
Performance-Occupation Trade-off Examination

in Custom Processor Design

Danko Ivošević, Nikolina Frid

Faculty of Electrical Engineering and Computing,

Department of Electronics, Microeletronics, Computer and Intelligent Systems

Zagreb, Croatia

danko.ivosevic@fer.hr, nikolina.frid@fer.hr

Abstract - Trade-off between execution time and resource

occupation arise in all kinds of digital system designs. Here

we present such relation for FPGA-based custom processor

design. Usually, the optimal tradeoff is directed by device

sizing on all scales of the design, but for FPGA device, as

predefined hardware platform, it is more focused on

comparison of existing platforms organizations. The

customization of processor architecture as a point of design

performance improvement is usually focused on selection of

parameter set that governs the most the design

characteristics.

In this paper, the focus is on processor architecture

datapath with predefined design template and relationship

of its structure to final FPGA implementation it maps to.

For purpose of evaluation of multiple design at the same

time, the appropriate software flow is applied to construct

the design space based on constraining of datapath

functional units operation types. The data are collected

throughout the whole design flow starting from input

control and data flow characteristics of the application and

ending with FPGA implementation data. The analysis of the

design flow showed dependence of final implementation on

datapath structure and its components complexities.

I. INTRODUCTION

As Moore’s law is predicting for over a 50 years now,
the miniaturization of electronic devices is constant, [1].
During this period great improvement in performance, i.e.
speed, is achieved also, but lately the system designers
community turned to finding other possibilities for future
design advances. Multiprocessor System-on-Chip
(MPSoC) became a paradigm in embedded system world
for distributed cooperation of existing hardware cores
since increase in single core speeds appeared to be more
demanding task to accomplish in short period, [2]. During
advances in submicron scales the phenomena as parasitic
capacitances and inductances had always been an open
issue to describe and neutralize during very large scale
chip integration, [3, 4]. The tradeoff between system size
and performance was always actual challenge to handle
during system design, independent of design methodology
and level of abstraction the designer had been looking. It
arises in everyday embedded system design that is trying

to satisfy design functionality in all kinds of environment
usually with exact sizing and performance goals. It is valid
not only for isolated hardware components the system is
composed off, but also for their communication and
interface to human what includes software and
communication protocols embodied within the system.
From the point of system-level design, that is motivated
by controlling the whole design process from a high level
perspective and targeting specific functionalities under
strict design constraints, describing the expected tradeoff
means even a harder task of predicting system behavior in
earlier design phases.

Our previous work coped with processor based custom
design. Especially our development corresponds to
hardware synthesis or high level synthesis (HLS) as a one
of system level design topics, [5]. High level synthesis
usually assumes specification in programming language
that is not of specialized type, but familiar to more
potential users. C code is usual choice because of its
acceptances in computer engineering community and
easiness in presentation of application control and data
flow, [6, 7].

Previous work in high level synthesis field, as in
custom processor design we assumed, shows this task as
very acceptable when trying to minimize overall design
time. Also, the fact of coping with many questions that
direct the final solution appeared to be very challenging,
especially in early development phases. Every such design
process was, besides the specification itself, governed
with some kind of directives and constraints that describe
target platform and execution environment features. The
common goals are design minimization and performance
maximization. As these goals are in contraposition for
practically every digital design, the design space
exploration takes place as natural assumption and
consequence of research that governs the design process.

The foundation of custom processor assumed in this
paper is the No-Instruction-Set Computer (NISC) concept,
where datapath of processor architecture is fully
customizable according to needs and wishes of the
corresponding toolset user, [8, 9]. Since application
specification assumed C coded algorithm our and some
previous work effort was on automation of datapath
design out of arbitrary C code written by user, [10-12].
During corresponding research the appropriate design

This work was supported by research grant No. 036-0362980-1929

from the Ministry of Science, Education and Sports of the Republic of

Croatia.

1258 MIPRO 2014/CTS

flow was developed with several transformations of input
C code until final FPGA implementation is achieved. The
idea behind such development was in automation of the
design that shortens design cycle time and eases the
overall designer’s work as are the light motives of
Electronic Design Automation (EDA) approach. It
assumes all kinds of software support for digital system
design starting from high level specification to low level
phenomena description. Development of software that
supports embedded system design became dominant in
designer’s effort during last decade, [13].

One of the usual steps towards design size
optimization that was recognized in HLS, and also in our
approach, was in reducing the interconnect complexity by
reduction of global interconnect seen through reduction of
multiplexer inputs, [14].

FPGA device is the target hardware platform for many
HLS tools and for our approach. It proved itself as
appropriate platform for diverse design domains and
development flows, [15]. The exploration of FPGA area-
delay tradeoffs is however a specific task as many families
of such devices are available at the market today. In fully
custom hardware design the device sizing impact is the
key characteristic that affects the signal delay because of
electrical effects, while FPGA is predefined device to
work with. Therefore, the comparison and choice of the
appropriate device is the specific task when having
different architecture organization, transistor and LUT
sizing, [16].

In this paper the exploration of the design space does
not have an approach of devices or components sizing
variations, but variations from the point of processor
datapath structure when mapped to the predefined
hardware platform. On the side of processor
customization, predicting the best design tradeoff
primarily has a meaning of selecting the set of most
meaningful design parameters [17], and here we vary the
functional unit types as a base of datapath design.

In Section II the background of design space
exploration is given, and in Section III the motivational
example for examining occupation-performance tradeoff
is presented. Section IV describes the principle of forming
and analyzing the solution space and the results are
illustrated in Section V. Section VI gives final
conclusions.

II. BACKGROUND

The foundation for design space exploration is in
processor datapath design algorithm, [12]. It is situated as
the central point of the design flow where C code
specification is conducted to FPGA implementation.

Basically, the datapath is designed with integration of
application control flow blocks into unique solution.
Before that, every block of the control flow is processes
by its data dependencies to form appropriate datapath that
enters the final integration into unique datapath. The
Control and Data Flow Graph (CDFG) is used as the
intermediate representation that exposes those two aspects
of every application, [18]. The datapaths that belong to
control flow blocks consist of functional units performing

operations of every block and registers encapsulated
within register files holding variables for those operations.
Therefore, the integration of blocks contributions relies on
their functional units. The functional units are added to the
final datapath along with register files they interconnect.
During this process, multiplexers are instanced at
functional units and register files input ports if more than
one connection enters any of those ports.

During the final datapath integration the designer can
interfere with setting the top numbers of functional units
per operation types allowed in the final datapath. When
new functional unit is fetched from the processed block
datapath it is firstly tested if its operation type count in the
final datapath exceeds the limit set by the designer. If it
does not exceed this limit a new functional unit is
instanced into the final datapath, otherwise not. Thus the
diverse datapaths can be produced for same application
what naturally reflects in different end implementations.

III. MOTIVATIONAL EXAMPLES

Comparison of diverse resulting designs is presented
in Table I as motivational design example. The application
beneath is SHA-1 encryption algorithm, [19, 20]. The C
code of this algorithm is not very long but has quite

TABLE I. COMPARISON OF DESIGNS

Characteristic Cnt1 CntMax NoCnt

Adders 1 1 14

Subtractors 1 1 1

Shifters 1 1 5

ANDs 1 2 4

ORs 1 2 7

XORs 1 1 3

NOTs 1 1 1

Comparators 1 1 6

Assigns 1 1 10

RFs 26 27 47

 RFs by register

count

10-6-6-2-

1-1

11-6-7-1-

1-1

44-0-0-1-

1-1

Muxes 35 41 61

 Mux widths
6-10-13-5-

1

8-18-10-3-

2

23-23-14-

1-0

D

a

t

a

p

a

t

h

Interconnect lines 235 248 354

DM depth 202 198 198

CW width 217 224 242

Exec. cycles 3850 3770 3770

RAM36_EXPs 11 11 13

Slices 753 856 1097

Slice Registers 310 343 1149

Slice LUTs 2797 3072 3910

Min. period 15.2 ns 14.0 ns 10.5 ns

I

m

p

l

e

m

e

n

t

a

t

i

o

n
Max. frequency 65.9 MHz 71.7 MHz 95.0 MHz

MIPRO 2014/CTS 1259

(a) (b)

Figure 1. Correlation between occupation area and execution time under simple constraining variations

Figure 2. Design Space Exploration Flow

complex control flow consisting of 31 blocks. Moreover,
it consists of nine different operation types: addition
(ADD), subtraction (SUB), shifting (SHIFT), logical
operations AND, OR, XOR and NOT, comparing
(COMP) and assignment of values (ASSIGN). We
examine its datapath design with some “milestones”
defined by different operation type constraining styles:

• Cnt1 as the design with limit of only one instance
of every operation type.

• CntMax as the design with limits set to values
calculated after analysis of all basic block
schedules. Those values represent minimum
numbers of all operation types needed to allow the
full execution parallelism within blocks. For
SHA-1 those values are two for logical operations
AND and OR, and one for all others.

• NoCnt as the design without imposed limits on
any operation type.

The designs in Table I are evaluated according to
datapath and FPGA implementation features. The first
nine rows of correspond to functional units instances of all
operation types. For first two constraining cases they
clearly correspond to set limits on allowed operation
types, while for third they actually show the summed
numbers of all blocks functional units. For last column
there are no reuse of any functional unit or register, i.e.
there is much redundancy in the datapath. There are much
more functional units and register files and, consequently,
multiplexers and interconnect lines. The first row below

that describing register files count (RFs) shows
distribution of registers across register files. Thus, there
are 10 single registers (or “register file with single
register”), six register files with two and three registers
(each), two register files with four registers and one
register file with five and six registers (each) for Cnt1, and
even 44 single registers for NoCnt case. The row Mux
widths shows the numbers of multiplexers per widths in
format Mux2-Mux4-Mux8-Mux16-Mux32. As expected,
the datapaths with less components use multiplexers with
more inputs (in average) than those with more component
redundancy. On the side of implementation the slices
occupations of the first two are 20-30% smaller than the
last one, but they are 30-45% slower than this last one.

Elaboration that is started by Table I data is further
extended by establishing a set of constraints with clear
tendency of increasing datapath sizes. Fig. 1 shows
outcomes of two such constraining approaches. First, in
Fig 1a is extension of Cnt1 constraining style where Cnt2
to Cnt8 denote limiting the operation types to two to eight
instances of every type. The second approach in Fig. 2
extends the CntMax constraining style where CntMaxX2
to CntMaxX5 denote limiting the operation types to
double, triple, quadruple and quintuple numbers of every
type compared to CntMax numbers. Graphs in Fig. 1
display existence of tendencies of rising occupations and
performance looking from left to right.

Therefore, to investigate if such tendencies will be,
and in what extent, recognized as common relation for our
processor based design we implemented the software
support that will in short time produce a range of diverse

1260 MIPRO 2014/CTS

solutions for analysis.

IV. DESIGN SPACE EXPLORATION PRINCIPLE

The design flow presented in [12] is supported with
several scripts that automate generation of diverse final
implementations, Fig. 1. Variations of allowed operation
types numbers are generated for running datapath
generation tool ArkBuilder. This is followed by control
memory generation with GenCM and Xilinx
CoreGenerator tools and Verilog implementation file
construction with ProcSynth tool. Generated control
memory cores and implementation file are then used to
synthesize and simulate the final FPGA implementation.
This flow is covered with several report types that serve as
sources for deeper design analysis. Those are reports on:

• Datapath.

• Execution

• Occupation & Performance

Datapath reports include data on components and
interconnect that form the datapath. Components data
include data on component types: functional units,
registers, register files, multiplexers, data memory, control
unit. Functional units can be of 11 different types what is
determined by operation type they perform. Register files
can consist of any number of registers and registers can
store any number of variables. Multiplexers can be of
different widths (2, 4, 8, 16, etc.), while interconnect lines
connect different components.

Execution report is generated during design simulation

and has information on execution cycle count.

Occupation and performance reports assume files
generated from Xilinx ISE implementation. Those include
place and route (.par file), timing (.twr file) and power
(.pwr file) data.

Therefore, all further analysis is based on those three
report types.

V. RESULTS

We generate three groups of cases according to
different constraining levels:

• ordered12 resulting from variations of every
operation type constraint between one and two.
As there are nine different operation types, this set
consists of 512 cases.

• random14 as randomly generated 64 cases of
constraints with minimum of one and maximum
of four allowed instances of all operation types.

• random17 as randomly generated 520 cases of
constraints with minimum of one and maximum
of seven allowed instances of all operation types.

Therefore, the complete solution set consists of 1096
datapaths and implementations, and Fig. 3a shows the
relationship between occupation (in FPGA slices) and
execution time for the complete set. The data are sorted by
increasing occupation and show tendency of performance
improvement with greater occupations, however with
significant variations. This tendency is more emphasized

(a) (b)

Figure 3. Tradeoff between occupation area and execution time: (a) without grouping, and (b) when grouped by 10 constrained cases

(a) (b)

Figure 4. Dependence of execution time on: (a) component types shares (b) multiplexer widths shares

MIPRO 2014/CTS 1261

when solutions are grouped by 10 as in Fig. 3b. The same
relationship between occupation and execution time when
looked for constituents of the data set, i.e. separated
ordered12, random14 and random17 groups, appears to
differs only in steep of rising occupation points. It is
steeper for cases with more relaxed constraints, i.e.
random14 and random17 (not presented because of
limited space).

Fig. 4 illustrates the solution space data grouped by 10
solutions where solutions are sorted by rising execution
time. Starting points assume lower and ending points
assume greater execution times, i.e. left sides of the graphs
represent solutions with better performance (not explicitly
drawn because of the illustrations clarity). Fig. 4a shows
dependence of the execution time on component types,
functional units, register files and multiplexers, shares in
total component numbers. It can be noted that more
functional units allow better performance as it is the main
datapath design constituent allowing higher level of
parallelism. However, it is not the only point of influence
on execution time that is noticed. Greater number of
functional units, even when having some redundancy, is
better for performance when analyzing timing
relationships between designs. The designs with more
functional unit instances have more other component
types also, i.e. register files and multiplexers. Their total
count is greater, but their structures are simpler, i.e.
register files have (in average) less registers and
multiplexers use fewer inputs. Fig. 4b illustrates the
execution times dependency on number of multiplexers
per width showing their shares in total multiplexers count.
The most significant in this graph is the drop of Mux2
share that is happening along with performance drop.
Reciprocally the other multiplexer widths types shares are
greater when moving to the right of the graph what
confirms the conclusion that components simplicity
significantly influence the performance.

During system design it is usual to employ the concept
of resource sharing not only by reuse of registers, but also
the by use of functional units that can accomplish different
operation types. Using such combined functional units
reduces their overall number and numbers of other
components that serve them by providing and storing data.
Consequently it reflects in area occupation reduction.
Therefore, the parallel solution space for ordered12
solution set is formed by allowing combinations of

different operation types within the same functional unit.
Fig. 5. illustrates the relationships of area occupations (a)
and execution times (b) between the cases with different
functional unit sharing policies. With respect of area
occupation it is noticed that in 92,5% of cases occupation
is smaller when functional units sharing is allowed, but in
100% of such cases the execution speed is worse. This
also leads to conclusion that complexity of datapath
components is an important parameter for optimality of
solution space as more complex units, i.e. combined
functional units, have negative impact on timing and,
consequently, design execution time.

The simulation and implementation were
accomplished in Xilinx ISE 14.3 Design Suite for Virtex
XC5VSX50T device, [21, 22].

VI. CONCLUSIONS

The tradeoff between digital system occupied area and
performance is open issue in every design process. Here
we examined the design space evaluation for custom
processor design that is based on automated C code
algorithmic specification. This task is highly dependable
on the quality of target hardware platform description and
its correspondence with early design phases. The
knowledge of implementation optimization principles is
the to final solution occupation and performance
estimation. Quality design space exploration and precise
prediction of area-performance behavior depends on many
parameters. Here we used control over functional units
types to form the design space.

As the part of the overall custom processor design
flow, we used proprietary IP tools for achieving FPGA
device implementation so we could direct the design focus
between area and performance only partially. However,
we established the structure for design space exploration
of custom processor design based development by
constraining the functional unit component instantiation as
a base datapath design component. Design space data
collecting and reporting time was primarily dependable on
particular tools run times and did not introduce noticeable
time overhead.

We noticed that examined tradeoff is only partially
impacted by execution cycles counts, but more on
complexity of components.

(a) (b)

Figure 5. Comparisons of: (a) occupation area, and (b) execution time data with dependence on functional units sharing for ordered12 set

1262 MIPRO 2014/CTS

Future work will be on exploiting established solution
space to find best performance solution within strict
occupation area constraint. Also, another point of future
research interest is datapath interconnect reduction based
on reduction of multiplexers widths to move the
occupation-performance tradeoff focus closer to
optimality within the solution space.

REFERENCES

[1] C. A. Mack, "Fifty Years of Moore's Law," IEEE Transactions on
Semiconductor Manufacturing, vol.24, no.2, pp.202,207, May
2011

[2] W. Wolf, A. A. Jerraya, G. Martin, "Multiprocessor System-on-
Chip (MPSoC) Technology," IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems , vol.27, no.10,
pp.1701-1713, Oct. 2008

[3] N. D. Arora,, K. V. Raol,, R. Schumann, L. M. Richardson, ,
"Modeling and extraction of interconnect capacitances for
multilayer VLSI circuits," IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, , vol.15, no.1, pp.58-
67, Jan 1996

[4] K. L. Shepard, Zhong Tian, "Return-limited inductances: a
practical approach to on-chip inductance extraction," IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol.19, no.4, pp.425-436, Apr 2000

[5] P. Coussy, D. D. Gajski, M. Meredith, A. Takach, “An
Introduction to High-Level Synthesis,” in IEEE Design & Test of
Computers, vol. 26, no. 4, pp. 8-17, July-August 2009

[6] TIOBE Software, "TIOBE Programming Community Index",
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

[7] SourceForge, "The Transparent Language Popularity Index",
http://lang-index.sourceforge.net

[8] M. Reshadi, B. Gorjiara, D. D. Gajski, “NISC Technology and
Preliminary Results,” Technical Report, University of California,
Center for Embedded Computer Systems, Irvine, August 2005

[9] B. Gorjiara, D. D. Gajski, “Custom Processor Design Using NISC:
A Case-Study on DCT algorithm,” in Workshop on Embedded
Systems for Real-Time Multimedia, pp. 55-60, 2005

[10] J. Trajković, S. Abdi, G. Nicolescu, D. D. Gajski, "Automated
Generation of Custom Processor Core from C Code", Journal of
Electrical and Computer Engineering, Vol. 2012, 26 p., March
2012.

[11] D. Ivošević, V. Sruk, "Automated Modeling of Custom Processors
for DCT Algorithm", Proceedings of 34th International
Convention MIPRO, Opatija, Croatia, pp. 762-767., 2011

[12] D. Ivošević, V. Sruk, "Unified Flow of Custom Processor Design
and FPGA Implementation", Proceedings of International
Conference on Computer as a Tool EUROCON, Zagreb, Croatia,
pp 1721-1727, 2013

[13] C. Ebert, C. Jones, "Embedded Software: Facts, Figures, and
Future", IEEE Computer, Vol. 42, No. 4, pp. 42-52., April 2009

[14] Taemin Kim; Xun Liu, "A Functional Unit and Register Binding
Algorithm for Interconnect Reduction," Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on , vol.29,
no.4, pp.641-646, April 2010

[15] J. J. Rodríguez-Andina, M. J. Mouré, M. D., Valdés, "Features,
Design Tools, and Application Domains of FPGAs", IEEE
Transactions on Industrial Electronics, Vol. 54, No. 4., pp. 1810-
1823, July-August 2007

[16] I. Kuon, J. Rose, "Exploring Area and Delay Tradeoffs in FPGAs
With Architecture and Automated Transistor Design," IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
vol.19, no.1, pp.71-84, Jan. 2011

[17] M. Zuluaga, E. Bonilla, N. Topham, "Predicting best design trade-
offs: A case study in processor customization," Design,
Automation & Test in Europe Conference & Exhibition (DATE),
pp.1030-1035, March 2012

[18] A. Orailoglu, D. D. Gajski, “Flow graph representation,” in
Proceedings of the 23rd ACM/IEEE Design Automation
Conference, pp. 503 - 509, 1986

[19] Secure Hash Standards (SHS). [Online]. Available:
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

[20] C to Verilog. [Online]. Available: http://c-to-
verilog.com/howtos.html

[21] ISE Design Suite - Xilinx,
http://www.xilinx.com/products/design-tools/ise-design-suite

[22] Virtex-5 FPGA Data Sheet: DC and Switching Characteristics,
http://www.xilinx.com/support/documentation/data_sheets/ds202.
pdf

MIPRO 2014/CTS 1263

