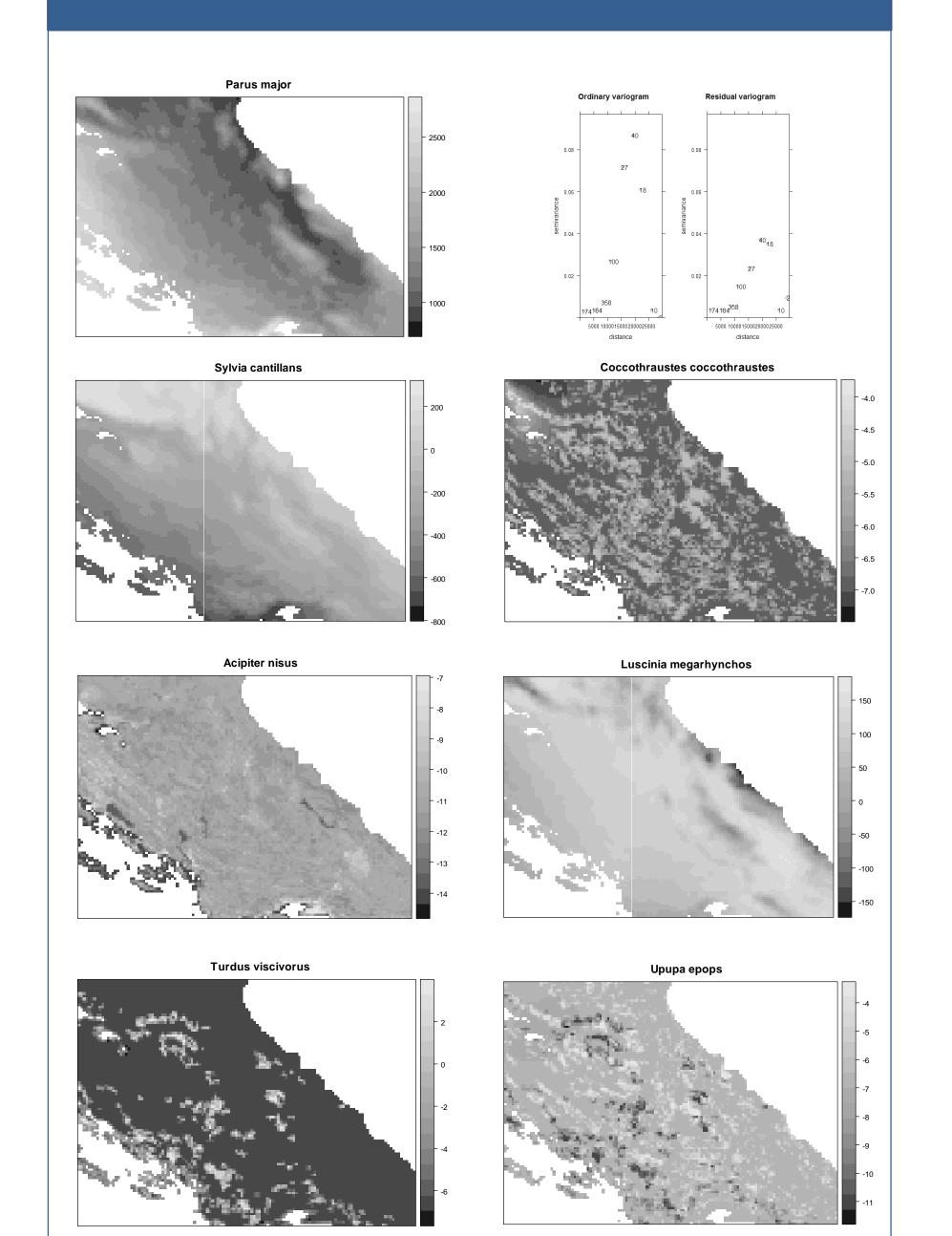
New approach in data analysis from areas with limited ornithological data: automated modelling of small passerine densities from approximate transects Andreja RADOVIĆ¹; Gordan LUKAČ²; Nataša TEPIĆ³

Introduction


Ornithological data, in comparison to data for other biological groups, is often regarded as one that is most easily obtainable and birds are among best known organisms.

Birds are indicators of environmental changes and good surrogate for ecological value of an area. For that reason, in Europe, data on birds and habitats are used as main pillars to advocate the conservation of nature in whole, through the Bird's and Habitat's Directives. Number of scientific and non-governmental organisations developed variety of monitoring programs in order to resolve questions on bird distributions, population statuses and diverse population parameters. Some Western European countries and North America, this period in time regard as time "beyond data gathering" where the usage of novel statistical techniques developed, enables us to answer more complex ecological questions that was not possible in the recent past. In the same time, vast amount of available remotely sensed data opened possibility to monitor bird habitats on a large scale, and more useful planning of corridors and stop-over sites as well as facilitate multispecies management. But, situation about bird data is far from described in large part of the world and usage of every information available is necessary. Our test region was middle part of Croatian coastal part of a country that can be regarded as region with limited ornithological data.

Results

We developed automated spatial modelling of densities for small passerine bird species through approximate transects that connects start and end points, information usually available from bird monitoring projects in the region.

Both, national habitat classification schemes and Corine land cover information can be used in proposed methodology. Here, we are presenting Corine approach due to pan European

Materials and Methods

Data used for modelling was start and end point of the 35 transect from Dalmatia and number of 28 species in focus. Then we did the following: characteristics of Corine classification.

Presented results are preliminary results of GLM modelling, testing all possible models up to 5 variables and comparing among themselves according to Aikake Information Criterion (AIC).

Figure 1. Some of the reconstructed transects used for modelling. **Table 1.** Best models for each species, selected according AIC. PCA1, PCA2 and PCA3 are first three components of principal component analysis performed at bioclim variables (http://www.worldclim.org).

 Table 2. Corine land cover legend.

Species	Best model	Hab	Corine code
Parus major	hab 11 + hab 23 + PCA1 + slope	1	1.1.1 Continuous urban fabric
		2	1.1.2 Discontinuous urban fabric
Sylvia atricapilla	hab_27+hab_28+PCA3	3	1.2.1 Industrial or commercial units
Oriolus oriolus	hab 24	4	1.2.2 Road and rail networks and associated land
0110103 0110103		5	1.2.3 Port areas
Jynx torquilla	hab_2+hab_24+PCA1+slope	6 7	1.2.4 Airports 1.3.1 Mineral extraction sites
Serinus serinus	hab 2+hab 24+PCA1+slope	7 8	1.3.2 Dump sites
Serinas Serinas		9	1.3.3 Construction sites
Turdus merula	hab_27+hab_28+hab_29+PCA3	10	1.4.1 Green urban areas
Fringila coelebs	hab_24+hab_28+hab_29+PCA2	11	1.4.2 Sport and leisure facilities
Fringila Coelebs		12	2.1.1 Non-irrigated arable land
Upupa epops	hab_28+hab_29	13	2.1.2 Permanently irrigated land
Coccothraustes		14	2.1.3 Rice fields
coccothraustes	hab_2+hab_24+hab_44+PCA2	15	2.2.1 Vineyards
Acantis canabinna	hab_27	16	2.2.2 Fruit trees and berry plantations
	100_27	17	2.2.3 Olive groves
Acipiter nisus	hab_11+hab_2+hab_29+PCA2	18	2.3.1 Pastures
Luscinia megarhynchos	hab_11+hab_2+hab_44+PCA3	19	2.4.1 Annual crops associated with permanent crops
Lusciniu meguniyiichos		20	2.4.2 Complex cultivation patterns
Sylvia hortensis	hab_11+hab_28+hab_29+PCA3		2.4.3 Land principally occupied by agriculture, with
Culuia contillanc	hab 11, hab 21, hab 20, DCA2	21	significant areas of natural vegetation
Sylvia cantillans Parus caeruleus	hab_11+hab_21+hab_29+PCA2 hab_26+hab_27+hab_44+PCA3	22	2.4.4 Agro-forestry areas
		23	3.1.1 Broad-leaved forest
		24	3.1.2 Coniferous forest
Aegithalos caudatus	hab_28	25	3.1.3 Mixed forest
Lanius collurio	hab_29+hab_32+PCA1+slope	26	3.2.1 Natural grasslands
		27	3.2.2 Moors and heathland
Parus lugubris	hab_2+hab_28+hab_44+PCA2	28	3.2.3 Sclerophyllous vegetation
Cuculus canorus	hab 11+hab 2+hab 24+hab 44	29	3.2.4 Transitional woodland-shrub
		30	3.3.1 Beaches, dunes, sands 3.3.2 Bare rocks
Dendrocopus major	hab_24+hab_28+hab_44+PCA3	31 32	3.3.3 Sparsely vegetated areas
Erythacus rubeculla	aspect+hab 11+hab 2+hab 44	33	3.3.4 Burnt areas
		34	3.3.5 Glaciers and perpetual snow
Sitta europaea	hab_11+hab_21+hab_44+slope	35	4.1.1 Inland marshes
Turdus viscivorus	hab_11+hab_21+hab_28+hab_44	36	4.1.2 Peat bogs
	11a5_11+11a5_21+11a5_20+11a5_44	37	4.2.1 Salt marshes
Picus canus	hab_2	38	4.2.2 Salines
Prunella modularis	hab $22 \pm hab = 27$	39	4.2.3 Intertidal flats
Franena modularis	hab_23+hab_27	40	5.1.1 Water courses
Phylloscopus collybita	hab_11+hab_27+hab_29+PCA1	41	5.1.2 Water bodies
Anthus trivialis	dist_coast+hab_23+PCA1+PCA2	42	5.2.1 Coastal lagoons
		43	5.2.2 Estuaries
Phoenicurus ochruros	hab_11+hab_2+hab_44+slope	44	5.2.3 Sea and ocean

Figure 2. Spatial predictions of log (densities) for selected species and example of one ordinary/residual variogram.

Discussion

With this exercise we tried to find a way how to use all available data on bird communities in a region with limited ornithological data. Similar approach can be made with other biological taxa.

- 1) Reconstruct transects, approximating it with straight line between start and end point.
- Merging transect lines with species information in SpatialLineDataFrame and save ESRI Shapefiles and KML files for checking;
- Calculating species densities along every transects knowing species counts and length of the transects;
- 4) Creating profiles from line transects, information at every 10 meters along transects for following environmental variables prepared at 30 meter resolution:
 - elevation; aspect; slope; distance to the coast;
 - first three PCA of worldclim bioclimatic variables ;
 - national habitat classification scheme 3rd level;
 - Corine land cover classification scheme 3rd level;
- 5) Information from profiles were integrated at transect level.
- 6) The same set of variables prepared at 1km resolution for creating final spatial models.
- 7) Automated modelling procedure was performed for each species in dataset in order to detect important environmental variables.

We clearly showed the potential of such approach in obtaining new knowledge about the species – environment relationship.

Our dataset was restricted in space, no temporal replicates as well as very small in total number of transects, so obtained results should be taken with care. Anyway, even such a restricted starting information gave us much better insight in variables that probably plays important role in determining species densities in the region.

It is necessary to quantify the discrepancies in results obtained through our approach of transect approximation with results obtained having exact transect route available. For that, we need to set well planed field experiment.

Conclusions

Suggested approach can be very useful in regions with limited number of skilled ornithologists / birdwatchers in order to use as much available information about birds from diverse projects.

8) Creating spatial predictions (regression-kriging) according to the best model and fitted variogram of residuals for each out of 28 species in focus. It is necessary to incorporate larger number of transects in order to detect:

- 1) Autocorrelation in the densities of species in focus since this dataset was too small for reliable estimation;
- 2) Regional differences in variable importance;
- 3) Species potentially susceptible to climate change;
- Changes in species environment relationship through time (transects grouped to suit the most to national habitat mapping projects or Corine project.

Contact

¹Andreja Radović, PhD – independent consultant

Email: andreja.radovic100@gmail.com

Website: https://www.researchgate.net/profile/Andreja_Radovic?ev=hdr_xprf

https://bib.irb.hr/lista-radova?autor=274690

Phone: +385 91 78 1021

²Gordan Lukač PhD; National park "Paklenica"; sluzba-zastite@paklenica.hr ³Nataša Tepić; National Center for External Evaluation of Education; e-mail: Natasa.tepic@ncvvo.hr