times the connection will
be traversed if it is a part of a cycle.
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Fig. 3. The cycle analysis approach depicted on an example system. A
component cycle bound is shown between two ports of fb2 components, having
bound value 10.

IV. CYCLE ANALYSIS

With the ability to define cycle bound annotations on
model elements, and thus defining a limit to the number of
cycle iterations, we can extend the standard WCET analysis
algorithms to allow analysis of systems containing cycles. The
overall approach is depicted on an example in Figure 3. Cycle
analysis consists of three separate stages: (i) cycle discovery,
(ii) isolated cycle analysis, and (iii) merging of cycle analysis
results with the results of the standard WCET analysis. Details
of these three stages will be described in following sections.

A. Cycle discovery

Because cycle bounds can be defined on two different
types of model elements, components and connections, the
cycle discovery is also implemented in two parts of the
network analysis algorithm – whenever an event connection
between two components is considered, and on each usage of
component WCET data. When a cycle bound definition is found
during network analysis, the network is traversed in search of
an analyzable cycle which contains the bound. If no such cycle
is found, the the bound definition is disregarded and the cycle
analysis is omitted. Such bound definition can however still be
used as a candidate for hierarchical cycle bound propagation,
described in Section V. If the bound is included in more than
one event cycle, cycle analysis will at this point give an error,
as the bound can be applied to only one of them, leaving the
other unbound. In case exactly one event cycle for the bound
is found, we can proceed with the isolated cycle analysis.

B. Isolated cycle analysis

The algorithm that implements the actual WCET analysis of
a cycle uses a modified version of the standard network WCET
analysis algorithm described in Section II-B. The network
analysis is extended with a stack of currently analyzed cycles.
For each cycle detected by cycle discovery, a new instance of
network analysis is started form the beginning of the cycle,
while adding the cycle definition to the top of the stack. By
starting a new instance of analysis for each cycle, the cycle

paths are isolated from the analysis performed for the rest
of the component network. The cycle definition stack is used
to break the connections that lead from the end of a cycle
back to its beginning. Using a stack to store information about
currently analyzed cycles allows starting the cycle analysis
recursively, thus providing the ability to analyze multiple
nested cycles. When the analysis reaches the end of the cycle
that is currently at the top of the stack, the analysis for
the current top-most cycle is stopped, the cycle definition is
remove from the stack, and the obtained results for the isolated
cycle are temporarily stored. In case that during cycle analysis
the cycle discovery detects a cycle which is already in the
analysis stack, and is not the top-most cycle, the analysis will
report an error. In this way we detect combinations of cycles
which would result in infinite recursions.

C. Merging cycle analysis results

Once the isolated analysis of a cycle is finished, the
obtained results can be merged with the standard network
analysis. The cycle results are first multiplied by the value of
the cycle bound. If the analyzed cycle bound was defined for
a component, the standard network analysis is continued using
cycle exit alternatives of the WCET data of the component, i.e.
alternatives that do not produce outputs to the output port of
the component cycle bound. In case that the analyzed bound is
defined for a connection, no additional analysis is performed.

The multiplied results, together with possible results for
exit alternatives, are then added to the cumulative results of the
network. The standard analysis of the execution paths covered
by the cycle bound is skipped.

D. Example

We demonstrate our analysis method on an example com-
posite which is used to filter sensor input noise by providing
a mean value out of ten sensor readings. The composite and
its internal component network is shown in Figure 4. While
explaining the analysis of the composite we will refer to the
intermediate and final results of the analysis shown in Table I.

The analysis starts from the REQ port of the composite,
and following the execution path collects the temporary WCET
value of 17 and one output to TMP for the initial execution
of the three components, shown in Table I as Step 1.

When the standard analysis algorithm arrives to the ADD
port the cycle discovery algorithm detects the cycle bound with
value 9 between this port and the port NEXT . The discovery
algorithm then performs a test to determine if the bound is
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Fig. 4. Composite component used in the example of cycle analysis. Data
ports and connections are not shown as the analysis disregards them.



TABLE I. INTERMEDIATE AND FINAL RESULTS OF THE ANALYSIS
EXAMPLE.

Step Analysis/result type WCET Outputs
1 Standard 17 TMP = 1
2 Isolated cycle 20 TMP = 1
3 Multiplied cycle 180 TMP = 9
4 Cycle exit 13 FIN = 1

5 Final (1+3+4) 210 TMP = 10, FIN = 1

a part of an analyzable cycle. Since it is, the isolated cycle
analysis is triggered.

The isolated cycle analysis starts by adding the cycle
bound to the cycle analysis stack, and proceeds with analysis
of the network starting from ADD port, using the cycle-
forming execution alternative in Accu with WCET value 5. The
cycle execution path is traced through all three components,
collecting the cycle WCET value of 20 and one output to TMP .
At this point the analysis reaches the ADD port again, and
because the cycle bound for that port is on top of cycle analysis
stack, the isolated cycle analysis is stopped. The results of this
analysis are shown in Table I as Step 2. After the isolated
analysis of the cycle is finished, the results are multiplied with
the value of the cycle bound, resulting in the values shown as
Step 3 in Table I.

The analysis continues with the cycle-exit alternative of the
AND port. It results in WCET value 13 and an output to the
FIN port, also shown as Step 4 in Table I. The multiplied cycle
results are added to the cycle-exit results and combined with
the temporary WCET result. The final results for the composite
are shown in Table I as Step 5.

V. HIERARCHICAL PROPAGATION OF CYCLE BOUNDS

The WCET analysis method we extend in this work takes
advantage of the component-based development approach, and
performs the analysis in a compositional manner. Analysis
of each component is performed in isolation, and only on
one hierarchical level. Analysis results for a component are
stored with the component, and reused together with it. How-
ever, cyclic execution paths can span over multiple levels
of hierarchy. As a result, there can be a situation in which
the mechanism that limits the cycle is inside of a composite
component, while the actual cycle is formed outside of the
composite, on a higher level of hierarchy. In this case the
cycle bound will be defined on a model element that is inside
of the composite, and will not be visible on the composites
component’s interface, which causes a problem when applying
the compositional WCET analysis approach to it. To still
support the compositional approach to analysis, we have to
be able to represent cycle bounds defined inside composites
as cycle bounds on the level of the composites’ interfaces. We
do this by propagation of cycle bounds.

A. Cycle bound propagation

The cycle bound propagation starts by searching the in-
ternal component network of a composite and finding bounds
which are candidates for propagation. For a bound to be a
candidate for propagation, it must not be a part of an event
cycle inside the composite. If it is a part of an event cycle
already, the bound is treated as consumed, since in this case
there is no guarantee that the mechanism that implements the

bound will still work if contained by a new cycle outside of
the composite. However, if the bound is not a part of a cyclic
path in the composite’s network, the bound mechanism can be
utilized when the cycle is formed on a higher level of hierarchy.

Once the propagation candidate bounds have been found,
they can be tested for propagation to a pair of one input and
one output port of the composite. To propagate a candidate
bound, the port pair has to satisfy two requirements. First, there
must be at least one path between the two ports in the internal
network of the composite. Second, all paths between the port
pair must traverse the candidate bound. If a combination
of a port pair and a candidate bound that satisfies the two
requirements is found, a new component cycle bound definition
for the composite can be defined. The new bound, with the
same bound value as the candidate bound, will be defined
between the input and output port pair. This bound definition
can then be used in any component network which contains
the composite, without the need to reanalyze it.

B. Example

We will demonstrate cycle bound propagation on the
example shown in Figure 5. The composite in this example
is a modified version of the one used to demonstrate cycle
analysis (shown in Figure 4). The new composite, shown in
Figure 5 (a), leaves out the sensor component, and allows
the filtering to be reused with different sensors. The sensor
component can be connected on the next level of hierarchy to
the S CNF and S RD ports on the composite interface, as
shown in Figure 5 (b). To be able to still perform compositional
analysis on the new system, the cycle bound defined in Accu
component needs to be propagated to the Filter composite.

Examining the Filter composite for bound propagation
candidates identifies the cycle bound defined in the Accu
component, as it is not contained by a cycle in the internal
composite network. As the candidate bound is traversed by the
only path (and thus also all paths) between ports S CNF and
S RD , it can be propagated from the Accu component to the
Filter composite. A new bound will be defined between ports
S CNF and S RD , and the value of the bound will be 9. The
combined results of WCET analysis and bound propagation for
Filter are shown as annotations to its interface in Figure 5
(b).
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TMP
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Fig. 5. Composite component used in the example of cycle bound propaga-
tion. Data ports and connections between them are omitted from the figure.



VI. IMPLEMENTATION AND VALIDATION

The method described in this paper has been implemented
as an extension to an existing prototype analysis tool (de-
scribed in detail in [7]). The analysis tool is provided as a
plug-in to the 4DIAC integrated development environment [6].
The 4DIAC-IDE plug-ins implementing the complete timing
analysis are available for download1.

The validity of the cycle analysis method and functionality
of the prototype implementation has been tested using 16 test
scenarios. The scenarios consisted of a test model and results
which are expected as output of the analysis. Testing was
done by re-creating the test models in the 4DIAC develop-
ment environment, and applying the prototype analysis tool to
them. For all test scenarios, the analysis results obtained by
the prototype tool matched the expected analysis results. A
detailed description is available as a technical report [8].

VII. RELATED WORK

When performing WCET analysis on code-level loops,
the main problem is determining loop bounds. Examples of
methods for automatic derivation of loop bounds can be seen
in works by Ermedahl et al. [9], or Gustafsson et al. [10].
Although cycle bounds on model level we introduce are not a
direct equivalent to loop bounds for source code, it is possible
that some of these methods could be applied to derive cycle
bounds from the source code of primitive components.

Vulgarakis et al. present a method [11] for analysis of re-
source consumption of component-based systems by combin-
ing a component model with models of component behavior.
This method allows modeling of cyclic behavior contained by
a single component. Compared to our method, this approach
does not allow describing cyclic paths containing multiple
components.

In some cases a modeling language has the ability to
explicitly describe iterative execution. An example of this is
for loop element in Simulink. Support for analysis of such
constructs for Simulink can be seen in work by Kirner et
al. [12]. Similar support for loop analysis is included in work
by Becker et al. [13] for the Palladio Component Model. As
such cyclic execution is explicit and contained in one level of
hierarchy, it relates to analysis of loops on code level. Contrary
to this, our approach provides a method that can be used on
implicit cycles that occur as a result of component composition
and can span over multiple levels of the model hierarchy.

VIII. CONCLUSION

In this paper we have presented a method which allows
compositional timing analysis to be applied to software models
that contain cyclic execution paths. The approach is applied
to an existing WCET analysis for the IEC 61499 standard.
We have enabled definition of cycle bounds which provide
information about the upper limit of cycle iterations. Cycle
bounds can be annotated to either software components or
connections between them. Utilizing these bounds, we extend
the standard WCET analysis with an algorithm for analysis
of cyclic paths. To fully meet the needs of compositional

1http://www.idt.mdh.se/˜jcn01/research/4DIAC-plugins/

approach to analysis, we also provide a method for propagation
of cycle bound definitions through hierarchical compositions
of components. The presented analysis method has been im-
plemented as part of a prototype analysis tool, built as a plug-
in to the 4DIAC integrated development environment. For the
purpose of validation of the cycle analysis we have applied the
tool to a set of test scenarios.

As a part of the future work, we would like to explore
how source code analysis could be applied to automatically
determine cycle bounds for components implemented by code,
and how the overall method could be applied to component
models which do not have explicit execution flow, or to
analysis other than WCET.
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