Detecting multifractality under heavy tails Danijel Grahovac and Nikolai. N. Leonenko

Cardiff University

Introduction

 $\{X(t)\}\$ is said to be multifractal if it has stationary increments and there exist functions c(q) and $\tau(q)$ such that

 $E|X(t)|^q = c(q)t^{\tau(q)}, \quad ext{for all } t \in [0, T], q \in [q_-, q_+],$

for some T > 0 and $q_{-}, q_{+} \in \mathbb{R}$. $\tau(q)$ is called the scaling function. τ is always concave and if $\{X(t)\}$ is H-s.s., then $\tau(q) = Hq$. Legendre transform of τ is called the multifractal spectrum

 $d(h) = \inf_{q} \left(hq - \tau(q) + 1 \right),$

Statistical methods for detecting multifractal behavior

Partition function (or empirical structure function) - dividing the interval [0, T] into N blocks of length Δt

$$S_q(T,\Delta t) = rac{1}{N}\sum_{i=1}^N |X(i\Delta t) - X((i-1)\Delta t)|^q$$

If $\{X(t)\}$ is multifractal, then from the definition

n
$$ES_q(T,\Delta t)= au(q)\ln\Delta t+\ln c(q).$$

Asymptotic scaling function and spectrum

Example 1

(1)

Reproducing analysis from Fisher, Calvet, Mandelbrot [1997] and Calvet and Fisher

Suppose X_1, \ldots, X_T is a sample observed at discrete equally spaced time instants from a stochastic process $\{X(t), t \ge 0\}$. It is enough to consider only sampling at time instants $1, 2, \ldots n$.

Empirical scaling function - for each value q > 0 estimate $\tau(q)$ as the slope in the simple linear regression of $\ln S_q(T, \Delta t)$ on $\ln \Delta t$

$$\hat{\tau}_{N,T}(q) = \frac{\sum_{i=1}^{N} \ln \Delta t_i \ln S_q(n, \Delta t_i) - \frac{1}{N} \sum_{i=1}^{N} \ln \Delta t_i \sum_{j=1}^{N} \ln S_q(n, \Delta t_i)}{\sum_{i=1}^{N} (\ln \Delta t_i)^2 - \frac{1}{N} \left(\sum_{i=1}^{N} \ln \Delta t_i\right)^2},$$

where $1 \leq \Delta t_i \leq T$ for i = 1, ..., N. If $\hat{\tau}$ is nonlinear, then one can suspect the existence of multifractal scaling.

Estimated spectrum - estimated as Legendre transform of $\hat{\tau}$.

Assumptions

We say process $\{X(t)\}$ is of type \mathfrak{L} if it satisfies $P Y_t = X(t) - X(t-1), t \in \mathbb{N}$ is a strictly stationary sequence having a heavy-tailed marginal distribution with index α , i.e.

$$P(|Y_1| > x) = rac{L(x)}{x^{lpha}}$$

where L(t), t > 0 is a slowly varying function $L(tx)/L(x) \to 1$ as $x \to \infty$, for every t > 0.

 \triangleright (Y_t) satisfies strong mixing property with an exponentially decaying rate

$$a(au) = \sup_{t \geq 0} \sup_{A \in \mathcal{F}_t, B \in \mathcal{F}^{t+ au}} |P(A \cap B) - P(A)P(B)| = O(e^{-b au}), ext{ as } au o \infty$$

where $\mathcal{F}_t = \sigma\{Y_s, s \leq t\}, \ \mathcal{F}^{t+\tau} = \sigma\{Y_s, s \geq t+\tau\}$ $\triangleright EY_t = 0$ when $\alpha > 1$

Examples: all Lévy processes with X(1) heavy-tailed (e.g. α -stable Lévy processes, Student Lévy process), cumulative sum of stationary processes like Ornstein-Uhlenbeck (OU) type processes or diffusions with heavy-tailed marginal distributions We are interested in the rate of growth of the partition function $\frac{\ln S_q(T,T^s)}{\ln T}$

[2002] of DM/USD exchange rate data with Student Lévy process

Figure: Scaling function of the data - Figure 6. from Calvet and Fisher [2002]

Figure: Estimated spectrum of the data -Figure 7. from Calvet and Fisher [2002]

Figure: Estimated scaling function of generated Student Lévy process

Figure: Estimated spectrum of generated Student Lévy process

Example 2

Comparison: 5307 daily closing values of S&P500 stock market index collected in the period from January 1, 1980 until December 31, 2000 vs. same length sample path of

Theorem (Asymptotic behaviour of the partition function)

If $\{X(t)\}$ is of type \mathfrak{L} , then for q > 0 and every $s \in (0, 1)$

 $\frac{\ln S_q(T, T^s)}{\ln T} \xrightarrow{P} R_\alpha(q, s) := \begin{cases} \frac{sq}{\alpha}, & \text{if } q \leq \alpha \text{ and } \alpha \leq 2, \\ s + \frac{q}{\alpha} - 1, & \text{if } q > \alpha \text{ and } \alpha \leq 2, \\ \frac{sq}{2}, & \text{if } q \leq \alpha \text{ and } \alpha > 2, \\ \max\left\{s + \frac{q}{\alpha} - 1, \frac{sq}{2}\right\}, & \text{if } q > \alpha \text{ and } \alpha > 2, \end{cases}$

as $T \to \infty$, where $\stackrel{P}{\to}$ stands for convergence in probability. Relation (1) holds approximately.

Theorem (Asymptotic behaviour of the scaling function)

Suppose Δt_i is of the form $T^{\frac{i}{N}}$ for i = 1, ..., N. Then, for every q > 0,

$$\lim_{N o\infty} \mathop{\mathrm{plim}}_{T o\infty} \hat{ au}_{N,T}(q) = au_\infty(q),$$

where plim stands for limit in probability and

$$au_{\infty}(q) = egin{cases} rac{q}{lpha}, & ext{if } 0 < q \leq lpha \& lpha \leq 2, \ 1, & ext{if } q > lpha \& lpha \leq 2, \ rac{q}{2}, & ext{if } 0 < q \leq lpha \& lpha \leq 2, \ rac{q}{2}, & ext{if } 0 < q \leq lpha \& lpha > 2, \ rac{q}{2} + rac{2(lpha - q)^2(2lpha + 4q - 3lpha q)}{2(2lpha + 2q)^2}, & ext{if } q > lpha \& lpha > 2. \end{cases}$$

Student Lévy process with $X(1) \stackrel{d}{=} T(2.5, 0.0072, 0)$

Figure: Estimated scaling function of S&P 500 index with τ_{∞} for $\alpha = 2.5$

Figure: Estimated spectrum of S&P 500 index

Figure: Estimated scaling function of generated Student Lévy process

Figure: Estimated spectrum of generated Student Lévy process

Acknowledgments and references

N. N. Leonenko partially supported by projects MTM2012-32674 of the DGI, and P09-FQM-5052 of the Andalousian CICE, Spain.

Calvet, L. and Fisher, A. (2002) Multifractality in asset returns: theory and evidence. Review of Economics and Statistics 84 381-406

Fisher, A., Calvet, L. and Mandelbrot, M. (1997) Multifractality of Deutschemark/US Dollar exchange rates. *Cowles* Foundation Discussion Papers 1166

Grahovac, D. and Leonenko, N. N. (2013) Detecting multifractal stochastic processes under heavy-tailed effects. Submitted.

Grahovac, D., Jia, M., Leonenko, N. N. and Taufer, E. (2013) Asymptotic properties of the partition function and applications in tail index inference of heavy-tailed data. *Submitted*. http://arxiv.org/abs/1310.0333

