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Abstract - Trade-off between execution time and resource 

occupation arise in all kinds of digital system designs. Here 

we present such relation for FPGA-based custom processor 

design. Usually, the optimal tradeoff is directed by device 

sizing on all scales of the design, but for FPGA device, as 

predefined hardware platform, it is more focused on 

comparison of existing platforms organizations. The 

customization of processor architecture as a point of design 

performance improvement is usually focused on selection of 

parameter set that governs the most the design 

characteristics.  

In this paper, the focus is on processor architecture 

datapath with predefined design template and relationship 

of its structure to final FPGA implementation it maps to. 

For purpose of evaluation of multiple design at the same 

time, the appropriate software flow is applied to construct 

the design space based on constraining of datapath 

functional units operation types. The data are collected 

throughout the whole design flow starting from input 

control and data flow characteristics of the application and 

ending with FPGA implementation data. The analysis of the 

design flow showed dependence of final implementation on 

datapath structure and its components complexities. 

I. INTRODUCTION 

As Moore’s law is predicting for over a 50 years now, 
the miniaturization of electronic devices is constant, [1]. 
During this period great improvement in performance, i.e. 
speed, is achieved also, but lately the system designers 
community turned to finding other possibilities for future 
design advances. Multiprocessor System-on-Chip 
(MPSoC) became a paradigm in embedded system world 
for distributed cooperation of existing hardware cores 
since increase in single core speeds appeared to be more 
demanding task to accomplish in short period, [2]. During 
advances in submicron scales the phenomena as parasitic 
capacitances and inductances had always been an open 
issue to describe and neutralize during very large scale 
chip integration, [3, 4]. The tradeoff between system size 
and performance was always actual challenge to handle 
during system design, independent of design methodology 
and level of abstraction the designer had been looking. It 
arises in everyday embedded system design that is trying 

to satisfy design functionality in all kinds of environment 
usually with exact sizing and performance goals. It is valid 
not only for isolated hardware components the system is 
composed off, but also for their communication and 
interface to human what includes software and 
communication protocols embodied within the system. 
From the point of system-level design, that is motivated 
by controlling the whole design process from a high level 
perspective and targeting specific functionalities under 
strict design constraints, describing the expected tradeoff 
means even a harder task of predicting system behavior in 
earlier design phases. 

Our previous work coped with processor based custom 
design. Especially our development corresponds to 
hardware synthesis or high level synthesis (HLS) as a one 
of system level design topics, [5]. High level synthesis 
usually assumes specification in programming language 
that is not of specialized type, but familiar to more 
potential users. C code is usual choice because of its 
acceptances in computer engineering community and 
easiness in presentation of application control and data 
flow, [6, 7]. 

Previous work in high level synthesis field, as in 
custom processor design we assumed, shows this task as 
very acceptable when trying to minimize overall design 
time. Also, the fact of coping with many questions that 
direct the final solution appeared to be very challenging, 
especially in early development phases. Every such design 
process was, besides the specification itself, governed 
with some kind of directives and constraints that describe 
target platform and execution environment features. The 
common goals are design minimization and performance 
maximization. As these goals are in contraposition for 
practically every digital design, the design space 
exploration takes place as natural assumption and 
consequence of research that governs the design process. 

The foundation of custom processor assumed in this 
paper is the No-Instruction-Set Computer (NISC) concept, 
where datapath of processor architecture is fully 
customizable according to needs and wishes of the 
corresponding toolset user, [8, 9]. Since application 
specification assumed C coded algorithm our and some 
previous work effort was on automation of datapath 
design out of arbitrary C code written by user, [10-12]. 
During corresponding research the appropriate design 
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flow was developed with several transformations of input 
C code until final FPGA implementation is achieved. The 
idea behind such development was in automation of the 
design that shortens design cycle time and eases the 
overall designer’s work as are the light motives of 
Electronic Design Automation (EDA) approach. It 
assumes all kinds of software support for digital system 
design starting from high level specification to low level 
phenomena description. Development of software that 
supports embedded system design became dominant in 
designer’s effort during last decade, [13]. 

One of the usual steps towards design size 
optimization that was recognized in HLS, and also in our 
approach, was in reducing the interconnect complexity by 
reduction of global interconnect seen through reduction of 
multiplexer inputs, [14].  

FPGA device is the target hardware platform for many 
HLS tools and for our approach. It proved itself as 
appropriate platform for diverse design domains and 
development flows, [15]. The exploration of FPGA area-
delay tradeoffs is however a specific task as many families 
of such devices are available at the market today. In fully 
custom hardware design the device sizing impact is the 
key characteristic that affects the signal delay because of 
electrical effects, while FPGA is predefined device to 
work with. Therefore, the comparison and choice of the 
appropriate device is the specific task when having 
different architecture organization, transistor and LUT 
sizing, [16].  

In this paper the exploration of the design space does 
not have an approach of devices or components sizing 
variations, but variations from the point of processor 
datapath structure when mapped to the predefined 
hardware platform. On the side of processor 
customization, predicting the best design tradeoff 
primarily has a meaning of selecting the set of most 
meaningful design parameters [17], and here we vary the 
functional unit types as a base of datapath design.  

In Section II the background of design space 
exploration is given, and in Section III the motivational 
example for examining occupation-performance tradeoff 
is presented. Section IV describes the principle of forming 
and analyzing the solution space and the results are 
illustrated in Section V. Section VI gives final 
conclusions. 

II. BACKGROUND 

The foundation for design space exploration is in 
processor datapath design algorithm, [12]. It is situated as 
the central point of the design flow where C code 
specification is conducted to FPGA implementation.  

Basically, the datapath is designed with integration of 
application control flow blocks into unique solution. 
Before that, every block of the control flow is processes 
by its data dependencies to form appropriate datapath that 
enters the final integration into unique datapath. The 
Control and Data Flow Graph (CDFG) is used as the 
intermediate representation that exposes those two aspects 
of every application, [18]. The datapaths that belong to 
control flow blocks consist of functional units performing 

operations of every block and registers encapsulated 
within register files holding variables for those operations. 
Therefore, the integration of blocks contributions relies on 
their functional units. The functional units are added to the 
final datapath along with register files they interconnect. 
During this process, multiplexers are instanced at 
functional units and register files input ports if more than 
one connection enters any of those ports.  

During the final datapath integration the designer can 
interfere with setting the top numbers of functional units 
per operation types allowed in the final datapath. When 
new functional unit is fetched from the processed block 
datapath it is firstly tested if its operation type count in the 
final datapath exceeds the limit set by the designer. If it 
does not exceed this limit a new functional unit is 
instanced into the final datapath, otherwise not. Thus the 
diverse datapaths can be produced for same application 
what naturally reflects in different end implementations. 

III. MOTIVATIONAL EXAMPLES 

Comparison of diverse resulting designs is presented 
in Table I as motivational design example. The application 
beneath is SHA-1 encryption algorithm, [19, 20]. The C 
code of this algorithm is not very long but has quite 

TABLE I. COMPARISON OF DESIGNS 

Characteristic Cnt1 CntMax NoCnt 

# Adders 1 1 14 

# Subtractors 1 1 1 

# Shifters 1 1 5 

# ANDs 1 2 4 

# ORs 1 2 7 

# XORs 1 1 3 

# NOTs 1 1 1 

# Comparators 1 1 6 

# Assigns 1 1 10 

# RFs 26 27 47 

    RFs by register 

count 

10-6-6-2-

1-1 

11-6-7-1-

1-1 

44-0-0-1-

1-1 

# Muxes 35 41 61 

    Mux widths 
6-10-13-5-

1 

8-18-10-3-

2 

23-23-14-

1-0 

D 

a 

t 

a 

p 

a 

t 

h 

# Interconnect lines 235 248 354 

DM depth 202 198 198 

CW width 217 224 242 

# Exec. cycles 3850 3770 3770 

RAM36_EXPs 11 11 13 

Slices 753 856 1097 

Slice Registers 310 343 1149 

Slice LUTs 2797 3072 3910 

Min. period 15.2 ns 14.0 ns 10.5 ns 

I 

m

p 

l 

e 

m

e 

n 

t 

a 

t 

i 

o 

n 
Max. frequency 65.9 MHz 71.7 MHz 95.0 MHz 
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(a) (b) 

Figure 1.  Correlation between occupation area and execution time under simple constraining variations 

 

 

Figure 2.  Design Space Exploration Flow  

complex control flow consisting of 31 blocks. Moreover, 
it consists of nine different operation types: addition 
(ADD), subtraction (SUB), shifting (SHIFT), logical 
operations AND, OR, XOR and NOT, comparing 
(COMP) and assignment of values (ASSIGN). We 
examine its datapath design with some “milestones” 
defined by different operation type constraining styles: 

• Cnt1 as the design with limit of only one instance 
of every operation type. 

• CntMax as the design with limits set to values 
calculated after analysis of all basic block 
schedules. Those values represent minimum 
numbers of all operation types needed to allow the 
full execution parallelism within blocks. For 
SHA-1 those values are two for logical operations 
AND and OR, and one for all others. 

• NoCnt as the design without imposed limits on 
any operation type. 

The designs in Table I are evaluated according to 
datapath and FPGA implementation features. The first 
nine rows of correspond to functional units instances of all 
operation types. For first two constraining cases they 
clearly correspond to set limits on allowed operation 
types, while for third they actually show the summed 
numbers of all blocks functional units. For last column 
there are no reuse of any functional unit or register, i.e. 
there is much redundancy in the datapath. There are much 
more functional units and register files and, consequently, 
multiplexers and interconnect lines. The first row below 

that describing register files count (RFs) shows 
distribution of registers across register files. Thus, there 
are 10 single registers (or “register file with single 
register”), six register files with two and three registers 
(each), two register files with four registers and one 
register file with five and six registers (each) for Cnt1, and 
even 44 single registers for NoCnt case. The row Mux 
widths shows the numbers of multiplexers per widths in 
format Mux2-Mux4-Mux8-Mux16-Mux32. As expected, 
the datapaths with less components use multiplexers with 
more inputs (in average) than those with more component 
redundancy. On the side of implementation the slices 
occupations of the first two are 20-30% smaller than the 
last one, but they are 30-45% slower than this last one. 

Elaboration that is started by Table I data is further 
extended by establishing a set of constraints with clear 
tendency of increasing datapath sizes. Fig. 1 shows 
outcomes of two such constraining approaches. First, in 
Fig 1a is extension of Cnt1 constraining style where Cnt2 
to Cnt8 denote limiting the operation types to two to eight 
instances of every type. The second approach in Fig. 2 
extends the CntMax constraining style where CntMaxX2 
to CntMaxX5 denote limiting the operation types to 
double, triple, quadruple and quintuple numbers of every 
type compared to CntMax numbers. Graphs in Fig. 1 
display existence of tendencies of rising occupations and 
performance looking from left to right. 

Therefore, to investigate if such tendencies will be, 
and in what extent, recognized as common relation for our 
processor based design we implemented the software 
support that will in short time produce a range of diverse 
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solutions for analysis. 

IV. DESIGN SPACE EXPLORATION PRINCIPLE 

The design flow presented in [12] is supported with 
several scripts that automate generation of diverse final 
implementations, Fig. 1. Variations of allowed operation 
types numbers are generated for running datapath 
generation tool ArkBuilder. This is followed by control 
memory generation with GenCM and Xilinx 
CoreGenerator tools and Verilog implementation file 
construction with ProcSynth tool. Generated control 
memory cores and implementation file are then used to 
synthesize and simulate the final FPGA implementation. 
This flow is covered with several report types that serve as 
sources for deeper design analysis. Those are reports on: 

• Datapath.  

• Execution 

• Occupation & Performance 

Datapath reports include data on components and 
interconnect that form the datapath. Components data 
include data on component types: functional units, 
registers, register files, multiplexers, data memory, control 
unit. Functional units can be of 11 different types what is 
determined by operation type they perform. Register files 
can consist of any number of registers and registers can 
store any number of variables. Multiplexers can be of 
different widths (2, 4, 8, 16, etc.), while interconnect lines 
connect different components. 

Execution report is generated during design simulation 

and has information on execution cycle count. 

Occupation and performance reports assume files 
generated from Xilinx ISE implementation. Those include 
place and route (.par file), timing (.twr file) and power 
(.pwr file) data. 

Therefore, all further analysis is based on those three 
report types. 

V. RESULTS 

We generate three groups of cases according to 
different constraining levels: 

• ordered12 resulting from variations of every 
operation type constraint between one and two. 
As there are nine different operation types, this set 
consists of 512 cases. 

• random14 as randomly generated 64 cases of 
constraints with minimum of one and maximum 
of four allowed instances of all operation types. 

• random17 as randomly generated 520 cases of 
constraints with minimum of one and maximum 
of seven allowed instances of all operation types. 

Therefore, the complete solution set consists of 1096 
datapaths and implementations, and Fig. 3a shows the 
relationship between occupation (in FPGA slices) and 
execution time for the complete set. The data are sorted by 
increasing occupation and show tendency of performance 
improvement with greater occupations, however with 
significant variations. This tendency is more emphasized 

  
(a) (b) 

Figure 3.  Tradeoff between occupation area and execution time: (a) without grouping, and (b) when grouped by 10 constrained cases  

 

  
(a) (b) 

Figure 4.  Dependence of execution time on: (a) component types shares (b) multiplexer widths shares 
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when solutions are grouped by 10 as in Fig. 3b. The same 
relationship between occupation and execution time when 
looked for constituents of the data set, i.e. separated 
ordered12, random14 and random17 groups, appears to 
differs only in steep of rising occupation points. It is 
steeper for cases with more relaxed constraints, i.e. 
random14 and random17 (not presented because of 
limited space). 

Fig. 4 illustrates the solution space data grouped by 10 
solutions where solutions are sorted by rising execution 
time. Starting points assume lower and ending points 
assume greater execution times, i.e. left sides of the graphs 
represent solutions with better performance (not explicitly 
drawn because of the illustrations clarity). Fig. 4a shows 
dependence of the execution time on component types, 
functional units, register files and multiplexers, shares in 
total component numbers. It can be noted that more 
functional units allow better performance as it is the main 
datapath design constituent allowing higher level of 
parallelism. However, it is not the only point of influence 
on execution time that is noticed. Greater number of 
functional units, even when having some redundancy, is 
better for performance when analyzing timing 
relationships between designs. The designs with more 
functional unit instances have more other component 
types also, i.e. register files and multiplexers. Their total 
count is greater, but their structures are simpler, i.e. 
register files have (in average) less registers and 
multiplexers use fewer inputs. Fig. 4b illustrates the 
execution times dependency on number of multiplexers 
per width showing their shares in total multiplexers count. 
The most significant in this graph is the drop of Mux2 
share that is happening along with performance drop. 
Reciprocally the other multiplexer widths types shares are 
greater when moving to the right of the graph what 
confirms the conclusion that components simplicity 
significantly influence the performance. 

During system design it is usual to employ the concept 
of resource sharing not only by reuse of registers, but also 
the by use of functional units that can accomplish different 
operation types. Using such combined functional units 
reduces their overall number and numbers of other 
components that serve them by providing and storing data. 
Consequently it reflects in area occupation reduction. 
Therefore, the parallel solution space for ordered12 
solution set is formed by allowing combinations of 

different operation types within the same functional unit. 
Fig. 5. illustrates the relationships of area occupations (a) 
and execution times (b) between the cases with different 
functional unit sharing policies. With respect of area 
occupation it is noticed that in 92,5% of cases occupation 
is smaller when functional units sharing is allowed, but in 
100% of such cases the execution speed is worse. This 
also leads to conclusion that complexity of datapath 
components is an important parameter for optimality of 
solution space as more complex units, i.e. combined 
functional units, have negative impact on timing and, 
consequently, design execution time.  

The simulation and implementation were 
accomplished in Xilinx ISE 14.3 Design Suite for Virtex 
XC5VSX50T device, [21, 22]. 

VI. CONCLUSIONS 

The tradeoff between digital system occupied area and 
performance is open issue in every design process. Here 
we examined the design space evaluation for custom 
processor design that is based on automated C code 
algorithmic specification. This task is highly dependable 
on the quality of target hardware platform description and 
its correspondence with early design phases. The 
knowledge of implementation optimization principles is 
the to final solution occupation and performance 
estimation. Quality design space exploration and precise 
prediction of area-performance behavior depends on many 
parameters. Here we used control over functional units 
types to form the design space. 

As the part of the overall custom processor design 
flow, we used proprietary IP tools for achieving FPGA 
device implementation so we could direct the design focus 
between area and performance only partially. However, 
we established the structure for design space exploration 
of custom processor design based development by 
constraining the functional unit component instantiation as 
a base datapath design component. Design space data 
collecting and reporting time was primarily dependable on 
particular tools run times and did not introduce noticeable 
time overhead. 

We noticed that examined tradeoff is only partially 
impacted by execution cycles counts, but more on 
complexity of components.  

  
(a) (b) 

Figure 5.  Comparisons of: (a) occupation area, and (b) execution time data with dependence on functional units sharing for ordered12 set 
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Future work will be on exploiting established solution 
space to find best performance solution within strict 
occupation area constraint. Also, another point of future 
research interest is datapath interconnect reduction based 
on reduction of multiplexers widths to move the 
occupation-performance tradeoff focus closer to 
optimality within the solution space. 
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