

Using SCT Generator and Unity in Automatic Generation

of 3D Scenes and Applications

Anton Kvesić, Danijel Radošević, Tihomir Orehovački

University of Zagreb, Faculty of Organization and Informatics

Pavlinska 2, 42000 Varaždin, Croatia

{anton.kvesic, danijel.radosevic, tihomir.orehovacki}@foi.hr

Abstract. This paper deals with the automatic

generation of 3D scene and related source code using

the SCT based generator. Compared to current ways of

3D modeling, the proposed approach is based on

textual specification and code generation. Application

built this way and its 3D scenes can still be edited in a

3D modeling environment such as Unity. On the other

hand, by exporting the specification from such

modeling environment, novel 3D scenes and

applications can be generated. This feature enables

higher level of code generation flexibility thus avoiding

restrictions that are common in software development.

An example of the generated application is presented

and discussed.

Keywords. 3D scene, SCT generator, Unity

1 Introduction

Modeling of 3D scenes and corresponding

applications is significantly facilitated with the use of

software tools like Unity [17]. These tools enable 3D

modeling with physical model included as well as

programming in standard programming languages, like

C#. In addition, some tools enable programming of

program editor and application itself. On the other

hand, 3D modeling is still faced with significant

problems that are outcome of the 3D scene complexity.

The employment of code generators enables

another, textual form of 3D scene representation that

can be, as demonstrated in SCT based generator [1],

adapted to the form of program specification.

Separation of textual specification parts is much easier

than extraction of the appropriate model parts using 3D

editor which represents model elements graphically. In

that respect, 3D scene could be generated from

separated specification part and edited in a visual 3D

editor that can export updated specification. This

means that 3D scene can be edited as a textual

representation as well as by using the 3D editor. Apart

from the set forth, it is possible to extract just a part of

textual representation, edit appropriate part of 3D

scene in an editor, and update the textual specification.

Considering the general case, there is an issue of

integrating generators into the software development

systems because generated code should not be

modified outside the generator. This paper

demonstrates one possible way of solving that

shortcoming in the domain of 3D modelling.

The remainder of the paper is structured as follows.

Brief literature review is provided in section 2.

Foundations of SCT generator model are offered in

section 3. Section 4 describes the process of 3D scene

generation. The example is presented in section 5.

Concluding remarks are given in the last section.

2 Background to the research

The automatic generation of 3D models has found

its application in various aspects of human endeavor

including architecture, medicine, and military. This

section offers an overview of current relevant advances

in the field.

Sugihara and Kikata [16] introduced an integrated

system that automatically generates 3D urban models

(e.g. multi-layer buildings, residential areas, city plans,

etc.) from building polygons such as ground plans or

top views. By employing the proposed polygon

expression together with the partitioning scheme, their

system is able to generate two hundred 3D building

models in less than thirty minutes.

With an objective to enhance the effectiveness of

tracking systems and thereby prevent collateral

damages in military operations, Witte et al. [18]

proposed a concept of generating accurate 3D models

of a target. The generation of 3D object models is based

on the interpretation and combination of near-term

laser range data and infrared images collected by

reconnaissance carried out in advance.

Lim et al. [7] developed a novel method meant for

the automatic generation of 3D models from a set of

the training shapes in form of binary images. In

comparison to prior approaches, this method works

independently of the object shape, geometry, or

topology.

In order to improve reliability, efficiency, and

accuracy in diagnosing coronary artery diseases, Lee et

al. [6] created a method for 3D modelling of particular

vessels. The method is comprised of three steps (the

image acquisition, matching of the adaptive control

points and the vessel warping) during which 3D

models are automatically generated from angiograms

that illustrate six different angles of the vessel

bifurcation.

As a result of the comprehensive literature review,

Azri et al. [1] identified four different approaches for

automatic generation of 3D indoor models. Semantics

dependent generation approach is based on the analysis

of the text, interview records, and video files that

contain semantic information about a building.

Information fusion approach integrates semantic

information (e.g. names, attributes, or states of building

elements) gathered from diverse sources (e.g. CAD

files, digitalized blueprints, ID tags, etc.) with

geometric information (e.g. height of a building,

dimensions of floors, etc.). Based on users’

requirements, the third approach enables

transformation of building representations in different

models. In the final approach, the automatic generation

of indoor models is enabled with the use of novel

techniques for tracking people’s motions such as

gesture recognition sensors, computer vision,

accelerometers in the mobile phones, mobile

augmented reality, etc.

Dachselt and Rukzio [3] proposed an Extensible 3D

(X3D) based declarative framework called

Behavior3D meant for modeling behaviors of 3D

objects. The aforementioned declarative architecture is

comprised of behavior nodes which represent

particular functionalities within a 3D scene, XML

Schema grammar that describes interface of behavior

nodes at the development level, node repertoire which

denotes automatically generated integration of all

available behavior nodes, and behavior node

collections that refer to the groups of semantically and

functionally related nodes.

Klöckner et al. [5] introduced a scripting-based

technique meant for Graphics Processing Units (GPUs)

run-time code generation (RTCG) that address several

issues related to programming the GPUs, including the

automated selection of the best code variant in terms of

the predefined metric such as execution speed as well

as the high-performance abstractions and cost-benefit

flexibility in generating the needed number of code

variants. In order to facilitate the implementation of the

GPU RTCG, the authors developed two open-source

toolkits. While PyOpenCL connects Python

programming language with the Open Computing

Language (OpenCL), PyCUDA connect Python with

NVIDIA’s Compute Unified Device Architecture

(CUDA) parallel computing platform. Together they

represent computing architecture with considerable

performance and productivity in GPU RTCG.

Outcomes of the literature review indicate that

generation of 3D models increasingly attracts

academic attention. However, existing research

addressing the generation of 3D scene is rather scarce.

The set forth motivated us to initiate a research into the

design of a generator that would enable automatic

generation of 3D scene objects from specification.

Features of the generator model which represent a

backbone of our work are described in the following

section.

3 SCT generator model

SCT generator model was proposed in [11] which

is based on previously introduced Scripting generator

model [8]. The name SCT model comes from its

building elements: Specification, Configuration and

Templates. The main advantage of SCT in relation to

Scripting model is in separation of Configuration from

generator code. This enables specification of the

complete generation process using easy configuration

syntax, rather than programming of Configuration

manually. SCT is based on dynamic frames [11],

named as SCT frames (presented in Figure 1), unlike

some other frames based generator models, such as

XVCL [4] and Basset's frames [2].

S
Specification
(attribute-value

pairs)

C
Configuration

(connection,

attribute, template

triplet)

T
Template

(source code with

connections)

Figure 1. SCT frame [10]

The aforementioned indicates that user has to

define only top-level frames, while the others are

dynamically allocated during the generation process.

The outcome of the generation process is SCT tree

illustrated in Figure 2.

S C

T
(code +

connections)

S C T S C T S C T

#conn1#

#c
on

n2
#connN

#

.

.

S C T S C T

Figure 2: The generation tree [10]

Focusing on the development of the full program

code, not just its backbone, the SCT model enables

generation and execution of programming code on

demand [9]. Furthermore, SCT is suitable for

producing applications that consist of different types of

code (e.g. web applications that are comprised of

snippets of code written in diverse languages such as

HTML, XML, JavaScript, etc.). All parts of such

heterogeneous applications can be produced from the

same Specification thus achieving the high level of

reusability. Up to now, the SCT model has been

employed for the development of Autogenerator [14],

generation of student assignments [15], determining

error messages that occur at the level of generator [13],

and design of a framework for building generators [12].

4 Generation of 3D scene

Regardless of which software is used, few steps

should be made and experiments carried out in order to

achieve the complete symbiosis between 3D modeling

and generation of the 3D scene. First of all, software

functionalities should be exhaustively explored in

order to determine which of them are most appropriate

for the generation process. The set forth does not

specifically includes advanced 3D modeling

capabilities but support for certain programming

language and corresponding editor which represent

working environment. Another important step is the

employment of properties for the purpose of defining

the models in a 3D space.

After software abilities are identified and 3D

models are defined, connection between generator and

3D software should be established. This includes

creation of common language that would be able to

represent 3D models and support communication.

More specifically, 3D software should be able to

produce an understandable form (e.g. textual) of 3D

models and present their properties to the generator.

Likewise, generator could then communicate with 3D

software and, for example, through the common

language, change some of the 3D object’s properties,

create a new object, remove some of the existing

objects, etc.

Last part refers to the selection of the appropriate

3D software. Considering the objective of our research

and features of available software for 3D modeling, for

the purpose of generating 3D scene we have chosen

game development software Unity 3D [17]. The main

advantages of Unity is its feature meant for the

programmatic allocation of artifacts which are part of

the 3D scene and support for building the 3D scene in

an executable file. Apart from the set forth, Unity’s

editor can be programmatically managed. This feature

is especially interesting in the development of

generators because it enables modifications of

generated 3D scene in the editor. As depicted in Figure

3, the process of generating 3D scene consists of

following operations:

 Building and updating the SCT generator [12]

in order to produce the necessary application and

editor code for dynamic allocation of 3D objects and

scene. Both application code and editor code are

being generated.

 Loading the generated 3D scene into the 3D

editor. Editing the 3D scene includes adding/deleting

3D artifacts as well as changing their features

(position, rotation, scale, texture, etc.). The scene can

be exported in a form of Specification for the purpose

of the generator.

 Building an executable application. After

Specification is completed, the generator produces

the program code. The application can be compiled

by means of the standalone compiler and without

using the interface of the 3D editor.

Figure 3. 3D scene editing and generation process

There are several features important for the

development of SCT generator aimed for building of

3D scene based applications:

 Generator is meant for producing 3D scene

from previously prepared 3D artefacts.

 The behavior of 3D objects and scene, as well

as other application features, is defined in program

Templates which can be applied to different scenes.

 The Specification consists of attributes that

specify main objects and with them associated child

objects. It is possible to extract only selected

main/child objects for the purpose of editing in 3D

editor or producing the executable application. This

feature can be used for decreasing the complexity of

3D model while editing.

5 Unity 3D

Previously mentioned tool and software chosen for

creation and building the 3D scenes – Unity, is most

commonly described as a cross-platform game

development software or game engine. It has built-in

support for three programming languages – C#,

JavaScript and Boo. Regarding 3D scenes and

application view, Unity offers Scene view and Game

view, which can be described as editor (Scene view)

and application (Game view). The working

environment of the Unity 3D editor is presented in

Figure 4.

Figure 4. Unity 3D editor's interface

One of the most interesting features regarding

Unity and its use with our generator is a programmable

built-in editor. Programming code execution in Unity

is possible not only during application runtime, but also

during scenes editing inside Unity’s projects. This

allows us scene generation during application runtime,

i.e. its start and during scene editing, which can be very

useful because we do not have to start our application

every time we want to make changes to our scene and

update it from Specification. Likewise, it is possible to

update Specification in real-time and save every

changes we made during scene’s editing. Lastly, there

is another Unity’s feature that allows adding custom

menu items which are mapped to specific static

methods. As illustrated in Figure 5, these methods can

then be executed with a single click on the custom

defined menu item.

Figure 5. Custom menu items in Unity

6 An Example

An example1 of 3D scene generator that will be

presented in this paper includes previously mentioned

approaches related to Unity and generator.

First of all, basic 3D scene consists of various 3D

models which are represented in the 3D space through

their properties, like position, rotation, size, etc. Our

example shows the 3D scene in which 3D objects are

generated according to predefined properties, which

are forwarded to Unity through Specification. On the

other hand, Unity can also export chosen 3D object’s

properties, i.e. export Specification, which creates

connection and circle between generator and Unity.

Every 3D object in the scene is represented by

corresponding part in Specification, but it is worth

1 An example is available at

http://gpml.foi.hr/Generator_3D/

mentioning that most of the objects share basic

properties (position, rotation, size, texture, etc.), which

are considered as most important and fundamental for

the purpose of representation and manipulation of 3D

objects.

Figure 6 illustrates the interaction between

generator and Unity, where Specification plays most

important part. 3D objects that we want to include in

the 3D scene are given in Specification and then

forwarded to Unity using code generation. These 3D

objects are previously embedded into Unity in order to

be used in a scene Specification.

Figure 6. Communication between generator and

Unity

Unity then applies generated C# code which

includes methods like the one presented in the Figure

6. In this specific example, that method is Instantiate

and it is used for the creation of new objects in a 3D

scene. The result of the process presented in the Figure

6 are 3D objects populated through the scene which are

determined by their position, rotation, size, texture and

any other property included in the Specification. This

is a simple example and demonstration of possibilities

and ways of using Unity for generation and creation of

3D scenes.

Interaction between generator and Unity goes both

ways, i.e. it is possible to generate Specification from

given 3D scene which can then be used for generation

of similar or even drastically changed scenes. This can

also be achieved using Unity and tags that are one of

its features. Tags can be used to represent and identify

one or multiple game objects inside Unity. They are

more often used for identifying multiple objects so they

can easily be accessed and manipulated. Using tags in

the specific example gives many possibilities. For

example, it is possible to assign the same tag to the

multiple objects that are included in Specification and

simply ignore other objects and parts of the scene.

Unity can then export Specification which consists

only of chosen objects and can be used to recreate,

change and manipulate given 3D scene in different

ways and approaches.

Another important and interesting feature is real-

time generation of 3D objects. For example, one floor

of a building or a room inside a hallway can be

generated and populated in a given time and thus

provide dynamic and changeable environment.

Likewise, it is possible to remove one part of the 3D

scene given by Specification and consider saving the

resources or temporarily reducing the load. Generation

of the 3D scene does not necessarily have to imply

building and creation of whole environment, but also

manipulating and managing its parts.

Example described in this part of the paper also

includes movement and interactions with the

environment, but these functionalities are not covered

by Specification itself. They can be, however,

manipulated and conditioned through Specification

and that is something worth investigating and studying

in the future.

7 Conclusion

The objective of this paper was twofold: to

introduce a new approach in building the 3D scenes

based on the SCT generator and to demonstrate how to

overcome limitations of integrating source code

generators in the development of software systems.

Drawing on the SCT model, the 3D scene can be

modified by means of both 3D editor and textual

Specification for the generator. Furthermore, the

employment of the SCT generator reduces the

complexity of the 3D scene during its modification in

the 3D editor.

The example of generating the 3D scene clearly

illustrated an interplay between the SCT based

generator and Unity 3D editor. The textual

Specification enables building and managing the 3D

scene. The set forth includes representation of Unity's

editor as well as executable application that deals with

the 3D scene. Some other elements of the application,

like movements and interactions with the environment

are included in code Templates, but not in the

Specification itself.

Our future research efforts will be focused on the

development of a method for building the 3D scenes

together with associated interactions, scenarios and

objects, by means of source code generators.

References

[1] Azri, S.; Isikdag, U.; Rahman, A. A. Automatic

Generation of 3D Indoor Models: Current State of the

Art and New Approaches. In International Workshop

on Geoinformation Advances, Johor, Malaysia, 2012,

http://www.academia.edu/2604376/Automatic_Gener

ation_of_3D_Indoor_Models_Current_State_of_the_

Art_and_New_Approaches, downloaded April 4th

2014.

[2] Bassett, P.G.: Framing software reuse - lessons

from real world. Prentice Hall, Upper Saddle River,

NJ, USA, 1997.

[3] Dachselt, R., Rukzio, E.: Behavior3D: an XML-

based framework for 3D graphics behavior. In

Proceedings of the 8th international conference on 3D

Web technology, pages 101-112, St. Malo, France,

2003.

[4] Jarzabek, S., Bassett, P., Zhang, H., Zhang, W.:

XVCL: XML-based variant configuration language. In

Proceedings of the 25th International Conference on

Software Engineering, pages 810-811, Los Alamitos,

CA, USA, 2003.

[5] Klöckner, A., Pinto, N., Lee, Y., Catanzaro, B.,

Ivanov, P., Fasih, A.: PyCUDA and PyOpenCL: A

scripting-based approach to GPU run-time code

generation. Parallel Computing, 38(3):157–174, 2012.

[6] Lee, N-Y.; Lee, J-J.; Kim, G-Y.; Choi, H-I.

Automatic 3D Model Generation based on a Matching

of Adaptive Control Points. In You, K. (Ed.) Adaptive

Control. InTech, Shanghai, China, 2009,

http://www.intechopen.com/books/adaptive_control/a

utomatic_3d_model_generation_based_on_a_matchin

g_of_adaptive_control_points__, downloaded April 4th

2014.

[7] Lim, S-J.; Udupa, J. K.; Souza, A.; Jeong, Y-Y.;

Ho, Y-S.; Torigian, D. A. A New, General Method of

3D Model Generation for Active Shape Image

Segmentation. In SPIE Proceedings 6144, Medical

Imaging 2006: Image Processing,

http://dx.doi.org/10.1117/12.653751, downloaded

April 4th 2014.

[8] Magdalenić, I., Radošević, D., Skočir, Z.: Dynamic

Generation of Web Services for Data Retrieval Using

Ontology. Informatika, 20(3): 397-416, 2009.

[9] Magdalenić, I., Radošević, D., Orehovački, T.:

Autogenerator: Generation and Execution of

Programming Code on Demand. Expert Systems with

Applications, 40(8): 2845-2857, 2013.

[10] Radošević, D., Magdalenić, I.: Python

Implementation of Source Code Generator Based on

Dynamic Frames. In Proceedings of the 34th

International Convention on Information and

Communication Technology, Electronics and

Microelectronics, pages 369-374, Opatija, Croatia,

2011.

[11] Radošević, D., Magdalenić, I.: Source Code

Generator Based on Dynamic Frames. Journal of

Information and Organizational Sciences, 35(2): 73–

91, 2011.

[12] Radošević, D., Magdalenić, I., Orehovački, T.:

Building process of SCT generators. In Proceedings of

the 36th International Convention on Information and

Communication Technology, Electronics and

Microelectronics, pages 1037-1042, Opatija, Croatia,

2013.

[13] Radošević, D., Magdalenić, I., Orehovački, T.:

Error Messaging in Generative Programming. In

Proceedings of the 22nd Central European Conference

on Information and Intelligent Systems, pages 181-186,

Varaždin, Croatia, 2011.

[14] Radošević, D., Orehovački, T., Magdalenić, I.:

Towards Software Autogeneration. In Proceedings of

the 35th International Convention on Information and

Communication Technology, Electronics and

Microelectronics, pages 1076-1081, Opatija, Croatia,

2012.

[15] Radošević, D., Orehovački, T., Stapić, Z.:

Automatic On-line Generation of Student's Exercises

in Teaching Programming. In Proceedings of the 21st

Central European Conference on Information and

Intelligent Systems, pages 87-93, Varaždin, Croatia,

2010.

[16] Sugihara, K.; Kikata, J. Automatic Generation of

3D Building Models from Complicated Building

Polygons. Journal of Computing in Civil Engineering,

27(5):476-488, 2013.

[17] Unity3D, Unity - Game Engine,

http://unity3d.com/, downloaded: May 5th 2014.

[18] Witte, C.; Armbruster, W.; Jäger, K. Automatic

generation of 3D models from real multisensor data. In

Proceedings of the 11th International Conference on

Information Fusion, pages 1823-1828, Cologne,

Germany, 2008.

