
Experiences from building a EUD business
portal

Nikola Tanković*, Tihana Galinac Grbac**, and Mario Žagar***
* Superius d.o.o., Pula, Croatia

** Faculty of Engineering, University of Rijeka, Croatia
*** Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia

nikola.tankovic@superius.hr, tgalinac@riteh.hr, mario.zagar@fer.hr

Abstract - End user development (EUD) is the idea of
providing end users, professionals outside computer science
community, means to develop their own software. This idea
has received special attention by domain experts who would
like to easily modify software applications to their needs,
without intervention of technical professionals and without
learning conventional programming languages. The end
user development is in fact a system property, closely
related to system adaptability that should be built into a
system to enable number of modifications at different
system levels securing powerful expressions that would
satisfy the end user needs. This is a challenging requirement
for every software provider. There are a number of
identified system perspectives, critical to EUD, and general
guiding principles that should be addressed. However, in
reality, building these properties into the concrete system, a
number of complex and interrelated issues have to be
solved. In this paper we report challenges that we addressed
while implementing end user development capability into a
software system within business domain.

I. INTRODUCTION
End User Development is focused around concept of

providing means and tools for non-professional
developers to participate in software development.
Lieberman at el. give the following definition [1]: “End-
User Development can be defined as a set of methods,
techniques, and tools that allow user of software systems,
who are acting as non-professional software developers, at
some point to create, modify or extend a software
artifact."

Spreadsheet is the most popular and well-known EUD
tool, but there is an increase in the number of solutions
such as scripting programming languages or graphical
mashup tools that combine existing functionality into
composite applications. The main reason for the
popularity of EUD is the cost and time expense in
traditional on-demand software development that many
organizations face. The downside is the lack of quality in
terms of reliability and security, especially in mission
critical computing.

Our motivation for building a EUD business portal is
to enable our customers with a tool for creating
applications that implement simple business processes yet
uncovered by their existing IS solutions. Such
implementations are commonly non-critical with lower
return of investment. This decision was made after a

decade of software development experience in business
domain designing and delivering various customer
requests.

Building an end-user development system from
technical perspective means combining and applying
numerous existing software engineering concepts that are
offered to improve the software lifecycle process. Usually
the ideas behind these concepts are clear however their
implementation is full of traps and obstacles.

Here we will elaborate on one particular case study
how some of the most famous software engineering
concepts are implemented and we elaborate the problems
that have to be solved. The following concepts are
addressed: automated customization of products to
customers, automated production process, automatized
delivery process and web oriented end user development
process.

II. CONTEXT OF THE STUDY
We illustrate the concepts of this paper based on an

example of software development in the supply chain
management (SCM) domain. More precisely, the focus of
this paper will be the software for supporting the
continuous control of trading contracts. Trading
companies are businesses usually selling different kinds of
products to consumers. The products are ordered from
different producers, offered in a retail stores and resold to
buyers. One typical example is food shop. The relation
between trading company and producer is defined by
trading agreement. This contract includes metrics such as
minimal number of products to be exposed on shelves,
product positioning inside shop or minimum stock per
product to be ensured. Contracts are subjects of control
and future management that is performed by field agents
dispatched by producers themselves. They ensure that for
each of their products being sold, metrics agreed in
contracts are being fulfilled across retail stores. In sequel,
the software for supporting agents at managing trading
contracts will be referred as Manage Trade software.

The company that is developing the Manage Trade
software has long tradition and numerous customers. Our
customers are before mentioned producers and distributors
of goods. The core software system has been evolving for
more than 10 years. A numerous improvements have been
introduced in the software system. Here we will mention
just few that have implications for our future elaborations.

MIPRO 2014/CTI 635

1. When contract is signed between a producer and
trading company, a number of agents are engaged to
control and manage the contract execution. For that
purpose, a number of software applications - one per agent
- are developed for the purpose of one specific contract.
Each software application has implemented one smaller
derivation from the contract. For that purpose we
introduced a feature of automated customization in our
Manage Trade software system. That feature enables to
automatically derive a number of customized software
applications for every different contract.

2. Since we have many customers we have identified
similarities in the agreements and contract management
processes. A logical step was to automate software
production with maximal reuse of existing software.
Therefore, we developed our Domain Specific Language
(DSL), a script language that describes the differences
introduced with each contract by inheriting from common
predefined constructs. That way all the specifics in
applications for different customers are expressed easily.

3. We developed a Web based system coordinating
and supplying data to applications from all agents by
using a single server database instance for multiple
contracts and producers.

4. Further step in improving our business was to
automate the software delivery process. In that aim we
implemented a Web based system that enabled Web based
delivery of software applications to the agents of specific
contract.

5. Our next step in improving our business is
empowering our customers to develop their contract
support system and thus reuse the concepts of the End
user development (EUD) paradigm. A specific feature
would be introduced in our Web based system to enable
end user development. This feature we will refer as EUD
portal.

III. EUD PORTAL – CONCEPT AND DEFINITIONS
EUD portal is a Web based system for definition,

automatic construction and delivery of software
applications in a certain domain of business. We observe
and describe EUD portal use cases from different
perspectives:

1) From application development perspective it is a
web platform for modeling software applications using a
provided DSL language. Resulting software applications

are limited to elements and expressive level of DSL
provided. In our case, we provide adequate DSL for
Manage Trade domain where producers create
applications to support their agents at work. The targeted
end-user for this use case is a business expert who usually
has some experience and expertise in simple programming
such as creating Excel documents or scripting simple
programs. Description of end-user programming interface
used is out of the scope for this study and is still in
development stage. We address only technical underlying
challenges of building a portal with these properties.

2) From runtime perspective, the execution of Manage
Trade applications, EUD portal leverages Software as a
Service (SaaS) delivery model [2]. Each agent uses an
application delivered and managed by EUD portal.

A. Application development perspective
Contracts between producers and retail shops vary in

content. Agreements in these contracts evolve over time
meaning that agent applications change. In addition, some
producers also required additional functionality such as
sales order creation or collecting additional data for their
business intelligence systems. Given all that, our portal
needs a lot of expressive power. To satisfy such a large
variety of requirements, we pursued a model-driven
approach, and defined a common AGM Meta-model
typical for our tenants requirements presented at [3].
AGM meta-model possesses expressive power to model
applications that can process a variety of structured data,
business processes and validation rules to minimize data
collection errors. AGM was defined from years of
experience in SME business domains such as Manage
Trade. The guidelines for defining a solid meta-model are
provided at [4].

Figure 1 illustrates that design-time, or sometimes
referred to as modeling-time, together with run-time
environments reside on the same web infrastructure.
Model storage is a specialized graph database Neo4J1
containing end-user defined models. It is used by EUD
portal as a central model repository of every modeled
application, and for storing meta-model elements and
definitions. Models are constructed using before
mentioned DSL language for Manage Trade domain
inside modeling environment provided by portal. This
web-based environment is at a very basic and early stage,
providing only a simple DSL editor to input or modify
application definition. This area is a subject to future
improvement with introduction of graphical modeling
environment for a more user friendlier approach [5].

1 Neo4J – open-source graph database, available at

http://www.neo4j.org

Figure 1. EUD portal by layers

636 MIPRO 2014/CTI

Overview of complete application creation scenario is
shown in Figure 2. Steps are simplified omitting ones like
tenant registration or management of users. It gives the
high-level picture of three-step application development:

1) In first step business expert in the role of end-user
programmer models the application using the interface
provided from EUD portal. This modeling step includes
definition of data structure, data transactions that will be
carried by agents, and a model of user interface.
Transactions are modeled as a set of data collection forms.
In Manage Trade domain agents use these forms to collect
information that is analyzed to see if contracts are being
met. Therefore, these forms are modeled according to
contract contents.

2) Each organization exposes data from their existing
IS through an ODBC 2 database connector or uses
connectors to SAP ERP3 or Microsoft Dynamics NAV4
systems. The tools are provided by portal. This step is
often completed with some help of professional developer
or system integrator who has a deeper knowledge of SQL5
language and database procedural languages. The
structure of exported data in this step must conform to
data structure defined in previous step.

3) Final application is automatically assembled and
downloaded to each of agent devices. Manual download is
required, but future updates are automatic and seamless.

EUD portal does not assemble each application as
different executable specific to each agent, but rather
provides a common executable for every agent, which is
capable of interpreting provided model at runtime. We
refer to this executable as a client engine. Model is
synchronized to each client engine upon first usage and
updated as necessary. Model interpretation in favor of
generating end applications makes this an interpretative

2 ODBC – stardadized middleware for accessing database

management systems, originally developed by Microsoft
3 SAP – SAP AG's Enterprise Resource Planning software, available

at http://www.sap.com
4 Dynamics NAV – ERP software product from Microsoft, available

at http://www.microsoft.com/en-us/dynamics
5 SQL – special domain specific language for managing data

contoained in database management systems

MDD approach. Differences between MDD approaches
and benefits of each, together with rationale for choosing
interpretative approach are described in [6].

B. Runtime perspective
1) From runtime perspective, EUD portal is a

distributed software system composed of server and client
components. Server-side components provide data storage
services for assembled applications. Each agent
continually collects information at retail stores that is
stored in portal. This is achieved using a relational
database. Single database instance is shared between
agents and data is isolated accross companies.

To support data storage for multiple agents and
organizations in a single database, we used a multi-
tenancy design of the portal and underlying relational
database. This means that each customer shares hardware
and software resources leading to better resource
utilization. A shared-table design [7], [8] is used to isolate
data inside relational database instance. In our
implementation, a single tenant correlates to single
customer – producer or distribution organization.

EUD portal also possesses Web services and tools that
provide integration with existing IS. In our business case,
agents require immediate access to different information
contained within existing Customer Relationship
Management (CRM) and Material Management (MM)
systems. Such information includes details about retail
shops and products. Each agent also receives daily work
schedules provided from these existing systems. They
define a list of retail stores to visit and ensure contracts are
being followed correctly. This work schedules are
synchronized from outer systems to EUD portals central
database and then further passed to each agent application.

Client side components are packaged as a hybrid
mobile and desktop application [9]. Hybrid application
composing means that applications are built using web
technologies: JavaScript and HTML, combined with
native modules developed separately for each platform we
provide: PC, Android and iPhone. These native modules

Figure 3. EUD portal architecture

Figure 2. Basic steps involved in creating application

MIPRO 2014/CTI 637

are referred as native wrappers. They use Webkit6 open-
source engine to display HTML and JavaScript contents.
That way we obtain functionality specific to native
applications and still benefit from web technologies that
facilitate software delivery and multiplatform execution
[10]. Native functionality includes: access to file-system,
photo camera, gyroscope, GPS module, device
information and phone address book, depending on
platform.

IV. CHALLENGES AND FUTURE DIRECTIONS
Many technical challenges arose during

implementation phase. Those will be described in
following subsections, each section covering different
technical aspect of EUD portal. To position each problem
according to EUD portal layer or component, we relate to
Figure 1, which provides an overview on portal run-time
and design-time layers, and Figure 3, which shows the
main components used.

A. Communication between server and clients
As shown in Figure 3, labeled (A), data

synchronization between portal and end applications is
achieved with a distributed synchronization module
residing both on server and client side. This empowers
each client application to conduct computation over data
independently, which unburdens server infrastructure
resources. This is also very useful for supporting offline
data processing, meaning that agent applications can
process transactions on smartphones without data
network, and postpone synchronization of completed
transaction back to server after connection is
reestablished. Modeling language provides expressions to
filter data that is to be synchronized on each agent
application.

It was quite difficult to achieve a stable
synchronization mechanism given that resulting
applications were designed by end-users so the
synchronized data volume was often unpredictably large.
This problem is even more present when data is sent over
old generation mobile networks.

To resolve this issue, we are researching a mechanism
that will predict the volume of data at run-time and warn
the developers when such volume hits a certain threshold.
That way, end-users can decide to lower the volume of
data by filtering some less important data.

B. Integration
A key part of any business system is interoperability -

efficient cooperation with existing systems. This is in our
experience one of the greatest barriers for using EUD in
business organizations. Many existing, on-premises IT
systems are inaccessible or difficult to integrate with. A
most common method of integration in our experience is
by using intermediate tools to connect to their database
systems. In Figure 3 this tools are noted (B). It can be

6 Webkit – open source layout component designed to render web

pages, available at http://www.webkit.org/

observed that relational transactional database is
connected with integration middleware for connecting to
existing IS databases. These tools are configurable
applications provided to be installed inside existing IS
environments. The reason for on-premises installation is
to evade strict firewall policies many of our customer
posses and their inability to provide web services.
Although SOA architectures are getting more common,
our customers do not posses such solutions, so data is
synchronized with their databases through ODBC drivers
and a configurable set of SQL commands.

We already stated that for a stable integration,
assistance from professional developer is required and this
is quite a drawback for end-user development due to
unpredictable costs and time factors when engaging
professional help. After the transition to service-oriented
architecture this problem will be easier to tackle, as there
is many research on integrating web services with EUD
principles. Dörner et al. [11] are researching end-user
development integration with Service-Oriented
Architectures (SOA) by making web services more
understandable to end-users. Similar pattern can be
applied here. However, our customers are from small and
medium business (SMB) sector, and are still just
considering migrating to SOA. Direct integration with
their databases is still the most flexible and common
solution.

C. Persistence Layer
Data persistence, marked (C) in Figure 3 is the most

important part of any business transaction processing
system and this was where we faced many challenges.
When we did our research for choosing the right database
to store EUD portal customers data, we had several main
requirements:

• ACID properties,

• An open-source solution is preferred,

• Schema-less database is preferred; as it makes
storing end-user designed data objects easier to
implement.

We have chosen a relational open-source PostgreSQL7
database. PostgreSQL, like any ordinary relational
database, requires schema to be defined prior to usage. We
gave up on this aspect in favor of ACID properties and
reliability, as schema-less NoSQL 8 databases are still
mainly not mature enough for business production usage,
like storing important and sensitive data. Main deciding
factors for PostgreSQL were durability, robustness and
open-source code.

To achieve best hardware resources utilization, we
implemented a row level multi-tenancy meaning that

7 PostgreSQL – open-source object-relational database management

system released under PostgreSQL license, available at
http://www.postgresql.org

8 NoSQL – common names for databases that store data in forms
other than tabular relation used in relational databases, many of which do
not require a schema to be defined

638 MIPRO 2014/CTI

tenants share same tables with each row having tenant
identification.

Since tenants had different schema structures, we had
to share tables and columns across tenants. For that reason
each column had the same universal variable length string
type. This table and column abstraction on database side
brought a small performance drawback because the
benefits of relational schema were not fully utilized. To
satisfy data isolation between tenants, we implemented a
layer between the portal application code and database
that does the mapping between user-defined schema and
real database schema. This layer also brought a small
degradation of data access performance. Similar approach
has been implemented by the Force.com Salesforce1
solution [12] on top of Oracle relational database. We
have not applied enough attention to properly address this
issue and further research is required in this area. More
research towards implementation of this feature natively
inside databases is required, such as [13].

Another big issue was database scaling, ability operate
effectively regarding to database size. We did not
automatically track each tenant metrics on table sizes nor
implement a mechanism for automatic index creation to
rectify slow queries. Instead, we performed database
optimization and administration manually. Taught by this
production experience, we defined a set of characteristics
that a fully automated EUD business system persistence
layer should have:

1) Mechanism for keeping track of per-tenant meta-
data and metrics: slow queries, overall data size, data
fragmentation, and index efficiency. Basic solution is
provided at Figure 4 where execution time is monitored
together with requested query. Collected data is analyzed
for decision such as automatic creation of additional
indexes, data sharding and partitioning. Similar approach
is applied at [14] on cost-driven basis.

2) Data sharding should take care not to divide data
inside common tenant and to divide shards evenly. Such
mechanism should track fastest growing tenants and
reserve enough storage for further growth. If a single
tenant gets larger than a single shard (database) it should
be further split by relocating less accessed data.

Modern Platform-as-a-Service (PaaS) solutions offer
APIs for managing hardware infrastructure. This could
also be used for automatic new creation of additional
database instances when total capacity is close to being
exceeded with automatic data reallocation. An example of
such solution is Amazon Auto Scaling9 but it is limited in
terms that it allows only predefined set of rules like
defining peek times, or CPU usage thresholds when a
scaling should occur. Scaling API should be combined
with analysis of existing tenant meta-data and metrics for
optimal resource allocation. Combined with a database
that easily scales should provide a solid ground point
towards building a database layer capable of handling
large quantities of different tenant schemes. A good

9 AAS – Amazon Auto Scaling solution, available at http://

http://aws.amazon.com/autoscaling/

database engines categorization with a special review to
scaling is given in [15]. This work shows a promising
future for NoSQL schema-less database solutions once
they become more reliable.

D. Extending modeling capabilities
Certain transactions conducted by agents' required

additional functionality that could not be expressed with
our DSL language. Therefore, we provided means for
writing simple JavaScript10 functions extending provided
modeling capabilities e.g. specific tax calculations, custom
advanced validation controls or other types of more
complex algorithms. They were executed on agent
applications and can be modeled to execute on certain
application events like startup of the application,
beginning or end of transaction, periodically, and on
different user interface actions.

Using these extension scripts in practice revealed a
few additional problems:

1) Security concerns – client side JavaScript code is
not safe from manipulation, so an additional JavaScript
interpreter located at portal should revalidate those client-
side calculations upon successful synchronization of data
back into the portal database.

 2) Inefficiency – certain scripts can perform much
better on server side, e.g. manipulating a larger set of data.
This requires more resources than client side computing
can offer.

3) Poor usability – to write an extension, one needs
some sort of assistance from professional developer who
knows JavaScript. This was not suited for an end-user.

To resolve performance issues, an algorithm based on
heuristics could predict functions to be executed on server
side e.g. function with frequent access to large amount of
data.

V. CONCLUSIONS
Implementing EUD portal in the web environment

where technology is still not specialized enough for such
dynamic use cases offers several technical challenges to
surpass. Main concerns are infrastructure barriers,
integration issues and scalability.

10 JavaScript

Figure 4. Mechanism for collection tenant data size and query
performance metrics

MIPRO 2014/CTI 639

 Computational and network infrastructure is limited,
but end-users do not possess understanding of those
limitations which results in unstable and underperforming
applications. Integrating EUD systems with existing
solutions is another key barrier for end-users because it is
often very complicated even for professional developers to
understand and find a way to integrate with closed
systems.

Regarding data persistence layer, greatest challenge is
achieving multiple schema multi-tenant data storage on
classical database management solutions. Having a user-
defined data structure imposes a need for higher flexibility
to change data structures in runtime. We proposed using a
schema-less database or an abstraction layer over
relational databases. A mechanism that would gather
meta-data and usage statistics for each tenant is also
needed to tackle self-optimization. Such mechanism
should take decisions and actions over data partitioning,
sharding and indexing.

To enable automatic scaling, platforms could be built
on IaaS solutions that enable API's for dynamically
creating new worker and storage nodes to take on extra
traffic. Figure 5 shows an overview on key portal
architecture characteristics: 1) multiplatform execution, 2)
web-based WYSIWYG modeling environment, and 3)
execution engine with ability to use infrastructure APIs for
automatic scaling. Self-adaptivity in forms of carefully
configured algorithms should take decision to scale by
managing storage and computation resources from IaaS
provider during runtime. This is crucial for EUD solutions
where application resource footprints are highly dynamic
and unpredictable.

VI. ACKNOWLEDGEMENTS
This work is supported in part by the Croatian

Ministry of Science, Education and Sport, under the
research project ”Software Engineering in Ubiquitous
Computing”.
[1] H. Lieberman, F. Paternó, M. Klann, F. Paternò, and V. Wulf,

“End-user development: An emerging paradigm,” End User Dev.,
vol. 9, pp. 1–8, 2006.

[2] M. Armbrust, I. Stoica, M. Zaharia, A. Fox, R. Griffith, A. D.
Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, and A.
Rabkin, “A view of cloud computing,” Commun. ACM, vol. 53, no.
4, p. 50, Apr. 2010.

[3] N. Tankovic, D. Vukotic, and M. Zagar, Executable Graph Model
for building data-centric applications. IEEE, 2011, pp. 577–582.

[4] R. Lagerström, J. Saat, and U. Franke, Enterprise meta modeling
methods–combining a stakeholder-oriented and a causality-based
approach, vol. 29. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 381–393.

[5] V. Deufemia, C. D’Souza, and A. Ginige, “Visually modelling data
intensive web applications to assist end-user development,” in
Proceedings of the 6th International Symposium on Visual
Information Communication and Interaction - VINCI ’13, 2013, p.
17.

[6] N. Tankovic, D. Vukotic, and M. Zagar, “Rethinking Model Driven
Development: analysis and opportunities.” pp. 505–510, 2012.

[7] Z. H. Wang, C. J. Guo, B. Gao, W. Sun, Z. Zhang, and W. H. An,
“A Study and Performance Evaluation of the Multi-Tenant Data
Tier Design Patterns for Service Oriented Computing,” in 2008
IEEE International Conference on e-Business Engineering, 2008,
pp. 94–101.

[8] J. Espadas, A. Molina, G. Jiménez, M. Molina, R. Ramírez, and D.
Concha, “A tenant-based resource allocation model for scaling
Software-as-a-Service applications over cloud computing
infrastructures,” Futur. Gener. Comput. Syst., vol. 29, no. 1, pp.
273–286, Jan. 2013.

[9] A. Charland, B. Leroux, and B. A. Charland, “Mobile Application
Development  : Web vs . Native,” Commun. ACM, vol. 54, no. 5, p.
49, May 2011.

[10] S. Xanthopoulos and S. Xinogalos, “A comparative analysis of
cross-platform development approaches for mobile applications,” in
Proceedings of the 6th Balkan Conference in Informatics on - BCI
’13, 2013, p. 213.

[11] C. Doerner, F. Yetim, V. Pipek, V. Wulf, and C. Dörner,
“Supporting business process experts in tailoring business
processes,” Interact. Comput., vol. 23, no. 3, pp. 226–238, 2011.

[12] C. D. Weissman and S. Bobrowski, “The design of the force. com
multitenant internet application development platform.,” 2009.

[13] O. Schiller, B. Schiller, A. Brodt, and B. Mitschang, “Native
support of multi-tenancy in RDBMS for software as a service,” in
Proceedings of the 14th International Conference on Extending
Database Technology - EDBT/ICDT ’11, 2011, p. 117.

[14] S. Schulte, D. Schuller, P. Hoenisch, U. Lampe, R. Steinmetz, and
S. Dustdar, “Cost-driven Optimization of Cloud Resource
Allocation for Elastic Processes,” Int. J. Cloud Comput., vol. 1, no.
2, pp. 1–14, 2013.

[15] J. Pokorny, “NoSQL databases: a step to database scalability in
web environment,” Int. J. Web Inf. Syst., vol. 9, no. 1, pp. 69–82,
2013.

Figure 5. Proposed EUD portal architecture

640 MIPRO 2014/CTI

