159

A FORWARD REASONING ALGORITHM

Bili¢, Herman; Boljat, lvica; Grbac, Zlatko; Jadrlé, Ana;
Markovlé, Dinko; Slapniar, Petar

Faculty of Electrical Engineering Mechanical Engineering
and Naval Architecture
R. Boskoviéa str. bb, 58000 Split

when defining operating environment for experimentation in the domain of expert systems, one,
of basic modules is inference engine. On the basis of the predefined knowledge representation an
inference engine algorithm is suggested. A programming module and the reasoning illustrated by
examples have been implemented.

Jknowledge base/forward reasoning/inference engine/
1. INTRCDUCTION

The paper deals with expert systems having as basic components a knowledge base based on
production rules and an inference engine 11, 121, 14/.

We start with the assumptions that experimentation is a possible and interesting starting point in
research woik dealing with expert systems, that it is not easy to obtain an adequate
commercial shell of an expert system, and that it is useful and convenient to build one's own
environment that would comply with a broad variety of experimentation demands.

A knowledge representation was earlier defined /3/,/5/,/7/ in away that IF-THEN rules were stored
in 5 relational data bases of a defined structure.

A variant of the next basic module of the expert system - an inference engine operating on the
previously defined knowledge base is suggested here.

2. INFERENCE ENGINE

Research in Al consists of three inseparable components: theory, program implementation, and
experimentation with finished programs. These three components are in constant interaction, which
results in software implementation using the elements of “intelligent* behaviour. However,
simulation of human reasoning and inferencing requires development of efficient scanning
algorithms in a great number of variants, which would bring the potential possibilities to the level
of practical feasibility. Therefore research work aiming at defining efficient task-solving procedures
is of a particular importance.
The inference engine based on the given data base is described here. This inference engine is
required to meet the following requirements:

- It must be user-oriented i.e. communication with software must be simple and efficient.

- It must result in overall reasoning flow with all the possible parallel branches.

- It must be valid for numeric and nonnumeric variables.
To implement such an engine 5 auxiliary temporary data bases are used:

INPUT_VAL base represents a temporary base of facts related to the particular reasoning. It
contains all variable values given to the computer whether at the beginning of reasoning or.during
a particular cycle, as well as values of all variables obtained during reasoning, lest the computer
might request several times the value of the same variable (in different cycles). Data base initiated
at the beginning of each new reasoning process and during this process is constantly being
given new records.

VAR_GAME data base is, like RUL_GAME base, a basic base needed for the functioning of the

160

algorithm. Each variable obtained by reasoning, (i.e. from THEN rules) is added at the end of the .

base. This is performed with the aim of examining all the paths in reasoning which continue with
this variable (i.e. all further places in IF base where this variable appears are examined). A
variable (always the last one) is deleted from VAR_GAME base only when it is found that in IF base
there is no longer any rule containing this variable that has not been examined in reasoning.

RUL_GAME base. At the end of this base a designation of each IF rule reached during the
reasoning prc:'cess is written. This is done with the aim to examine all the possible further pathg
of reasoning M there is an operator in ithe THEN part. The rule (always the last one) is deleted
from RUL_GAME base when all the records of TO_THEN base having the value of IF_RULE fieid
equal to the designation of the observed rule are examined, i.e. when all reasoning paths connected
with the operator in THEN rule are examined.

AUX base. A designation of each IF rule created in the reasoning process is written into the base,
This is done to prevent repeated processing of the same reasoning flow from different branches.

OUT_VAL base. The base is added all the reasoning data so as to make the final output
absolutely clear.
Contfigurations of these 5 data bases are shown in Table 1.

Table 1. Configuration of auxiliary data bases

a) INPUT_VAL data base d) AUX data base
Field Field name Type Length Field Field name Type Length
1 VAR_NAME Char 10 1 IF_RULE Char 10
2 VAR_VALUE Char 10
3 RELATION Char 2 e) OUT_VAL data base
b) VAR_GAME data base ' Field Field name Type Length
1 VAR_NAME Char 10
Field Field name Type Length 2 VAR_VALUE Char 10
1 VAR_NAME Char 10 3 OPERATOR Char 3
2 VAR_VALUE Char 10 4 CYCLE Char 1
3 VAR_PTR Num 5 5 GROUP_SGN Num 5
4 RELATION Char 2 6 RELATION Char 2
5 SWITCH Num 1 7 VAR_VALUE2 Char 10
8 RELATION2 Char 2
) RUL_GAME data base 9 CYC_NUM Num 5
Field Field name Type Length
1 IF_RULE Char 10

2 ONTHEN_PTR Num 5
3 GROUP_SGN Num 5

VAR_VALUE2 and RELATIONZ pair of fields in OUT_VAL base refers to the pair of values found in
the base and valid for the VAR_VALUE and RELATION pair. Validity criterion means that the
whole validity domain of the VAR_VALUE and RELATION pair is within the validity domain of
VAR_VALUE2 and RELATION2 pair. So e.g. if during reasoning we look in IF base for a< 7 and
finda < = 50, the condition has been fulfilled. In this case VAR _VALUE equals 7, RELATION equals
‘<, VAR_VALUE equals 50, and RELATION2 equals *<=". CYCLE field records the existence of
the cycle, CYC_NUM field denotes the cycle ordinal number, and GROUP_SGN field denotes
the operator ordinal number. VAR_PTR field in VAR_GAME base records the current record ordinal
number in VARIABLE base (in order to continue further search from that record on), and
ONTHEN_PTR field in RUL_GAME base denotes the current record ordinal number in TO_THEN

161

pase (in order to continue possible further search from this record on). SWITCH field in
VAR GAME base is used to distinguish the first variable from which the reasoning starts (so it is
immédiately entered into OUT_VAL base) from the other variables added to OUT_VAL base on the
basis of reasoning.

The following is an inference engine algorithm pseudocode:

read NAME (I‘ame), VALUE (val) and RELATION (rel) for the beginning variable;
enter name, val, rel into tables INPUT_VAL, VAR_GAME, OUT_VAL;
PANSW = 1; OP_NUM = C_NUM = 0; [* PRNSW - print switch */
/* OP_NUM - operator number */
/* C_NUM - cycle number */
while there are records do for the last VAR_GAME base record;
while there are records search in VARIABLE base the record for which the following is valid:
1. VAR_NAME = name and IF_THEN = |,
2. rule Is not in AUX base,
3. In the corresponding IF base record VAR _VALUE and RELATION in accordance with
val and rel,
4. If the cycle is then
CYC =1,
examine the whole cycle; [* search for the vaiues of the unknown variables
in INPUT_VAL base, and if there are no such variables, request the values from
the screen and enter into INPUT_VAL base */
if there is a record then enter the record into the AUX and OUT_VAL bases;
PRANSW = 1;
if CYC =1
C NUM = C_NUM + 1;
into AUX and OUT VAL base enter the cycle variables; cycle = C;
via TO_THEN base search the first IF rule and find variable in THEN base;
if there is an operator OP_NUM = OP_NUM + 1;
enter the rule at the end of the RUL_GAME base;
update bases OUT_VAL, INPUT_VAL and VAR_GAME;
else
delete the last record from VAR_GAME base;
search on in TO_THEN base for the last rule from RUL_GAME base;
if there is a rule in TO_THEN base
PRNSW = 1;
update the last record in RUL_GAME base;
via TO_THEN base find a variable in THEN base and transfer it to
OUT_VAL, INPUT_VAL and VAR_GAME bases;
else
delete the last rule from RUL_GAME base;
if PRNSW = 1 print OUT_VAL base;

The choice of programming language for coding the algorithm has not been paid a great attention
to. Namely, we start from the hypothesis that soluble algorithms in any real software system can
be translated into soluble algorithms in any other real software system. When a soluble problem is
discovered, there is not a particular programming language for that problem. A reasonable
design must be identified, but each general-purpose language can give a reasonable solution /6/.
So on the basis of this algorithm, programming modules are implemented in CLIPPER (500
instructions of source code) and in C language (600 instructions of source code) and the
functioning of both modules is successfully tested on numerous examples impfemented with the
example generator /7/ as well as with several other examples including the operator in the THEN part
(which is not the case with graph).

162

3. EXAMPLES

Reasoning results are shown in two short examples. The first example uses numerical variables
.and is made only to exemplify, namely its aim is to show different reasoning variants as clearly as
possible. Example 1 is as follows:

IF a=@ AND b>=3 AND c<=4 THEN d=10

IF a>=10 THEN x=3 AND y<5
IF a<50 THEN x=7 AND z=20
IF x=3 THEN z=18 OR u=90
IF z=18 THEN w<13

Example 2 refers to a nonnumerical variable and is typical in literature dealing with this domain:

IF INTEREST FALL THEN STOCK RISE
IF INTERSET RISE THEN STOCK FALL
IF DOLLAR FALL THEN INTEREST RISE
IF DOLLAR RISE THEN INTERSET FALL ¥

IF FEDINT FALL AND FEDMON ADD THEN INTEREST FALL
In Fig. 2 a), b), ¢), d), and) it is shown how rules of Example 1 and Example 2 are stored in the
knowledge base. There are no restrictions as for storing the rules of different examples into the
common knowledge base.

IF_RULE NEXT_IF VAR_NAME VAR_VALUE RELATION CERTAINTY

10 20 a 2 = 1.00
20 30 b 3 >= 1.00
30 10 c 4 <= 1.00
40 40 a 10 >= 1.00
50 50 a 50 < 1.00
60 60 interest fall = 1.00
70 70 interest rise = 1.00
80 80 dollar fall = 1.00
90 90 doliar rise = 1.00
91 92 fedint fall = 1.00
92 91 fedmon add = 1.00
93 93 X 3 = 1.00
94 94 z 18 = 1.00

Fig. 2 a) IF base for Example 1 and Example 2

THEN_RULE VAR_NAME VAR_VALUE RELATION CERTAINTY

100 d 10 = 1.00
200 X 3 = 1.00
300 y 5 < 1.00 -
400 X 7 = 1.00
500 z 20 = 1.00
600 stock rise = 1.00
700 stock fall = 1.00
800 interest rise = 1.00
900 interest fall = 1.00 :
901 z 18 = 1.00
902 u 90 = 1.00
903 w 13 < 1.00

Fig. 2 b) THEN base for Example 1 and Example 2

163

|F RULE THEN_RULE OPERATOR VAR_NAME IF_THEN RULE
" 10 100 a [10
20 100 b I 20
30 100 c 1 30
40 200 AND d’ T 100
40 300 AND a | 40
50 4§ 400 AND a | 50
50 500 AND X T 200
60 600 y T 300
70 700 X T 400
80 800 z T 500
90 900 interest | 60
91 900 interest | 70
92 900 stock T 600
93 901 OR stock T 700
93 902 OR dollar 1 80
94 903 doliar | 90
Fig.2 ¢) TO_THEN base for Example 1 interest T 800
and Example 2 interest T 900
fedint | 91
fedmon | 92
THEN_RULE IF_RULE X ! 93
100 10 z | 94
200 40 Fig.2 e) VARIABLE base for Example 1 and Example 2
300 40
400 50
500 50
600 60
700 70
800 80
900 90
900 91
901 93 Fig.2 d) TO_IF base for Example 1
902 93 and Example 2
903 94

If reasoning is actuated from variable a with the value of 2, the computer searches the value for
variables b and ¢ (cycle), and if b=3 and c=4 is.entered, the reasoning flow is obtained on Table 2.

Table 2. Reasoning within Example 1 starting with a=2

VARIABLE GIVEN VALUE FOUND VALUE OPERATOR NUMB.OPER. CYCLE NUMB.CYCLE
=2 o] 1
=3 3 C 1
=4 4 C 1
=10

=2 < 50 .

7 AND 1

= 20 AND 1

AV
It N

N X D Q0o

It is clear that the GIVEN VALUE in the line which does not belong to the cycle also represents the
conclusion for the previous line (or lines if the cycle is dealt with). It can be seen that first four lines
of the table represent a reasoning branch, and the last three lines a parallel branch. {f reasoning is

164

inttiated by e.g. a=15, there follows the flow on Table 3, and i, within Example 2, we start from fedint
fall, and if for fedmon we enter the value add (requested by the computer), the flow shown in
Table 4 is obtained.

Table 3. Reasoning within Example 1 starting with a=15

VARIABLE GIVEN VALUE FOUND VALUE OPERATOR NUMB.OPER. CYCLE NUMB.CYCLE

a =15 >=10

X =3 =3 AND 1
z =18 =18 OR 2
w <13

u =90 OR

y <5 AND 1
a =15 < 50

X =7 AND 3
z =20 AND 3

Table 4. Reasoning within Example 2 starting with fedint fall.

VARIABLE GIVEN VALUE FOUND VALUE OPERATOR NUMB.OPER. CYCLE NUMB.CYCLE

fedint = fall = fall C 1
fedmon = add = add C 1
interest = fall = fall

stock = rise

4. CONCLUSION

With intention to define the proper environment which opens broad possibilities of experimentation
in the domain of expert systems, an inference engine module is set apart as one of basic modules.
Reasoning must function within the previously defined knowledge base, which consists of
production rules organized in 5 relational data bases. A forward reasoning algorithm, based on 5
auxiliary relational data bases has been worked out in detail. The following conditions are stipulated
on this algorithm;

- Simple usage,

- It must result with overall reasoning flow,

- It must be valid both for numeric and nonnumeric variables.
According to this algorithm programming modules have been implemented in Clipper and
C language, and they have been successfully tested on numerous examples.

References:

n/ Hayes-Roth, F. (1984), *The Knowledge-Based Expert Systems®, IEEE Computer, vol. 17, No.
9, Sept. 1984, pp. 11-28. ’

12/ Steels, L. (1985), “Second Generation Expert Systems*, Future Generation Computer Systems,
vol.1, no.4, pp. 213-221, 1985.

13/ Han-lin, Li. (1986), *'To Use RDBMS as a Building Tool of Data-Knowledge Base Systems®,
The 6-th Int. Workshop on Expert Systems and Their Applications Avignon, April 1986,
Pp.1143-1163.

14/ Neapolitan,.R. A. (1986), ‘Forward-chaining versus graph approach as the inference
engine in expert systems', Proc. Applications of Artificial Intelligence Wi, SPIE vol. 635, pp.
62-69, apr. 1986.

15/

16/

il

18/

19/

165

Bili¢, Herman; Boljat, lvica; Grbac, Zlatko; Jadri€, Ana; Markovi¢, Dinko; Slapnitar, Petar;
Saga, Slavko. An experiment witha knowledge base. Proceedings of the 11th international
Symposium Computer at the University, Book Il Cawvtat: SRCE-Zagreb, 1989, str.
8.10.1-8.10.8, lit. 7. sum.

Bili¢, Herman; Boljat, lvica; Grbac, Zlatko; Jadrié, Ana; Markovi¢, Dinko; Slapni&ar, Petar.
Generatiog of causal model for second generation expert systems. Proceedings of the 12th
International Symposium Computer at the University. Cavtat: SRCE-Zagreb, 1990, str. 6, lit.
6. sum.

gili¢, Herman; Boljat, lvica; Grbac, Zlatko; Jadri¢, Ana; Markovi¢, Dinko; Slapnitar, Petar.
Causal model in second generation expert systems. International Symposium and
Exhibition Computational Intelligence 90. Milano: Universita degli studi di Milano, 1990,
str. 149-150.

Bili¢, Herman; Boljat, lvica; Grbac, Zlatko; Jadri¢, Ana; Markovi¢, Dinko; Siapnitar, Petar.
Causal Model in Second Generation Expert Systems - Examination, Optimizing and
Learning. Elektrotehnika, Zagreb, 1991, pp. 166-168, lit. 6. sum.

Bylander, Tom. Tractability and artificial intelligence. JETAI, vol. 3, No. 3, 1991, pp.
171-178, lit. 26, sum.

'E ,‘B‘)

Proceedings of the

140 International Conference on

INFORMATION TECHNOLOGY INTERFACES

Pula 1992

Organized by
University Computing Centre, Zagreb

Cooperating institutions
§ Arizona State University
Athens University of Economics and Business
Croatian Society for Simulation Modelling
Department of Computer Science, North Carolina State
University
Department of Management Science and Information
Technology, University of Georgia
Department of Statistics and Operations Research,
Polytechnical University of Catalonia, Barcelona
European Business Management School, Swansea
Faculty of Economics, University of Zagreb
Faculty of Electrical Engineering, University of Zagreb
Faculty of Organization and Informatics, University of
Zagreb
"Jozef Stefan" Institute, Ljubljana
Working Group Simulation, Technical University, Vienna

Under the auspices of
Croatian Academy of Sciences and Arts
Ministry of Science, Technology and Informatics,
Republic of Croatia
University of Zagreb

Published by: University Computing Centre
Engelsova bb, 41000 Zagreb, Croatia

