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Abstract. This paper presents a new approach to proactive reactive
scheduling of stochastic resource-constrained project scheduling prob-
lems with known probability distributions of activity durations. To facil-
itate the search for cost-flexible proactive schedules that are adjustable
and incur lower expected cost of future rescheduling, a new family of cost-
based flexibility measures is introduced. Under these measures, cost is
incurred on each rescheduling while taking into account the temporal dis-
tance of changes in the baseline schedule. We propose a new model that
describes the integrated approach using the proposed cost-based flexi-
bility measures where, in each stage, reactive scheduling can adjust the
baseline schedule to accommodate flexibility and quality requirements.
The model is based on bounded stochastic shortest path with finite state
and action spaces. The commonly used schedule stability measure is put
in the context of proposed family of flexibility measures and contrasted
to them in the terms of project execution system properties.
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1 Introduction

Stochastic Resource Constrained Project Scheduling Problem (SRCPSP) is a
generalization of the classical family of deterministic scheduling problems with
complete information [1]. It introduces uncertainty by using random variables to
model some of its data. In this paper, we shall focus on uncertain activity du-
rations with known probability distributions. There are three main approaches
to solving SRCPSP: predictive, reactive and proactive procedures [1] and com-
binations of the main approaches.

Predictive approach ignores stochasticity of the problem and uses point esti-
mations, most usually expectation or median, instead of random variables. This
has been shown to underestimate project cost/duration [2]. Reactive procedures
make scheduling decisions during the project run-time. They can work with
baseline schedule, as schedule repair procedures, and without baseline schedule
as completely online procedures. In the latter case they see the project as a
multi-stage decision making process and dynamically create schedule in stages,



using policies. Proactive project scheduling for SRCPSP is interested in creating
a baseline schedule of increased robustness to unexpected outcomes (according
to the used robustness measure explained below) such as longer than anticipated
activity duration. In such a way, it can remain feasible under various conditions.
The two most commonly used notions of robustness in proactive scheduling are:
quality and stability robustness. Quality robustness pertains to maximizing the
probability of completing the project on time. Stability robustness aims to make
schedule stable with respect to possible disruptions, so it does not change much
during the execution. Solution robustness or schedule stability is justified by
examples where several separate entities cooperate on the project and need to
synchronize their actions. Also, in cases with in-house project running, schedule
stability increases the setup efficiency. Quality and stability are most commonly
two competing criteria and problems containing both are bi-objective. However,
they are implicitly converted to single-objective problems by parameterization
into monetary costs, scalarizing the two objectives into one. If the monetary cost
is the only interest, then such approach is valid and we can continue our work
with that assumption.

Although protected against some future disruptions, proactive baseline sched-
ule can become infeasible during the execution due to unanticipated distur-
bances. In that case rescheduling needs to be done. At this point, reactive
schedule repair procedures are used [3]. Such a combination of proactive and
reactive procedures to SRCPSP is called a proactive-reactive approach. Cur-
rent rescheduling procedures mostly focus on restoring the schedule feasibility
by starting activities with the least rescheduling cost w.r.t. the first baseline
and/or they do not produce proactive schedules that are hedged against future
unexpected outcomes in the same way as it is done for the baseline schedule [4].
This paper explores the problem of proactive-reactive scheduling of SRCPSP
where changes to baseline schedule can be made in advance at a lesser cost than
if being done at the activity start, hence yielding a new proactive baseline using
all the information available up to that moment.

The main contributions of the paper are:

– A new family of flexibility measures based on realistic assumptions on cost
functions. Total idleness is shown to be potentially optimal behaviour in
certain situations. A bound is put on the worst-case performance of optimal
policy, which ensures the termination.

– A model capturing the aspects of the general problem is presented.

– Commonly used stability measure is put into the relation with the model
and compared to our family of flexibility measures.

The organization of this paper is as follows: in section 2, we lay out the overview
of the related work done in this area. Section 3 shortly presents the problem
and section 4 presents the family of flexibility measures. In section 5, we present
the stochastic dynamic programming model and in section 6 we put commonly
used stability measure into the relation to our model. Finally, section 7 gives
conclusions and future work.



2 Related Work

Authors in [1] have offered the survey of resource-constrained project schedul-
ing under uncertainty. In this section we describe related work in pure reactive
approaches based on stochastic dynamic programming and proactive-reactive
approaches.

The most influential work on pure reactive based methods is given by Möhring
et al. [5, 6]. They modelled a general stochastic scheduling problem with regular
performance measures (measures that are non-decreasing in activity completion
times) as a stochastic dynamic program. Their theoretical results are built on
the fact that the total idleness is non-optimal behaviour for their problem.Stork,
based on [5, 6], dealt with different scheduling policy families in [7]. There are
several works on pure reactive scheduling [8–10] that use Markov Decision Pro-
cess (MDP). Tai in [8] used dynamic programming and authors in [9, 10] used
reinforcement learning to find solutions. The work listed above focused on regular
performance measures and do not use baseline schedules.

Of proactive-reactive approaches, Leus and Herroelen [11] proposed stability
measure expressed as the weighted sum of absolute differences between baseline
and realized schedule activity start times. This measure is used in the majority
of the project scheduling literature [3], including the works listed below. Van
de Vonder et al. in [12] describe Starting Time Criticality + Descent (STC+D)
heuristic with surrogate measure and simplifying assumptions in approximations
for generation of proactive schedules with time buffering on locked resource flows
and predefined policy family. Van de Vonder et al. in [4] used robust schedule
generation schemes with priority lists in basic sampling approach and with time
windows, where point estimates of duration times were used. Deblaere et al. in
[13], based on ideas in STC+D, proposed a family of proactive policies that use
activity priority list and release times in parameterization. The final schedule is
not necessarily resource-feasible, but it minimizes the combination of expected
deviation and due date exceeding costs. In all the works above, the policies used
are starting activities in every stage of schedule creation, using variants of paral-
lel/serial scheduling schemes, and perform only just-in-time rescheduling of the
activities that are about to be run. Lambrechts in his PhD thesis [14] developed
a tabu-search based method that does bi-objective optimization for proactive
rescheduling with respect to uncertainty of resource availability. The method is,
at the same time, keeping the new schedule close to the schedule obtained in
the previous phase using the deviation measure. The author used scalarization
to transform bi-objective into a single objective problem. This method achieved
moderate results [3].

Although there are various interesting approaches to the problem or resource
constrained project scheduling under uncertainty, there is no approach that con-
siders scheduling where rescheduling can be done in advance with smaller cost
than if done at activity start times. In this paper we give such a proposal where
we approach to the problem as a stochastic dynamic program in a similar way
as Möhring et al.[5, 6]. However, in order to model proactiveness we allow for a



special family of performance measures (not guaranteed to be regular) on SR-
CPSP.

3 The Problem Definition

The problem under consideration in this paper is the single mode non-preemptive
stochastic resource-constrained project scheduling problem with quality and flex-
ibility robustness requirements, uncertain activity durations and with known
probability distribution of activity durations. Let H be the space of all such
problems. Each h ∈ H is a combinatorial optimization problem defined as a
tuple (V,E, p,R,B,D, δ, c). V = {0, ...n + 1} is a set of n + 2 activities where
0 and n + 1 are dummy activities that represent project beginning and end
respectively. Let V ′ = V \ {0, n + 1}. Precedence relation between activities
is defined as transitive closure of relation E ⊂ V × V , where 0 precedes and
n + 1 succeeds all other activities in V . Precedence relation must be asymmet-
ric. Let ∆(INn+2

0 ) be the space of all discrete probability distributions defined
over INn+2

0 with bounded support. p ∈ ∆(INn+2
0 ) is a joint probability distri-

bution of activity durations represented by a random vector d, where p0 and
pn+1, marginal distributions for dummy activities, have all the mass on dura-
tion of 0. Also, ∀a ∈ V either pa(0) = 1 or pa(0) = 0. R = {R1, ..., Rr} defines
a set of r renewable resources and B ∈ INr is a vector of resource availabilities.
Activity demands on resources are given in the matrix D ∈ IN

(n+2)×r
0 , where

(∀i ∈ {a ∈ V |pa(0) = 1}), (∀r ∈ R)Di,r = 0 and (∀r ∈ R)(∀i ∈ V )Di,r ≤ Br.
δ ∈ IN0 is the project due date. Before defining the objective function c, we need
to define some necessary intermediate objects.

Let S be the countable space of all project states, where each state x ∈
S stores all relevant information about the project during the execution. This
information includes the global project time (the time elapsed from the start of
the project execution), statuses of activities, durations of finished activities and
the current schedule. Schedule is a vector in INn+2

0 , where i-th component is the
scheduled start time of activity i. The start time of activity 0 is in each schedule
equal to 0. In order to extract the schedule from the state, let us define the
schedule extraction function L : S → INn+2

0 . Let C be the countable space of all
controls (decisions) that control project’s execution. Controls start the execution
of activities, change the current baseline schedule or do nothing, at any control
point of project. As this is a dynamic optimization problem where the objective
function c will be defined as expected total cost, where the next project state and
stage cost depend only on current state and control, the solution is a randomized
Markov policy µ∗ : S → ∆(C) [15] in policy space Ξrand. Let Ξdet ⊂ Ξrand be
the space of all deterministic Markov policies µ : S → C. In the rest of the paper
we shall focus on deterministic Markov policies.

Let N : INn+2
0 × Ξdet → N0, i.e. N(γ, µ) for realized activity duration vector

(scenario) γ and policy µ, be the number of stages where decisions take place
before the end of project execution. When it is clear from the context, we omit
the dependency and only write N. For each stage k = 1..N(γ, µ) let xγ,µk ∈ S be



the project state reached under duration vector γ and policy µ and let x
γ,µ|t
k ∈

IN0 be the global project time of that state. Let sγ,µ,ik ∈ IN0 be the scheduled
start time of activity i in the schedule L(xγ,µk ). Let Π ⊂ Ξdet be the space of
admissible policies, i.e. all policies that respect 0-lag precedence, resource, non-
anticipativity, non-retroactiveness, non-prematureness constraints and condition
of project terminability defined below. We search for the solution in the space
Π. Let Z : Π → IN0 be the worst-case schedule duration given the problem
h ∈ H and policy µ ∈ Π, i.e. Z(µ) = maxγ∈supp(p) s

γ,µ,n+1
N . 0-lag precedence

constraints are defined as:

sγ,µ,jN ≥ sγ,µ,iN + γi,∀(i, j) ∈ E,∀µ ∈ Π,∀γ ∈ supp(p) .

The set of concurrent activities at timepoint t ∈ IN0 under policy µ with the
vector of activity durations γ is:

Λt,γ,µ = {i ∈ V |t− sγ,µ,iN < γi} .

Using the set of concurrent activities, resource constraints are defined as:∑
i∈Λt,γ,µ

Dij ≤ Bj ,∀t ≥ 0,∀Rj ∈ R,∀µ ∈ Π,∀γ ∈ supp(p) .

Non-anticipativity ensures that for all scenarios γ ∈ INn+2
0 , policies µ ∈ Π, and

all timepoints t ∈ IN0, the behaviour of policy µ at any stage k depends only
on the history of γ w.r.t. µ up to t. These constraints are formally described
in [5]. Non-retroactiveness constraints for all timepoints t disallow reschedul-
ing of activities started at any timepoints t′ < t. Also, starting activities at
any timepoint t′ < t or rescheduling starts of not yet started activities to any
timepoint t′ < t is forbidden. Non-prematureness constraint ∀t < 0,∀i ∈ V
prohibits start of activity i at timepoint t. Terminability condition means that
(∀µ ∈ Π)(∃M ∈ IN)(∀γ ∈ supp(p)) project execution finishes at least until M
under µ and γ. Let Πrand ⊂ Ξrand be the set of admissible randomized Markov
policies with similar constraints as described above, generalized to the case of
randomized policies.

Definition 1. Function cd : IN0 → IR+ is the quality robustness penalty. It is
defined as cd(x) = βd · max(0, x − δ), βd > 0, incurred in stages as stage-cost
cd,s(x) = βd · 1x>δ.
Function cs : INn+2

0 ×INn+2
0 ×IN→ IR+ is a rescheduling cost function defined

in the next section as part of a cost-based flexibility measure.
The objective function is c : S ×Π → IR+:

c(x−1, µ) = Eµd∼p

N(d,µ)∑
k=1

(
cs(L(xd,µk−1), L(xd,µk ), x

d,µ|t
k−1 ) + cd,s(x

d,µ|t
k−1 )

) (1)

where x−1 is the initial empty state at the timepoint -1 and xµ0 is the initial
running schedule state that contains baseline schedule created by the policy µ
offline at stage −1 from the empty schedule in state x−1, at no cost. The effects
of applied policy control at stage k are first visible in the state at the next stage.



4 Family of Cost-based Flexibility Measures

Introduction of Cost-based Flexibility (CBF) measure enables modelling situa-
tions where rescheduling in advance might be opportunistic due to lower costs.
This enables search for flexible proactive schedules that are adjustable and incur
minimal total costs for rescheduling and due date exceeding.

Let, ∀i ∈ V ′, cs,i : IN0 × IN0 × IN0 → IR+, cs,i(x, y, t), be the activity
rescheduling cost function defined on each point of the domain. It is mono-
tonically non-decreasing in |x − y| for each constant min(x, y) − t and for each
constant |x − y| it is monotonically non-increasing in positive min(x, y) − t,
i.e. the distance of the schedule change from the current timepoint t. Also,
∀i∀t (x = y ⇒ cs,i (x, y, t) = 0).

Rescheduling cost function cs : INn+2
0 × INn+2

0 × IN → IR+ measures the
difference between two successive schedules L(xγ,µk−1) and L(xγ,µk ):

cs

(
L
(
xγ,µk−1

)
, L (xγ,µk ) , x

γ,µ|t
k−1

)
=
∑
i∈V ′

cs,i(s
γ,µ,i
k−1 , s

γ,µ,i
k , x

γ,µ|t
k−1 ) .

Definition 2. Cost-based flexibility measure is the function cf : Π×INn+2
0 →

IR+ of the form:

cf(µ, γ) =

N(γ,µ)∑
k=1

cs

(
L
(
xγ,µk−1

)
, L (xγ,µk ) , x

γ,µ|t
k−1

)
. (2)

Lemma 1. (∀h ∈ H)(∀µ′ ∈ Πrand)(∃µ ∈ Π)c(x−1, µ) ≤ c(x−1, µ′)

Definition 3. ∀h ∈ H,∀t ∈ IN0 period [t, t + 1) is total idleness period under
policy µ and vector of activity durations γ if and only if Λt,γ,µ = ∅.

Lemma 2. ∃h ∈ H such that for µ∗ ∈ Π,∃γ ∈ supp(p) where there is at least
one total idleness period.

Lemma 2 causes the departure from previous theoretical results laid in [5, 6]. We
build results that put bound on the amount of total idleness in optimal policy.
That enables the creation of model that can be solved using standard methods.

Theorem 1. For arbitrary problem h ∈ H, ∃µr ∈ Π such that c(x−1, µr) =
cd
(∑

i∈V max(supp(pi))
)
. Also,

(∀µ ∈ Π)

(
c(x−1, µ) ≤ c(x−1, µr)⇒ cd (Z (µ)) ≤ cd(

∑
i∈V max(supp(pi)))

mind∈supp(p) p(d)

)
.

Corollary 1. In the case δ <
∑
i∈V max(supp(pi)), the bound ζ on the worst

case project duration Z(µ∗) under optimal policy µ∗ can be uniquely inferred from
the cost bound given in Theorem 1 due to the properties of cd. Otherwise, the
solution to the problem is trivial and the bound ζ is set to

∑
i∈V max(supp(pi)).

Corollary 2. For non-trivial values of δ, we can search for optimal policy only
in the set {µ ∈ Π|(∀γ ∈ supp(p))sγ,µ,n+1

N ≤ ζ}. Optimal policy µ∗ ∈ Π exists.



The proofs of Lemma 1, Lemma 2, Theorem 1 and Corollary 2 are given in
the appendix. The bound in Theorem 1 is loose, depending on the continuous
parameter of probability distribution. Stricter bounds can be found using more
information about SRCPSP instance at hand. Relying on the Corollary 2, we can
model the problem using finite horizon dynamic programming (DP). Also, using
finiteness of the worst case performance of the optimal policy, we can model the
problem as a stochastic shortest path with finite state and control spaces, using
the undiscounted objective function (1) and infinite horizon DP theory.

5 The Model

In this section, we introduce a new stochastic dynamic programming model for
the defined problem based on theoretical results from the previous section. The
given problem is modelled as a stochastic shortest path (SSP) problem [16] and
it is a Markov Decision Process (MDP) with variable number of stages as is the
case in the project scheduling.

Definition 4. Finite Markov Decision Process is a 7-tuple (S,C,W,U, P, f, g)
where S is the finite discrete state space, C is the finite discrete control space,
W is the finite sample space modelling elementary random information we can
receive, U : S → 2C is the control availability function. P (ω ∈ 2W |x ∈ S, u ∈
C) is the distribution of random information conditioned on the last state and
applied control. f : S × C × W → S is the state transition function, and g :
S×C → IR is the immediate cost function. Transition probabilities Ti,u,j between
the states i, j ∈ S under applying control u ∈ U(i) can be obtained by using the
transition function f : Ti,u,j = P {{ω ∈W |f (i, u, ω) = j} |i, u} .

To make the state and the control space finite, we are using the upper bound
on duration of project execution, Θ. Θ can be determined heuristically, or a
conservative upper bound based on Corollary 1 can be used. In the rest of the
paper we assume conservative upper bound. Let O = {i ∈ IN0|i ≤ Θ}.

Let F : S → 2V define the set of resource and precedence feasible activities
that have not been started yet. Let F s(xk) ⊂ 2F (xk) be the set of sets of resource
and precedence feasible combinations of activities for each state xk ∈ S.

State Space. Each state xk ∈ S is a tuple (v,K, b, t).

– v - r-tuple (v1, ..., vr) containing resource availabilities at state xk, ∀j ∈ R
– K - state information about project activities; (∀a ∈ V \{0})Ka = (φa, sa, da).

Information for activity 0 are not stored as it is under all policies always
started at timepoint 0.
• φa ∈ {’inactive’, ’started’, ’finished’} - the status of activity a
• sa - start time of activity a in the current schedule. If the activity has

not been started yet, sa is predicted/scheduled start time.
• da – realized duration of activity a, known only if the activity is com-

pleted. Otherwise, it is 0 and has no meaning. This information is useful
only for activities whose activity durations are not independent.



– b ∈ {’bounded’, ’non-bounded’} - the status of project state used to termi-
nate all executions of projects surpassing duration of Θ

– t - the current time of the project global clock, measured in discrete units.

Each element of state xk is marked using the superscript notation, for exam-
ple xφak is the status of activity a in state xk. The terminal state xk ∈ S is the

one in which x
φn+1

k = ’finished’ or xbk = ’bounded’. The initial state x−1 has all
resources free, all activities inactive, their scheduled start times set to 0, state
marked as non-bounded and the global project time set to -1.

Control Space and Available Controls. C ⊂ (O ∪ {’start’, ’empty’})n+1 is
the set of controls that present decisions for rescheduling of activity scheduled
start times and for starting any set of activities. (∀µ ∈ Π)(∀xk ∈ S)µ(xk) ∈
U(xk), where set of available controls in each state has to satisfy next conditions:

1. (∀xk ∈ S)U(xk) = {[u1, ..., un+1]|{i|ui = ’start’} ∈ F s(xk)}
2. (∀i ∈ V \ {0})(∀xk ∈ S)

(
xφik 6= ’inactive’⇒ ui(xk) = ’empty’

)
3. (∀i ∈ V \ {0})(∀xk ∈ S) (ui (xk) /∈ {’start’, ’empty’} ⇒ ui(xk) ≥ xtk)
4. (∀xk ∈ S) (xtk < 0⇒ (∀i ∈ V \ {0})ui(xk) 6= ’start’) .

Random Information. The timing of the next stage is tk+1 := tk + 1. Sample
space is defined as W = supp(p). Random information distribution function P
is based on activity duration probability distribution p, with the probabilities
of random information conditioned on durations of finished activities and on
current execution times of running activities. All of the information that the
conditioning is done upon is contained in the state and last applied control.
Non-anticipativity of policies is ensured by the fact that after (state, action)
pair (x, u) we receive information only on running activities in [xt, xt + 1) where
some subset of activities is finished at timepoint xt + 1 and the rest continues
with execution, in a similar way as in [5].

Transition Function. The model uses a notion of post-decision state. The
transition function f is a composition f = σ ◦ ψ of the post-decision transition
function ψ : S×C → S and the stochastic transition function σ : S×W → S. The
post-decision transition function ψ updates the state with the applied control,
but without receiving new random information. The state we transition to after
applying ψ is the post-decision state, and no control can be applied to it. The
stochastic transition function σ updates the post-decision state with the random
information. The result is a new pre-decision state at the next timepoint at
which we can apply the new control. Transition function f = σ ◦ ψ is defined
algorithmically as:

function φ(xk, uk)

if x
φn+1

k = ’finished’ ∨ xbk = ’bounded’ then return xk

xukk ← copy(xk)



if xtk = Θ ∧ xφn+1

k 6= ’finished’ ∧ uk,n+1 6= ’start’ then

xuk,bk ← ’bounded’
return xuk

for all i ∈ {i|uk,i =′ start′} do
Take up resources in xukk for activity i

xuk,sik ← xuk,tk , xuk,φik ← ’started’

for all i ∈ {i|uk,i =′ start′ ∧ pi(0) = 1} do xuk,φik ← ’finished’

for all i ∈ {i|uk,i ∈ O} do xuk,sik ← uk,i
return xukk

function σ(xukk , ωk)

if x
uk,φn+1

k = ’finished’ ∨ xuk,bk = ’bounded’ then return xukk
xk+1 ← copy(xukk ), xtk+1 ← xtk + 1
for all i ∈ {i|i finishes in xtk+1 according to ωk} do

release resources in xk+1 for i
xφik+1 ← ’finished’, xdik+1 ← xtk+1 − x

si
k+1

return xk+1

Cost Function.

g(xk, uk) :=


0, if x

φn+1

k = ’finished’
∨xbk = ’bounded’

cs(L(xk), L(ψ(xk, uk)), xtk) + cd,s(x
t
k), if xtk ≥ 0

M, if xtk = Θ ∧ uk,n+1 6= ’start’
0, otherwise

where M is a sufficiently large penalty for not terminating the project before ex-
ceeding the bound Θ. Cost bound from Theorem 1 can be used as a conservative
basis for setting M.

The proposed model proceeds through all unit timesteps and at each stage
searches for optimal controls in high dimensional discrete space, where the di-
mension depends on the number of activities. Similarly to [13], resource feasibility
is not explicitly enforced in the non-started part of schedule. In our model the
same holds for precedence feasibility as well.

Since the proposed model is SSP with finite state and control spaces with all
admissible policies terminating (some are artificially made proper by bounding
and penalizing), there is a unique optimal cost-to-go function J∗ : S → IR+ that
satisfies Bellman’s optimality equations [16]:

J∗(x) = min
u∈U(x)

Eω∼W (x,u) [g(x, u) + J∗ (f (x, u, ω))] ,∀x ∈ S . (3)

Standard methods for solving MDP such as value iteration, policy iteration or
linear programming converge to the solution for this model [16] and can generally
be used for solving. The proposed model is nearly acyclic and the solution can
be found using simple adaptation to the shortest path algorithm for Directed



Acyclic Graphs (DAG). Such an adaptation sets optimal costs-to-go value of
terminal states to 0, resolving the only cycles in the graph, and uses expectations
in calculations of distances in stochastic transitions.

6 Stability vs. Cost-based Flexibility

The research based on the schedule stability measure as defined by [11] a priori
assumes that the baseline schedule is static and that changes on scheduled ac-
tivity start times between the creation of the baseline and the realized activity
start times are forbidden or of no benefit and are ignored. We consider that the
costs due to (in)stability have their root in inflexibilities in the project executing
system and that these costs should be lower with increased temporal distance of
changes from the current timepoint. That gives us the incentive to “switch” the
baseline schedule in order to reduce anticipated costs.Here we present the con-
ditions under which CBF reduces to the stability measure and when the search
for the optimal policy can be done in simpler policy subspace.

Definition 5. ∀h ∈ H,Πst ⊂ Π is the space of policies that offline, before the
start of project execution, create a baseline schedule while online, ∀γ ∈ supp(p),
in each stage only perform rescheduling of activities at their start and leave the
non-started part of the schedule unchanged.

Lemma 3. ∀h ∈ H it holds:

(∀µ ∈ Πst)(∀γ ∈ supp(p))

(
cf (µ, γ) =

∑
i∈V ′

cs,i(s
γ,µ,i
0 , sγ,µ,iN , sγ,µ,iN )

)
.

Theorem 2. ∀h ∈ H,minµ∈Πc(x−1, µ) = minµ′∈Πstc(x−1, µ
′) if

(∀i ∈ V ′)cs,i(x, y, t) have the following properties:

1. (∀x, y) mint cs,i(x, y, t) = cs,i(x, y,min(x, y)) ,
2. (∀x, y, z) [cs,i(x, y,min(x, y)) + cs,i(y, z,min(y, z)) ≥ cs,i(x, z,min(x, z))] ,
3. (∀x, y) [x ≤ y ⇒ (cs,i(x, y, x) = cs,i(x, y, y))] .

The proofs of Lemma 3 and Theorem 2 are given in the appendix.

Corollary 3. Let h ∈ H be such that the expression for cf under Lemma
3, cf,st, has the form of Leus and Herroelen’s stability measure. Let h′ be the
problem identical to h except that cf in the objective function of h′ is replaced
by cf,st. If h satisfies conditions of the Theorem 2 then minµ∈Π c(x−1, µ) =
minµ′∈Πst

c′(x−1, µ
′).

Corollary 3 shows that a priori decision on search in Πst and using stability
measure results in no loss of optimality if there is obviously no advantage in
rescheduling in advance and if the project executing system is fairly inflexible.

Let τ(x, y, t) = max{0,min(x, y)−t}. An example of CBF measure is defined
by the following rescheduling cost function:

cs

(
L(xd,µk−1), L(xd,µk ), x

d,µ|t
k−1

)
=
∑
i∈V ′

biα
τ(sd,µ,ik−1 ,s

d,µ,i
k ,x

d,µ|t
k−1 )

i · |sd,µ,ik−1 − s
d,µ,i
k | (4)



where bi ∈ IR is the activity-specific basic cost of rescheduling while αi ∈ (0, 1]
is activity-specific discount factor. αi does not model the economic discounting,
but the inflexibility of the project execution system included in execution of that
activity. For example, the system is inflexible if the discount factor is very close to
1 as there is small or no benefit to reschedulings with advance notice. Obviously,
under minimization of the problem that has rescheduling cost function (4) with
∀i ∈ V ′(αi > 1) we can restrict the search for the solution to Πst. Using Corollary
3, the solution to the problem h ∈ H with the rescheduling cost function (4),
where ∀i ∈ V ′(αi = 1), can be found by solving the problem h′ with the flexibility
cost of the form of stability measure, with restriction to search in Πst.

7 Conclusions and Future Work

In this paper, a new approach to proactive-reactive scheduling in SRCPSP has
been introduced. To the best of our knowledge, this is the first work that ap-
proaches modelling of proactive scheduling with proactive reschedules. There are
three main contributions discussed. Firstly, a new family of cost based flexibility
measures is proposed in order to measure flexibility robustness. Flexibility mea-
sures are integrated into the sequential decision making procedure in order to
obtain reactive approach with proactive reschedules. Furthermore, we presented
a bounded stochastic shortest path based model with factored state representa-
tions that captures important aspects of the given problem. The model is finite
MDP with variable number of stages. Standard solving methods, including sim-
ple adaptation to the shortest path algorithm for DAGs, could be applied to it
using Bellman’s optimality equation. Optimal solutions can be obtained only for
small projects. The proactive-reactive optimization is done within a single frame-
work of dynamic programming. Our third contribution refers to the commonly
used stability measure. We compared it with the proposed family of flexibility
measures in the context of proactive scheduling. Schedule stability is shown to
be attained under special conditions on the flexibility measure when the project
execution system does not show more flexibility with the advance notice or even
forbids the advance notice.

Possible future work refers to finding better upper bounds on the worst case
schedule duration for optimal policies with bounds depending on discrete param-
eters of the project. Characterizing the trade-off between the expected perfor-
mance and different imputed worst case bounds is important for the development
of solving procedures. The creation of approximation methods, possibly exploit-
ing near-acyclicity, in order to scale the application scope onto bigger projects
is viable venue. For example, approximate dynamic programming can be used
on the model with heuristically determined bound on the worst case schedule
duration. Finding rescheduling cost function, i.e. sub-elements of flexibility mea-
sure, between the consecutive schedules that would balance realistic modelling
and computational costs of solving is also an interesting research topic. Finally,
research into policy families that would be appropriate for solving problems with



special classes of cost-based flexibility measures, could bring the results closer
to the application domain.
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1 Proofs

Lemma 1. (∀h ∈ H)(∀µ′ ∈ Πrand)(∃µ ∈ Π)c(x−1, µ) ≤ c(x−1, µ′)

Proof. Take arbitrary h ∈ H,µ′ ∈ Πrand.
Let Zrand : Πrand → N0 be the worst-case schedule duration given the prob-

lem h ∈ H and policy µ ∈ Πrand.
By the properties of Πrand, there exists M ∈ N such that ∀γ ∈ supp(p), µ′

terminates project execution at least until time M for all possible sequences of
controls that µ can make for γ.

Then, we can obviously search for policy with better or equal value of objec-
tive function in the set:

ρ′ = {µ ∈ Πrand|Zrand(µ) ≤M}

As we know that all policies in ρ terminate project execution up to M and the
cost of rescheduling is non-negative through the cost-based flexibility measure,
we can restrict our attention from ρ′ to

ρ = {µ ∈ ρ′|µ never does recheduling to timepoints beyond M in states with global project time ≤M}

Due to reasons stated above:

(∀µ1 ∈ ρ′)(∃µ2 ∈ ρ)c(x−1, µ2) ≤ c(x−1, µ1)

From the initial state x−1 for all policies in ρ, only members of subset of the
states with global project time up to M are participating in the calculation of
objective function c as non-zero members in the sum. Using that fact, we model
h′ as a finite horizon dynamic programming problem h′ with M + 3 stages,
k=-1,0,...,M+1. Problem h′ has finite state space:

S′ = {x ∈ S|global project time in x is less than or equal to M+1}

and finite control space

C ′ = {c ∈ C|c does no rescheduling to timepoints beyond M}



Let:

I = {x ∈ S′|xt = M + 1 and the project is not finished at M}

M + 1 stages are used for modelling because the effect of starting the activity
n+ 1 at timepoint k (activity n+ 1 finishes immediately) is visible only at the
next state (at the timepoint k + 1).

Also, the objective function ch′ of problem h′ is adapted from the h in a way
that there is a penalty for not finishing project execution until the global project
time M .

There is a project non-termination cost equal to:

Q =
c(x−1, µ

′) + 1

mind∈supp(p) p(d)

and a project non-termination cost function cQ : S → R+:

cQ(x) =

{
Q, if x ∈ I
0, otherwise

The objective function ch′ is defined as:

ch′(x−1, µ) = Eµd∼p

[
M+1∑
k=1

cs(L(xd,µk−1), L(xd,µk ), x
d,µ|t
k−1 ) + cd(s

γ,µ,n+1
M+1 ) + cQ(xd,µM+1)

]

where the expectation in the above expression is calculated over all activity
duration vectors d ∈ supp(p) and control sequences that policy µ ∈ Πrand can
make for each of the activity duration vectors.

None of the states in I is reachable from x−1 under any of the policies in ρ.
(∀µ ∈ ρ)(∀γ ∈ supp(p)) the project terminates at least until global project time
M and for all sequences of decisions that µ can make for γ so the expected value
of the sum of quality robustness stage-costs in c is equal to the expected value
of quality robustness penalty stated in ch′ .

Due to reasons stated:

(∀µ ∈ ρ) (ch′(x−1, µ) = c(x−1, µ))

Let Πh′ be the space of admissible deterministic Markov policies that ter-
minate project in the worst case until the global project time M on problem
h′. Let Πnt ⊃ Πh′ be the space of deterministic Markov policies that satisfy all
conditions on admissibility except that the condition of project terminability is
not neccessarily satisfied and they do not terminate project in the worst case at
least until the project time M on problem h′.

At stage k, policies in Πnt reach states x with global project time k. No state
is encountered more than once under any policy in Πnt(as in each stage global
project time is incremented by 1) so policies in Πnt can be considered stationary
as the control depends only on the state. As the described problem h′ is finite
horizon dynamic programming problem with finite state space and finite control



space, then by Theorem 4.4.2. and Proposition 4.4.3. in [1], (∃µ∗h′ ∈ Πnt)(∀µ′′ ∈
ρ)c(x−1, µ) ≤ c(x−1, µ′′) - exists optimal deterministic Markov policy on h′.

We will show that µ∗h′ ∈ Πh′ , i.e. that µ∗h′ terminates project in the worst
case at least until the global project time M .
∀µ ∈ Πnt \Πh′ ,∃γ ∈ supp(p) such that the project is not finished until the

global project time M . Then,

ch′(x−1, µ) = Eµd∼p
[∑M+1

k=1 cs(L(xd,µk−1), L(xd,µk ), x
d,µ|t
k−1 ) + cd(s

γ,µ,n+1
M+1 ) + cQ(xd,µM+1)

]
≥ p(γ) ∗Q
= p(γ)

mind∈supp(p) p(d)
· (c(x−1, µ′) + 1)

> c(x−1, µ
′)

From this it follows that µ∗h′ ∈ Πh′ .
From policy µ∗h′ (optimal on h′), a policy µh ∈ Π, defined on h can be

constructed through the following expansion:

µh(x ∈ S) :=

{
µ∗h′(x), if x ∈ S′ \ I
arbitrary admissible control in x, otherwise

Let Rµ∗
h′

be the set of reachable states from x−1 participating in the calcu-

lation of objective functions ch′ under policy µ∗h′ . Obviously, Rµ∗
h′
⊂ S′ \ I.

Let Rµh
be the set of reachable states from x−1 participating in the calcula-

tion of objective functions c under policy µh. Obviously, Rµh′ ⊂ S
′ \ I.

Through construction of µh it is evident that:

Rµ∗
h′

= Rµh

Evidently, it holds:

ch′(x−1, µ
∗
h′) = c(x−1, µh)

Also,
c(x−1, µh) ≤ c(x−1, µ′)

ut

Lemma 2. ∃h ∈ H such that for µ∗ ∈ Π,∃γ ∈ supp(p) where there is at least
one total idleness period.

Proof. We shall show this by example. Let us take the next SRCPSP, with V
and E given by the graph G(V,E) on Fig.1, where 0 and 3 are dummy activities:

Let the project due date be: δ = 4. Activity duration scenarios: γ1 =
[0, 3, 2, 0]; γ2 = [0, 1, 2, 0] with p(γ1) = 1−ψ, p(γ2) = ψ where ψ ∈ (0, 1).Resources
and their availabilities are given by R = {R1};B = [1]. Let resource demands
be: D = [0, 1, 1, 0]T . Finally, activity rescheduling cost functions and quality
robustness measure:

cs,1(x, y, t) = |x− y|, cs,2(x, y, t) = |x− y|, cd(x) = 10 ·max{0, x− δ}



Fig. 1. G(V,E) for the proof of Lemma 2

In the first baseline schedule (∀µ ∈ Π)sµ,00 = 0, by definition. Immediately
after the activity 0 is finished, the activity 1 can be started. Let us take arbitrary
policy µ′ ∈ Π under which activity 1,∀γ ∈ supp(p), starts in a time λ > 0
(the same start for all scenarios due to non-anticipativity constraints). Due to
precedence constraints, all other activities can start only after the activity 1 has
been finished.

Let us construct another policy µ using the policy µ′ in the following way:

– in the first baseline schedule: let sµ,i0 := max{0, sµ
′,i
λ − λ},∀i ∈ V \ {0},

– during the execution: ∀γ ∈ {γ1, γ2}, let

(∀i ∈ V \ {0})(sγ,µ,ik = max{0, sγ,µ
′,i

k+λ − λ}) be the scheduled start times; if

activity i has been started in sγ,µ
′,i

k+λ under µ′, then start activity i in sγ,µ
′,i

k+λ −λ
under µ

As µ′ ∈ Π and ∀γ ∈ {γ1, γ2} µ starts activities with the left shift by λ
of activity starts under policy µ′ and activity duration scenario γ , µ satisfies
precedence and resource constraints. Similar holds for non-retroactiveness con-
straints. Since ∀γ ∈ {γ1, γ2} µ makes decisions only according to decisions of
µ′ for duration scenario γ and µ′ is non-anticipative, µ is also non-anticipative.
Hence, µ ∈ Π.

∀γ ∈ {γ1, γ2}, sγ,µ,n+1
N = sγ,µ

′,n+1
N − λ

∀γ ∈ {γ1, γ2}, sγ,µ,n+1
N < sγ,µ

′,n+1
N

Since cost-based flexibility measure cf in this problem is the sum of monoton-
ically increasing functions in |x − y| (the size of activity start time changes).
Considering that ∀γ ∈ {γ1, γ2} the changes in start times of activities for the
policy µ are smaller than or equal to the corresponding changes in the policy µ′:

Edcf (µ, d) ≤ Edcf (µ′, d)

c(x−1, µ) < c(x−1, µ
′), due to the fact that under the activity duration sce-

nario γ1, sγ1,µ
′,n+1

N > δ which means that (∀λ ∈ N1)cd(s
γ1,µ,n+1
N ) < cd(s

γ1,µ
′,n+1

N ).
Total idleness between activity 0 and the next started activity is suboptimal.

Under the construction given above, the optimal policy for this problem is the
one that in the first baseline puts the scheduled start time of activity 1 to time
0, and then starts activity 1 at the time 0. The scheduled start time of activity
3 in the first baseline can be arbitrary since the activity 3 has no rescheduling
costs. We have to determine the scheduled start time of activity 2 under optimal
policy.



Putting time 0 for scheduled start of activity 2 in the first baseline is subopti-
mal. Timepoint 0 always results in the increased rescheduling cost in comparison
to the timepoint 1, as ∀γ ∈ {γ1, γ2} activity 2 cannot start earlier than 1 due to
precedence constraints.

Let µ1 be the policy that creates the first baseline schedule at [0, 0, 1, 4] and
starts the activity 1 at the timepoint 0. For activity 1 duration d1 = 1, µ1 starts
the activity 2 at the timepoint 1, and starts activity 3 at the timepoint 3. For
activity duration d1 = 3, µ1 starts the activity 2 at timepoint 3, and starts
activity 3 at timepoint 5. Then it holds:

c(x−1, µ1) = 12 · (1− ψ)

Let µ2 be the policy that creates the first baseline schedule at [0, 0, 2, 4] and
starts the activity 1 at the timepoint 0. For activity 1 duration d1 = 1, µ2 starts
the activity 2 at timepoint 2 and starts the activity 3 at timepoint 4. For activity
duration d1 = 3, µ2 starts the activity 2 at timepoint 3, and starts activity 3 at
timepoint 5. Then it holds:

c(x−1, µ2) = 11 · (1− ψ)

µ1 ∈ argmin{c(x−1, µ)|µ ∈ Π ∧ sµ,10 = 0 ∧ sµ,20 = 1}

∀µ′′ ∈ {µ ∈ Π|c(x−1,µ) 6= c(x−1, µ1) ∧ sµ,10 = 0 ∧ sµ,20 = 1} it follows that µ′′

either has starts of activities 2 and/or 3 delayed (as starts of these activities
cannot be done earlier), which incurs the non-negative due date exceeding cost,
or the rescheduling from the predicted start of the activity 2 from the timepoint
1 to 3 (in the case of scenario γ1) is done in a different way which, due to
subadditivity of cs,2, incurs greater than or equal rescheduling cost as for µ1.
Obviously, selecting the timepoint 1 in the first baseline for the start of activity

2 is suboptimal, meaning that sµ
∗,2

0 > 1.

Let us take the case of scenario γ2, where d1 = 1.

Due to non-anticipativity, sγ2,µ
∗,2

1 = sγ1,µ
∗,2

1 . Obviously, sµ
∗,2

0 = sγ2,µ
∗,2

1 as
if the policy µ∗ would, at the timepoint 0 - before getting any information, do
the rescheduling of the scheduled start of activity 2 to any other timepoint j, it
would have greater total cost than the policy µj that has all decisions identical
to the policy µ∗ except that it makes scheduled start of activity 2 in the first
baseline equal to j and that would contradict the assumption that µ∗ is optimal
policy.

As the unit cost of exceeding the due date is bigger than the unit rescheduling
cost for activity 2, policies µ ∈ Π with sµ,20 > 1, including the µ∗, reschedule the
start of the activity 2 to earlier start in order to decrease the due date exceeding
cost w.r.t. policy that does not reschedule the scheduled start of activity 2. Let
us compare reschedules to the timepoint 1 and to the timepoint 2 at the time 1.

Let sγ2,µ
∗,2

1 > 1 be the scheduled start time of activity 2 when the information
of activity 1 finish is available. Policy can do the rescheduling of activity 2
scheduled start to earlier time. Moving the scheduled start of activity 2 earlier,



to the timepoint 2 will incur the cost of:

−9 · (sγ2,µ
∗,2

1 − 2)

hence reducing the total cost. Rescheduling to the timepoint 1 would incur cost
of

−10 ·min{sγ2,µ
∗,2

1 − 2, sγ2,µ
∗,2

1 − 1}+ sγ2,µ
∗,2

1 − 1 = −9 · (sγ2,µ
∗,2

1 − 2) + 1

That means rescheduling to timepoint 2 results in lower total cost under γ2
which means that the rescheduling to timepoint 1 is suboptimal and optimal
policy would not be rescheduling scheduled start of activity 2 to it. Hence, that
leaves at least one total idleness period, [1, 2), under γ2 and µ∗.

ut

Theorem 1. For arbitrary problem h ∈ H, ∃µr ∈ Π such that c(x−1, µr) =
cd
(∑

i∈V max(supp(pi))
)
.

(∀µ ∈ Π)

(
c(x−1, µ) ≤ c(x−1, µr)⇒ cd (Z(µ)) ≤ cd(

∑
i∈V max(supp(pi)))

mind∈supp(p) p(d)

)
.

Proof. Take arbitrary h ∈ H.
Let us construct the policy µr in the following way:

– Let Γ be a list of activities in V , obtained by the topological sort on G(V,E).
Since the G(V,E) is a directed acyclic graph, there exists at least one topo-
logical ordering. Let Γi be the i-th activity in the ordering Γ .
µr generates the initial baseline schedule L(xµr

0 ) according to the Γ in a

recursive way: sΓ0
0 := 0; sΓi

0 := s
Γi−1

0 + max(supp(pΓi−1
))

– During the project execution, policy µr starts activities according to their
predicted start times in the first baseline L(xµr

0 ) and does not make any
other changes.
• The schedule L(xµr

0 ) is ∀γ ∈ supp(p) feasible under µr. In other words,
@γ ∈ supp(p) such that would yield the predicted start of any activity
infeasible.

• For the completeness sake, policy µr in any other state, unreachable from
the x−1 under µr, does start of any nonempty feasible set of activities,
if such exists at that state.

Obviously, µr ∈ Π. Using the objective function c and the next properties of
the rescheduling cost function:

cs(L(xd,µk−1), L(xd,µk ), x
d,µ|t
k−1 ) =

∑
i∈V ′

cs,i(s
d,µ,i
k−1 , s

d,µ,i
k , x

d,µ|t
k−1 )

∀i∀t (x = y ⇒ cs,i (x, y, t) = 0)

we can see that the flexibility cost of policy µr is 0, and that the total cost is:

c(x−1, µr) = cd(
∑
i∈V

max(supp(pi)))



Take policy µ ∈ Π such that it holds:

c(x−1, µ) ≤ c(x−1, µr)

As by definition of Π, all policies in it terminate, we can for µ write the
objective function expression with the quality robustness penalty in the place of
sum of all individual quality robustness stage-costs.

Remark: Any policy that has finite objective function value satisfies project
terminability condition.

Then,

Eµd∼p

N(d,µ)∑
k=1

cs(L(xd,µk−1), L(xd,µk ), x
d,µ|t
k−1 ) + cd(s

d,µ,n+1
N )

 ≤ cd(∑
i∈V

max(supp(pi)))

∀d ∈ supp(p), p(d)·

N(d,µ)∑
k=1

cs(L(xd,µk−1), L(xd,µk ), x
d,µ|t
k−1 ) + cd(s

d,µ,n+1
N )

 ≤ cd(∑
i∈V

max(supp(pi)))

Let d′ ∈ argmaxd∈supp(p)cd(s
d,µ,n+1
N ). Obviously Z(µ) =, then

p(d′)·

N(d′,µ)∑
k=1

cs(L(xd
′,µ
k−1), L(xd

′,µ
k ), x

d′,µ|t
k−1 ) + cd(s

d′,µ,n+1
N )

 ≤ cd(∑
i∈V

max(supp(pi)))

p(d′) · cd(sd
′,µ,n+1
N ) ≤ cd(

∑
i∈V

max(supp(pi))

mind∈supp(p)p(d) · cd(sd
′,µ,n+1
N ) ≤ cd(

∑
i∈V

max(supp(pi)))

ut

Corollary 2. For non-trivial values of δ, we can search for optimal policy only
in the set {µ ∈ Π|(∀γ ∈ supp(p))sγ,µ,n+1

N ≤ ζ}. Optimal policy µ∗ ∈ Π exists.

Proof. Take arbitrary h ∈ H.
As using Theorem 1 and Corollary 1 we know the bound ζ on worst case

project duration for all policies with lesser or equal objective function value than
µr, obviously we can w.l.o.g. reduce search to ρ = {µ ∈ Π|(∀γ ∈ supp(p))sγ,µ,n+1

N ≤
ζ}.

Using the bounded worst-case project duration for all policies in ρ, using the
similar procedure as in the proof of Lemma 1 we can construct the finite horizon
model h′ and find the optimal policy µ∗h′ ∈ Πh′ .

Using the same expansion as in the proof of Lemma 1 we can from µ∗h′
construct µ∗ ∈ Π that is optimal on problem h. ut

Lemma 3. ∀h ∈ H it holds:

(∀µ ∈ Πst)(∀γ ∈ supp(p))

(
cf (µ, γ) =

∑
i∈V ′

cs,i(s
γ,µ,i
0 , sγ,µ,iN , sγ,µ,iN )

)



Proof. The statement follows from the properties of policies in the space Πst and
the property of activity rescheduling cost functions:∀i∀t (x = y ⇒ cs,i (x, y, t) = 0).

Take arbitrary h ∈ H,µ ∈ Πst, γ ∈ supp(p) . By definition,∀i ∈ V , µ makes
at most one change of the activity i scheduled start time during the project
execution after the first baseline is created and that change can occur only at
the start of activity i.

Take arbitrary i ∈ V ′ and let zγ,µ,i be the start time of activity i under

policy µ and scenario γ. Let κ be such that x
γ,µ|t
κ−1 = zγ,µ,i.

∑N(γ,µ)
k=1 cs,i(s

γ,µ,i
k−1 , s

γ,µ,i
k , x

γ,µ|t
k−1 )

=
∑
k∈{1..N(γ,µ)}\{κ} cs,i(s

γ,µ,i
k−1 , s

γ,µ,i
k , x

γ,µ|t
k−1 ) + cs,i(s

γ,µ,i
κ−1 , s

γ,µ,i
κ , x

γ,µ|t
κ−1 )

= cs,i(s
γ,µ,i
κ−1 , s

γ,µ,i
κ , x

γ,µ|t
κ−1 )

= cs,i(s
γ,µ,i
κ−1 , s

γ,µ,i
κ , sγ,µ,iκ )

(1)

The third line in (1) was obtained using the fact that the only change of start
time could occur at the stage κ−1, and using the property of activity rescheduling
cost functions ∀i∀t (x = y ⇒ cs,i (x, y, t) = 0) on all other summands. The last
line in (1) uses the fact that the activity i was started at that time so sγ,µ,iκ =

x
γ,µ|t
κ−1 = zγ,µ,i.

There was no change in scheduled start time of activity i before the κ−1, so
sγ,µ,iκ−1 = sγ,µ,i0 . Similarly, there was no change after the κ − 1 so sγ,µ,iκ = sγ,µ,iN .
From this the claim follows. ut

Theorem 2. ∀h ∈ H, minµ∈Πc(x−1, µ) = minµ′∈Πstc(x−1, µ
′)

if (∀i ∈ V ′)cs,i(x, y, t) have following properties:

1. (∀x, y) mint cs,i(x, y, t) = cs,i(x, y,min(x, y))
2. (∀x, y, z) [cs,i(x, y,min(x, y)) + cs,i(y, z,min(y, z)) ≥ cs,i(x, z,min(x, z))]
3. (∀x, y) [x ≤ y ⇒ (cs,i(x, y, x) = cs,i(x, y, y))]

Proof. Interpretations of properties of functions cs,i:

1. cost of rescheduling is the minimal if done just-in-time (no benefit in advance
notice)

2. cost of sequence of smaller changes done just-in-time is worse or equal to the
cost of total change done made in one step

3. if the rescheduling is done to increase the start time, then the cost of
rescheduling at either of the timepoints is equal

∀h ∈ H,∀xk ∈ S, policy µ : S → C can be written as a vector of controls
reacting on activities i ∈ V \ {0}:

µ(xk) = [(µ(xk))1, ...., (µ(xk))n+1] (2)

Assume there is h ∈ H that satisfies conditions of the theorem. Assume that
µ∗ ∈ Π is optimal for h, i.e. attains the minimum in objective function. In that



case, either µ∗ ∈ Πst, and we have trivially proven that the optimal policy is in
Πst, or µ∗ /∈ Πst.

Let us assume µ∗ /∈ Πst. Then, there must exist non-empty set∆µ∗ ⊆ supp(p)
of activity duration scenarios where ∀d ∈ ∆µ∗∃ad ∈ V such that policy µ∗ does
change in start time between the project time 0 and the actual start of activity

ad. Let ∆µ∗

j ⊆ ∆µ∗ , j ∈ V be the set of activity duration scenarios where for

each d ∈ ∆µ∗

j policy µ∗ does change in start time between the project time 0

and the actual start of activity j. Let A = {j ∈ V |∆µ∗

j 6= ∅}.
Let a = minA. ∀d ∈ ∆µ∗

a , let the scheduled start times of the activity a
be (zd1 , ..., z

d
nd

), where nd > 2. zd1 is the scheduled start time of the activity a

in the first baseline schedule, each zdi , (1 < i < nd) is subsequent scheduled
start time of the activity a after each change before the start of that activity.
zdnd

is the realized start time of activity a under activity duration scenario d
and policy µ∗. Let the total rescheduling cost for activity a on the trajectory of

states (x−1, x
µ∗

0 , xd,µ
∗

1 , ..., xd,µ
∗

N(d,µ∗)) made under activity duration scenario d and

applied decisions of policy µ∗ be the sum of all costs for reschedulings:∑nd

k=2 cs,a(zdk−1, z
d
k , tzdk )) ≥

∑nd

k=2 cs,a(zdk−1, z
d
k ,min(zdk−1, z

d
k))

≥ cs,a
(
zd1 , z

d
nd
,min(zd1 , z

d
nd

)
)

= cs,a(zd1 , z
d
nd
, zdnd

)

(3)

where tzdk is the project time at which the change from zdk−1 to zdk occurred.

The first inequality in (3) is due to the property 1. The second inequality is
due to successive application of the property 2. Regarding the equality, either
zdnd

= min(zd1 , z
d
nd

), and the equality is trivial, or zd1 < zdnd
when it holds by the

property 3.
Let µ′ be the policy such that ∀d ∈ ∆µ∗

a makes for the activity a only decisions
zd1 , z

d
nd

at the respective times 0, zdnd
, where the activity a is started at zdnd

, and

∀j ∈ V \ {0, a} decisions are identical to those that µ∗ makes. ∀b /∈ ∆µ∗

a , µ′

makes the identical decisions as µ∗. Since µ∗ is admissible, it follows that µ′

must be admissible as well. ∀d ∈ ∆µ∗

a , the total rescheduling cost under µ∗ for
activity a is the leftmost sum in (3) while the total rescheduling cost under µ′

is the expression after the equality in (3).
In that case, ∀d ∈ ∆µ∗

a the total cost of rescheduling for all activities on the
state trajectory under µ′ is:∑N(d,µ′)

k=1 (
∑
i∈V ′\{a} cs,i(s

d,µ′,i
k−1 , sd,µ

′,i
k , x

d,µ′|t
k−1 ) + cd,s(x

d,µ′|t
k−1 )) + cs,a(sµ

′,a
0 , sd,µ

′,a
N , sd,µ

′,a
N ) ≤∑N(d,µ∗)

k=1 (
∑
i∈V ′\{a} cs,i(s

d,µ∗,i
k−1 , sd,µ

∗,i
k , x

d,µ∗|t
k−1 ) + cd,s(x

d,µ∗|t
k−1 )) +

∑N(d,µ∗)
k=1 cs,a(sd,µ

∗,a
k−1 , sd,µ

∗,a
k , x

d,µ∗|t
k−1 )

From this, it follows that

c(x−1, µ
′) ≤ c(x−1, µ∗) (4)

Let A := A \ {a}. If A = ∅, then ∆µ′ = ∅ and µ′ ∈ Πst which proves the
optimal policy is in Πst.



If A 6= ∅, similar argument is repeated on µ′ as for µ∗, by replacing µ∗ with µ′

and taking a = minA. In each iteration of such a procedure, ∃j ∈ A,∀d ∈ ∆µ∗

j ,
controls in subsequently constructed policy are changed for activity j in a way
that start times for that activity are no longer rescheduled between the first
baseline and the start of that activity. Furthermore, |V | is finite and after at
most |V | iterations we will obtain policy µ∗st ∈ Πst such that ∆µ∗st = ∅. Also,
at each step of such a procedure by (4) we obtain at least as good policy as in
the previous iteration, so the final policy µ∗st has the minimal cost among the
admissible policies and it is in the Πst. As under these conditions we can always
find the optimal policy within Πst, the statement of the theorem holds. Search
for optimal policy can w.l.o.g. be done only in the Πst. ut
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