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Abstract – Detection of vegetation in images is a common 

procedure in remote sensing and is commonly applied to 

satellite and aerial images. Recently it has been applied to 

images recorded from within ground vehicles for 

autonomous navigation in outdoor environments. In this 

paper we present a method for roadside vegetation detection 

intended for traffic safety and infrastructure maintenance. 

While many published methods for vegetation detection are 

using Near Infrared images which are particularly suitable 

for vegetation detection, our method uses image features 

from the visible spectrum allowing the use of common on-

board color cameras. Our feature set consists of color 

features and texture features. One of our specific goals was 

to identify a useful texture feature set for the problem of 

vegetation detection. Based on the feature set, the detection 

is implemented using a Support Vector Machine algorithm. 

For training and testing purposes we recorded our own 

image database consisting of different images containing 

roadside vegetation in various conditions. We are presenting 

promising experimental results and a discussion of specific 

problems experienced or expected in real-world application 

of the method. 

Keywords - image analysis, image processing, vegetation 

detection, traffic safety. 

I. INTRODUCTION 

Detection and analysis of the state of vegetation from 

images is considered very important in the field of remote 

sensing where it is used for detecting green areas on 

Earth and detecting changes caused by urbanization. 

Detection of stressed vegetation [2], [10], [5] and other 

similar applications are aimed at raising environmental 

awareness and improving our ecological footprint. 

Vegetation detection in other areas besides remote 

sensing, e.g., in robotics, is very young and unexplored. 

The need for detecting vegetation in this area arose when 

autonomous vehicles were used for forest exploration. 

Vegetation is not a static obstacle and all of vegetation-

like obstacles don’t need to be avoided (i.e. a vehicle can 

go over tall grass) [9]. Hence, it was necessary to detect 

vegetation and decide if the vehicle can drive over that 

obstacle or should it be avoided. Increased use of 

autonomous vehicles for off-road navigation is the main 

reason for new research efforts in detection and 

classification of vegetation [1], [3], [6], [7], [8]. 

In this paper we present a pixel-based method for 

roadside vegetation detection from within a moving 

vehicle intended for traffic safety and infrastructure 

maintenance (e.g., mowing the grass along the road). 

Many published methods for vegetation detection are 

using Near Infrared (NIR) images where vegetation has 

distinctive properties. Our method uses image features 

from the visible spectrum, imitating how people detect 

vegetation using color and texture features and allowing 

us the use of a common on-board color camera. The 

benefit of this approach is that the same camera can be 

used for other computer vision tasks which require color 

images recorded from within a moving vehicle. It should 

be made clear that many publications mentioning 

successful vegetation detection often indicate some very 

specific species of vegetation or a very limited dataset. 

And these approaches are then just used for robots 

operating in a specific environment or for satellite images 

but not for roadside vegetation detection using a camera 

mounted on a vehicle. Due to different goals, those 

methods cannot be directly compared to our method for 

detection of vegetation. 

A brief overview of some proposed methods for 

vegetation detection is given in the second section of this 

paper. Our approach is introduced in the third section 

where feature selection and classifier training is 

described. Our methods results will be presented in the 

fourth section. Conclusions and future work are presented 

in the last section of this paper. 
 

II. RELATED WORK 

People easily detect vegetation on the basis of typical 

visual characteristics such as color, texture and shape. 

Often researchers try to mimic the human visual system 

when developing methods for automatic detection of 

vegetation. Studies have shown that there is valuable 

information for vegetation detection in the spectrum 

invisible to the human eye and therefore, systems for 

detecting vegetation can be divided into two groups: 

 Systems based on the visible spectrum 

 Systems based on the invisible spectrum. 

 

Systems based on visible spectrum use color and/or 

texture features. Using only color as a feature can give 

good results but objects of the same color as vegetation 

(e.g., green car) are falsely detected. Such objects can be 

distinguished from vegetation using additional texture 

features. A green car does not have a strong texture while 

the texture of vegetation is unstructured and turbulent. 
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Some researchers use LiDAR (Light Detection And 

Ranging) sensors which give information about the 3D 

structure of the scene for calculating texture features. 

Nguyen et al. use a sliding cube across the 3D-point 

cloud in space to capture the local point statistics 

features. For every sliding cube they calculate a positive 

definite covariance matrix and extract the principle 

components (eigenvalues and eigenvectors) of that 

matrix. The relative differences of the three eigenvalues 

indicate a spatial structure. They segment the 3D-point 

cloud into three classes: surfaces, linear structures and 

porous volumes (foliage grass, tree canopy) [6], [9]. It 

can be argued that using only 3D-data can't result in a 

robust detection of vegetation because no color 

information is used. Therefore, Nguyen et al. address the 

2D-3D fusion approach which combines 2D-3D 

information for vegetation detection [6]. For 2D features 

they use mean and standard deviation of brightness and 

color, and the difference of histograms [6]. These features 

are used to train a SVM (Support Vector Machine). The 

problem with this approach is mapping the 2D and 3D 

information because they are obtained by two different 

sensors. For this in [6] they use a coarse calibration 

method. This approach is time consuming and it should 

be used when time is not a criteria [9]. Liu et al., in a 

similar way, are using a combination of 2D and 3D 

features. The feature vector consists of the height 

calculated from the 3D space obtained with LiDAR, and 

the H and S components obtained by converting RGB 

(Red, Green, Blue) to HSV (Hue, Saturation, Value) 

color space [3].  

Except for navigation, detection of vegetation is also 

used to improve the quality of video, or TV images. In [4] 

and [11] authors used texture features and color 

components from the YUV color space as color features. 

After detection of grass in video sequences they enhance 

the image by changing the color or brightness of pixels in 

that segment. 

Using features from the visible spectrum has some 

problems (leaves change color, green cars, different 

illumination scenes, etc.) and that is why researchers 

started using features from the invisible spectrum. This 

idea was present for many years in remote sensing where 

researchers found that chlorophyll rich vegetation has a 

high reflectance in NIR part of the spectrum and can 

clearly be distinguished from the sky and other objects. 

Using this property of vegetation many different features 

can be calculated which are called Vegetation Indices. 

Mostly used is NDVI (Normalized Difference Vegetation 

Index) [8]. 

Although NDVI has been successfully used in 

remote sensing the work of Bradley et al. [1] has shown 

that there is a drastic difference between the view-points 

of a satellite and an autonomous ground vehicle where 

there are more problems typical for on-ground recordings 

such as shadow, shining and underexposure effects.  

Taking that into consideration and wanting to avoid time 

consumption needed for calibration and LiDAR scanning 

Nguyen et al. developed a modified vegetation index 

MNDVI [9] which they use as a feature for vegetation 

detection and all they need is NIR intensity and color 

information. In [8] a combination of vegetation indices 

with color and texture features is used for vegetation 

detection. First, by setting a threshold for NDVI and 

MNDVI they obtain pixels rich in chlorophyll. These 

pixels are seeds for spreading algorithm that follows. For 

each seed pixel distance in color and texture between the 

seed pixel and his neighbors is calculated. 

Systems based on invisible spectrum require 

equipment for recording NIR images and systems based 

on visible spectrum that use LiDAR for feature extraction 

need an additional 3D scanner.  

We require no additional sensors but a single color 

camera for data acquisition so the features that will be 

used for detection are from the visible spectrum only. 

 

III. METHODOLGY 

In this section we describe our method for detecting 

roadside vegetation using only features from the visible 

spectrum which does not require any additional 

equipment except a common color camera mounted 

onboard. Our method for vegetation detection comprises 

of three steps: 

1. extraction of selected features, 

2. pixel-based classification and 

3. postprocessing. 

 

To the best of our knowledge there is no publicly 

available database that could be used for our application. 

That is the reason we made our own database for testing 

and all results presented in this paper were obtained using 

this database. The database was recorded using a High 

Definition Camcorder Canon XF100 from a moving 

vehicle. The videos have been recorded in daylight at 

different times of the day to include different lighting 

conditions. The database includes different traffic 

scenarios including roadside vegetation in various 

conditions. Currently our database contains 270 images 

extracted from the recorded video sequences, each having 

1920x1080 resolution. These images were manually 

segmented into vegetation and non-vegetation regions. 

The intended use of our method requires that exact 

contours of each vegetation region are detected so we 

perform per-pixel classification into vegetation or non-

vegetation classes. 

A. Feature extraction 

Features that we extract from color images to detect 

vegetation are color and texture features. 

 

1) Color features 

Human perception of color is one of the most 

important visual elements which help us visually 

recognize different objects. Color is an important 

descriptor of vegetation because vegetation doesn't have a 

specific shape but is usually represented by green, orange 

or yellow color. Transferring this human ability to a 

computer algorithm is far from simple. One major 

problem is the change in intensity and color in different 
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light conditions. This usually doesn’t pose a problem for 

the human visual system but a change in luminance can 

cause a significant change in image features. 

Some authors consider using different color spaces for 

color features (e.g., HSV [3], YUV [4], [11]), while 

others take into account the mean and standard variation 

values of intensity and color [6]. In [3] they use only H 

and S components, ignoring the luminance component V 

so their feature set would be less sensitive to light 

changes in the scene. 

Taking this into account the first step was deciding 

which color features would be most suitable for our 

problem. Three color spaces commonly used in published 

vegetation detection methods were used in our test: RGB, 

HSV and CieLAB. We didn't test YUV color space 

because YUV is used for a specific analog encoding of 

color information in television systems and the only 

reason it is used in [4] and [11] is because they used it for 

TV image enhancement. CieLAB was added for testing 

because it is designed to mimic human perception of 

color. Additionally, we tested only the H and S 

components excluding the lightness from HSV and only 

A and B components excluding the L component from 

CieLAB.  

We used five different feature vectors containing 

different color features to train a SVM classifier with 

linear kernel. This classifier was used only in this stage of 

testing to evaluate how appropriate each feature vector is 

for our problem. 

To properly evaluate how each of our color features 

will generalize to an independent data set we use 10-fold 

cross-validation to measure the performance and to 

validate our results. The results are shown in Table I. 

From these results we conclude that excluding the 

lightness component from the feature set does not affect 

the results drastically. Slightly better performance can be 

seen when using the lightness component with color 

information, i.e., better accuracy is achieved using HSV 

and LAB then HS and AB features respectively. The 

second conclusion we draw from Table I. is that RGB and 

LAB color spaces perform similarly and are giving better 

results compared to HSV. Vegetation color should 

theoretically be green in HSV color space under most 

different environment conditions. In reality, this is not 

always true for scenes containing sky or varying lighting 

conditions (shades, overexposure, and underexposure). 

Low intensity of the value V in HSV color space tends to 

turn the color of image to red, red brown, etc [6]. And 

that is why using HSV color space has more false 

positive errors where red objects in scenes are detected as 

vegetation. On the basis of conclusions previously 

presented, we decided to use RGB color components as 

color features. 

 

2) Texture features 

Simple color features lack discriminative power 

required for our problem where non-vegetation objects 

may have colors similar to vegetation like illustrated in 

Fig. 2 b.. Additionally when dry vegetation, which takes 

on shades of yellow and red, is added to the training set, 

the number of falsely detected objects increases. To solve 

this problem we added texture features to the feature 

vector. 

There are many different methods for calculating 

texture features in images and choosing one is a difficult 

task. Knowing that vegetation is diverse and that 

vegetation regions in images contain more information 

than homogeneous surfaces, we decided to use entropy as 

a texture feature. Entropy is a statistical measure of 

randomness and it can be described as a measure of the 

amount of disorder in a system. For images it can be 

expressed as a spread of states (gray levels) which the 

individual pixel can adopt. If pixels in an image, or in a 

block of an image, have the same values the entropy is 

zero and if an image (or a block) contains pixels changing 

in unexpected ways the entropy is high. We expect that 

vegetation region in an image have high entropy. 

The entropy H of an image is defined as [12]: 

Where M is the number of gray levels and pk is the 

probability associated with gray level k.  

B. Feature ranking 

Using the entropy of the grayscale image did not yield 

better performance so calculating entropy in different 

color spaces was considered. Color spaces taken into 

consideration were the same ones used for testing color 

features. There are a lot of possible combinations of color 

features and entropy in different color spaces that we 

could use as a feature vector for testing. To find the best 

one we used feature ranking as a filtering method where 

all these features are ranked, and based on the calculated 

rank we choose the best one.  

To understand the influence of features on the system 

or even if the number of features is to large feature 

ranking is a good method to get baseline results and to 

assess features individually [13]. We created a feature 

vector that contains our selected three color features and 

9 texture features that are entropy calculated for R, G, B, 

H, S, V, L, A and B components of the corresponding 

color space models. Total number of features is 12. 

Twelve features is not too much to handle for any kind of 

feature selection, but feature ranking is a good filter 

method and a good preprocessing step independent of the 

choice of the predictor [13]. The goal of using any kind 

of filtering of features is to eliminate possible outliers. 

Ranking was done using Wilcoxon rank sum test which is 

a nonparametric test for equality of population medians 

of two independent samples [14]. A nonparametric test 

was used because they don't assume normal distributed 

classes and our samples were tested and showed that they 

are not normally distributed. 

TABLE I.  COMPARISON OF DIFFERENT COLOR SPACES USED FOR 

VEGETATION DETECTION 

 Feature vector 

 RGB LAB HSV HS AB 

Accuracy 92,6873 92,767 87,3196 87,1123 91,1518 
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Variable ranking makes use of a scoring function 

computed from the input variables (calculated features) 

and output variables (class assignment). For this test the 

scoring function is the rank sum statistic calculated for 

every feature in the feature vector. By convention, we 

assume that a high score is indicative of a valuable 

variable [13].  

This test was repeated 10 times so that statistical 

significance can be established. For each of the ten 

different iterations, R, G and B features were always the 

three top ranking features followed by entropy calculated 

for saturation (S component of HSV color space). This is 

the only entropy that was mostly top ranked while others 

varied drastically from test to test. For this reason we 

added only this entropy to our feature vector. 

C. Training the classifier 

SVM is a well known supervised learning algorithm 

used for classification and in this paper it is used to 

discriminate vegetation and non-vegetation. An SVM is 

trained with a set of training examples each marked as 

belonging to one of two classes, in this case, vegetation 

and non-vegetation. Positive training examples were 

selected randomly from hand segmented vegetation 

regions in images and negative examples were also 

selected randomly but we made sure that different 

problematic objects (green, red, and yellow cars, green T-

shirt of a pedestrian, yellow stripes on the road, etc.) are 

present in the negative set so the classifier would be 

trained on these examples too.  

Selecting the training data is a very important step 

because all further classification is dependent on the 

trained model. Using only green vegetation for training 

makes a classifier that detects green vegetation but 

doesn't detect vegetation that is yellow or red (dry 

vegetation) (Fig. 1.) or different species of vegetation. 

Adding dry vegetation to the training set makes a 

classifier that detects dry vegetation but it detects more 

false objects as vegetation including yellow and red 

objects (and not only green objects).  

After training examples are selected the SVM training 

algorithm builds a model that assigns new examples into 

one category or the other [15]. 

Our database contains 270 images of resolution 

1920x1080 which presents 1920*1080*270 pixels 

available for training and testing the classifier. A smaller 

sample needs to be selected because training an SVM 

with a large number of samples can lead to overfitting 

and a very complex model can be built which can be time 

consuming during classification. 

There are various recipes for calculating the required 

sample size which require knowledge of the variance or 

proportion in the population, the maximum desirable 

error, as well as the acceptable Type I error risk 

(confidence level).  

It is possible to construct a table [16] that suggests the 

optimal sample size – given a population size, a specific 

margin of error and a desired confidence interval. Based 

on the table from [16] we found that the best sample size 

is 4000 (2000 samples representing vegetation and 2000 

samples representing non-vegetation). These 4000 

samples are chosen randomly. We have tested the 

algorithm using a greater number of samples but it only 

increased the computational time and it didn't improve 

accuracy. 

 

D. Postprocessing 

Classification is done for every pixel in an image. The 

resulting image with two classes marked often has some 

pixels marked as vegetation inside a non-vegetation 

region and non-vegetation pixels inside a vegetation 

region. It is safe to assume that pixels, or groups of pixels 

surrounded by vegetation also belong to vegetation. Also, 

solitary pixels or small groups of pixels surrounded by 

non-vegetation is often non-vegetation but is 

misclassified because it is too similar to underexposed 

vegetation (shadows under cars or parts of asphalt) or it 

has yellow reflectance (dry vegetation is mostly yellow). 

These gaps and solitary pixels can be removed after 

classification using a combination of morphological 

operations on the image.  

In the postprocessing stage of our method we use 

morphological opening. The morphological open 

operation is an erosion followed by a dilation, using the 

same structuring element for both operations [17]. After 

opening further improvement was done by additionally 

removing solitary groups of pixels of certain size (for 

which we presume that are misclassified non-vegetation 

pixels) followed by filling up patches of certain size 

misclassified as non-vegetation (surrounded by 

vegetation).     

IV. EXPERIMENTS AND RESULTS 

To find the optimal parameters for our method we 

tested several options for every aspect and choose the 

ones that gave the best accuracy.  

Entropy is calculated for every pixel taking into 

account its neighborhood. The neighborhood size is a 

changeable variable. We tested four block sizes: 7x7, 

9x9, 11x11, and 13x13. Experiments showed that the 

optimal neighborhood size is 9x9 (the smaller one 

showed worse accuracy, while the bigger ones did not 

improve accuracy). For training and classification, beside 

the linear kernel, we tested quadratic and radial kernels to 

take advantage of SVMs kernel trick and Cover’s 

theorem. The best classification accuracy was obtained 

using radial basis SVM. For postprocessing, three 

variables have to be set: the structuring element, size of 

patches to remove, and size of patches to fill. We have 

used a circular structuring element with 5 pixel radius. At 

this step we presume that vegetation parts of an image are 

well connected and those parts in the image are large so 

 
a) 

 
b) 

Fig. 1. Detection using: a) only green vegetation for training, b) all 
vegetation for training 

 

MIPRO 2014/CIS 1457



we remove the ones that are less than 3000 pixels and 

filling was done for patches less than 500 pixels big. The 

small value of 500 was used because there are parts of 

roadside vegetation that have utility shafts that are small 

and any bigger size of 500 would misclassify these parts 

as vegetation (Fig. 2 b. and c., Fig. 3 b. and c.). 

Adding texture features improved detection in 

problematic images. With these features the green objects 

in Fig. 2 a. are much better classified as non-vegetation 

seen in Fig. 2 c. compared to Fig. 2 b. where only color 

features were used. Also, the yellow stripes on the road 

were falsely detected as vegetation when only color is 

used as a feature (Fig. 2 b.) but adding texture improved 

detection (Fig. 2 c.). In Fig. 2 c. misclassified solitary 

pixels and groups of pixels can be seen which we 

improve using postprocessing (Fig. 2.d.). 

For final testing of our method we divided our 

database into training and testing set. Training set 

consists of 180 images which is 2/3 of the total number of 

images in the database, and from this set we are randomly 

choosing 4000 pixel samples for training. The remaining 

90 images were the testing set, and all their pixels were 

testing samples. Because we select our training samples 

from the training set randomly we must repeat the 

selection process to exclude the possibility of choosing 

“the perfect” training samples and presenting statistically 

insignificant accuracy. We ran 10 iterations of training 

and testing, every time randomly selecting the training set 

and achieved average accuracy of pixel classification is 

94.995%. We used high definition images in our training 

and testing and because of that the classification is 

somewhat time consuming but at this stage of our 

research that is not a concern for us as we are not focused 

on real-time performance. 

Some results of vegetation detection using the method 

presented in this paper are shown in Fig. 3.   In Fig. 3 a. 

and b. more examples of green objects in scenes correctly 

detected as non-vegetation can be seen. In Fig. 3 c. – e. 

we see good detection in different traffic scenes, while 

good performance in detecting vegetation in shade can be 

seen in Fig. 3 f. - h. Also good detection is presented in 

underexposure and overexposure conditions (Fig. 3 i. and 

j. respectively). In Fig 3 k. and j. we can see poorer 

detection results. In Fig 3 k. parts of the yellow car are 

still detected as vegetation even though we included these 

examples in the training set. This color is too similar to 

dry vegetation examples in the training set and because 

entropy is high over the edges the classifier decided that 

this is vegetation. In image Fig 3 j. vegetation that is far 

from the camera is not detected due to a lack of details in 

that part of the image, combined with a color deviating 

from green. Parts of the parked dark car are also detected 

as vegetation due to green reflections on its hull.  

 
 

 

 
 

 

 
 

 

 
 

 
a) b) c) d) 

 
 

 

 
 

 

 
 

 

 
 

 

e) f) g) h) 

   
a) Original images 

   
b) Detection uing color features only - green and yellow objects detected as 

vegetation 

   
c) Detection using color and texture features 

   
d) Result of vegetation detection after postprocessing 

Fig 2. Results of vegetation detection for problem images 
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V. CONCLUSION 

In this paper we present our method for detecting 

roadside vegetation using only features from the visible 

spectrum. This approach allows us to use common multi-

purpose color cameras, and we are using both color and 

texture features. Based on our experiments, RGB color 

space proved to be the optimal choice for our color 

features. In the similar manner, we have selected entropy 

as our texture feature. We require a texture feature 

because color features alone were insufficient to solve 

problems with common situations where green non-

vegetation objects occur in images. Entropy has mostly 

solved the problem of false positive green objects, but to 

further improve detection results we have implemented a 

post-processing step based on morphological operations. 

We have compiled our own data set for training and 

testing, with special attention paid to the training data set. 

It was compiled from random images and from several 

especially problematic images. The classifier we have 

used is SVM with radial kernel. We have obtained 

promising experimental results, and for our future work 

we plan to implement complex texture features from the 

frequency domain to increase accuracy. Real-time 

execution was not in the focus of presented research so 

current version of our vegetation detection method is not 

optimized for speed. 
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Fig. 3. Results of detection using the method presented in this paper (top – original image, bottom – result of detection) 
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